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INTRODUCTION 

 
Those  who  assert  that  the  mathematical 

sciences  say  nothing  of  the  beautiful  or  the  good 

are  in  error. 

 

–  Aristotle 

 

 

There  are  at  least  four  reasons  to  study  geometry. 

 (1)    GEOMETRY  IS  FULL  OF  WONDERS.     At  every  level  of  

this  science,  from  the  most  elementary  to  the  most  advanced,  we  are  con-

fronted  with  the  unexpected.    Often,  the  seemingly  possible  proves  impos-

sible,  and  conversely  what  at  first  seemed  impossible  turns  out  to  be  pos-

sible.    An  example  from  the  most  elementary  level  is  the  possibility  of  

one  rectangle  having  more  area  than  another  one,  and  yet  less  total  length  

around  its  sides.    At  first,  it  sounds  impossible  to  enclose  a  bigger  yard  

with  less  fence,  or  a  smaller  yard  with  a  longer  fence.    (Incidentally,  that  

is  why  swindlers  in  ancient  times  used  to  sell  land  by  perimeter  instead  

of  by  area.) 
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Now  a  more  advanced  example.    Take  any  

quadrilateral  ABCD,  as  ugly  and  random-

looking  as  you  please.    Cut  each  side  in  

half  at  e,  f,  g,  h,  and  – surprise!–  the  quad-

rilateral  e f g h  is  a  perfect  parallelogram. 

 

 

And  a  slightly  more  advanced  example.    If  you  

take  any  triangle  ABC  and  drop  perpendiculars  

from  each  vertex  to  its  opposite  side,  these  three  

perpendiculars  all  meet  at  one  point,  X  ... 

 

 

And  if  you  join  each  vertex  of  triangle  ABC  to  

the  midpoint  of  the  opposite  side,  these  three  

lines  all  meet  at  one  point,  Y  ... 

 

 

Finally,  if  you  draw  perpendiculars  from  the  

midpoints  of  the  sides  of  ABC,  they  also  all  

meet  at  one  point,  Z.    Now  the  surprise:    in  

any  triangle  ABC,  these  three  points  X,  Y,  Z  are  

in  a  perfectly  straight  line.    (Not  only  that,  but  XY  is  exactly  double  the  

length  of  YZ!) 
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There  are  many  more  surprises  than  these  in  geometry,  but  to  get  into  

them  would  take  us  out  of  this  introduction,  and  into  the  science  itself. 

 

 (2)    GEOMETRY  IS  BEAUTIFUL.    There  are  at  least  three  

sources  of  beauty  in  geometry.    First,  there  are  the  figures  themselves:    

perfect  things  of  their  kind,  without  bump  or  wrinkle,  such  as  a  perfect  

circle,  or  the  five  Platonic  Solids.    Symmetry  and  proportion,  which  are  

universal  principles  of  beauty  in  nature,  architecture,  poetry  and  music,  

abound  in  geometric  diagrams.    There  is  also  a  beauty  in  the  truths  of  

geometry  themselves.    For  example,  if  you  take  any  triangle  you  like  (Δ 

ABC ),  and  cut  each  of  its  angles  into  three  equal  parts,  the  six  trisecting  

lines  you  have  drawn  will  meet  each  other  inside  the  triangle  at  three  

points  (D,  E,  F).    The  beautiful  thing  is  

that  the  three  points  D,  E,  F  will  be  

the  vertices  of  a  perfectly  equilateral  tri-

angle.    Such  revelations  are  not  only  

surprising,  but  pleasing  in  their  simplici-

ty  and  symmetry.    In  geometry,  order  

pops  up  unlooked  for;  a  beauty  that  we  

do  not  make,  but  only  discover. 

 The  proofs  of  geometry  can  also  be  beautiful.    The  best  geometric  

proofs  are  adorned  with  a  brilliance  all  their  own  in  virtue  of  their  inge-

nuity,  clarity,  universality,  and  rigor.    Geometry,  properly  presented,  yields  

an  experience  of  intelligible  beauty,  introducing  minds  to  the  special  

pleasures  attending  insight  and  understanding. 
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 (3)    GEOMETRY  IS  FULL  OF  FUNDAMENTALS.    Over  the  en-

trance  to  Plato’s  Academy  there  hung  a  sign  which  read  Let  no  one  igno-

rant  of  mathematics  enter  here.    Why  did  a  school  of  philosophy  desig-

nate  mathematics  as  a  prerequisite  for  admission?    Plato  saw  that  many  

universal  principles  are  most  readily  accessible  to  us  through  mathematics. 

 The  geometrical  science  of  proportion,  for  example,  shows  in  a  con-

crete  way  how  some  things  can  be  known  by  proportions  or  analogies.    

We  can  come  to  know  an  unknown  quantity  x  if  we  see  it  in  proportion  

to  other  terms  already  known  to  us,  say  if  x  has  to  4  the  same  ratio  that  

3  has  to  2.    Knowing  4,  3,  and  2,  and  knowing  the  relationship  between  

3  and  2,  we  can  come  to  know  the  mysterious  x.    This  is  a  useful  way  

of  getting  at  something  to  which  we  have  no  direct  access,  say  if  x  were  

a  length  we  could  not  measure  directly,  like  the  height  of  an  Egyptian  

pyramid.    There  is  no  way  to  drop  a  plumb  line  from  the  peak  of  a  pyr-

amid  straight  down  to  its  base,  but  three  other  lengths  that  we  can  meas-

ure  might  form  a  proportion  with  the  inaccessible  height.    Philosophers  

and  scientists,  too,  must  sometimes  find  ways  to  investigate  things  not  di-

rectly  observable  or  imaginable,  and  one  tool  for  this  purpose  is  propor-

tion  or  analogy,  the  most  fundamental  use  of  which  we  find  in  geometry. 

 Geometry  is  also  fundamental  in  another  way.    It  is  the  science  

most  easily  acquired  by  the  human  mind  with  rigor  and  exactness.    In  

geometry,  one  can  settle  disagreements.    One  can  draw  inescapable  con-

clusions.    This  makes  geometry  an  ideal  entryway  into  the  whole  life  of  

the  mind. 

 

 (4)    GEOMETRY  EXERCISES  THE  MIND.    People  exercise  their  

bodies  to  maintain  their  strength  and  health,  and  also  because  it  feels  
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good.    There  is  such  a  thing  as  mental  exercise,  too,  which  both  strength-

ens  and  exhilarates  the  mind.    Studying  geometry  is  among  the  best  of  

mental  workouts,  simultaneously  exercising  one’s  imagination,  memory,  and  

reason.    In  the  course  of  a  proof,  the  imagination  must  follow  a  line  of  

reasoning  from  one  part  of  a  diagram  to  another;  it  must  flip,  rotate,  and  

otherwise  manipulate  geometrical  objects;  it  must  interpret  two-dimensional  

diagrams  of  three-dimensional  things;  it  must  picture  how  the  other  parts  

of  a  diagram  are  affected  if  one  part  is  moved  or  changed.    Memory  also  

gets  a  workout,  since  geometry  is  cumulative.    Each  conclusion  must  be  

understood,  and  then  used  to  establish  later  results,  which  in  turn  help  to  

establish  still  more  advanced  results.    And  geometry  obviously  exercises  

reason.    There  is  no  reasoning  more  exact  than  a  mathematical  argument.    

Geometrical  objects  are  perfect  subject  matter  for  forming  definitions  and  

proofs,  proposing  difficulties  and  finding  resolutions,  drawing  distinctions,  

finding  examples  …  in  short,  for  doing  all  the  best  things  that  human  

reason  can  do.    Thus  geometry  builds  people’s  confidence  that  reason  can  

find  satisfying  answers  to  serious  questions. 

 

 For  the  above  reasons  geometry  is  justly  recognized  as  an  essential  

element  in  the  formation  of  every  educated  person  and  is  worthy  of  life-

long  study.    Current  books  written  on  the  premise  that  geometry  is  inter-

esting  in  itself  are  largely  intended  for  advanced  students  or  professional  

mathematicians.    They  presuppose  a  mastery  of  elementary  theorems.    On  

the  other  hand,  geometry  books  which  begin  at  the  very  beginning  are  

generally  not  written  for  enthusiastic  readers,  but  for  students  who  need  to  

pass  an  exam.    Such introductions  gloss  over  proofs  (or  skip  them  entire-
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ly),  emphasizing  instead  various  formulas,  exercises,  and  problem-solving  

techniques. 

 This course  is  written  for  anyone  motivated  to  study  geometry  for  

the  wonder  and  beauty  of  it,  for  readers  disposed  to  contemplate  theorems  

as  if  they  were  works  of  art.    And  yet  it  begins  at  the  very  beginning.    

To  master  it,  you  need  no  prior  training  in  mathematics.    In  consequence,  

this  course  represents  a  unique  introduction  to  geometry.    Readers  interest-

ed  in  learning  mathematics  will  find  it  better  suited  to  their  needs  than  

study  manuals  or  high  school  geometry  books  because  of  its  scope,  its  pu-

rity,  and  its  rigor. 

 THE  SCOPE  OF  THIS  COURSE   by  far  surpasses  that  of  the  typi-

cal  introduction.    This  course  covers  most  of  the  content  of  the  thirteen  

books  of  Euclid’s  Elements,  whereas  typical  introductions  do  not  cover  

material  much  beyond  the  first  three  or  four  books  of  Euclid.    Written  

most  often for  the  high  school  level,  they  do  not  go  deep  enough  into  ge-

ometry  to  reach  the  most  beautiful  and  exciting  material  accessible  to  rec-

reational  mathematicians.    Yet  this  course  is  not  longer  than  the  average  

high  school  textbook,  but  actually  shorter,  since  it  does  not  multiply  exer-

cises. 

 THE  PURITY  OF  THIS  COURSE   should  be  refreshing  to  anyone  

who  loves  geometry.    Other  introductions  to  the  science,  written  so  read-

ers  can  “get  the  right  answer,”  employ  algebra,  trigonometry,  number  

lines,  a  system  of  coordinate  axes,  and  a  host  of  other  devices.    Such  de-

vices  and  techniques,  though  useful  (elsewhere)  and  important  to  study  

(elsewhere),  have  no  place  in  a  formal  introduction  to  geometry  intended  

for  those  who  wish  to  begin  at  the  beginning  and  understand  the  reasons  

for  things.    The  impression  is  given  that  there  is  no  geometry  without  



 
vii 

these  extras.    The truth  is  that  geometrical  things  can  be  known  geometri-

cally,  without  recourse  to  algebra  or  trigonometry. 

 The  proof  of  the  Pythagorean  Theorem  given  in  this  book,  for  ex-

ample,  makes  no  use  of  algebraic  operations.    The  theorem  is  demonstra-

ble  on  purely  geometrical  grounds.    The  proof  given  for  this  theorem  in  

many  introductory  books  is  an  algebraic  one  that  quickly  leaves  behind  

the  diagram  altogether.    The  result  is  a  very  abstract  and  unmemorable  

proof,  the  steps  of  which  are  not  explicitly  correlated  with  the  right  trian-

gle  and  the  squares  that  the  geometrical  theorem  is  about.    The  purpose  

of  teaching  the  Pythagorean  Theorem  algebraically  is  to  encourage  profi-

ciency  in  applying  it  to  problems.    This  denies  students  any  real  under-

standing  of  the  theorem,  however,  and  reinforces  the  idea  that  geometry  

has  no  intrinsic  worth  or  beauty. 

 RIGOR.    Many  introductory  books  use   theorems  they  do  not  prove,  

such  as  the  theorem  that  if  a  cone  and  a  cylinder  stand  on  the  same  cir-

cle  and  have  the  same  height,  the  volume  of  the  cone  is  one  third  that  of  

the  cylinder.    Current  high  school  textbooks  including  this  theorem  or  a  

formula  based  on  it  do  not  attempt  even  a  sketchy  proof  for  it.    In this 

course a  complete  proof  is  given  for  this  theorem  and  for  every  other  the-

orem  covered.    Once  again,  the  implicit  message  of  the  textbook  is  that  

understanding  the  theorem  is  not  important,  but  only  the  use  of  a  formula  

which  one  should  be  willing  to  take  on  faith.    This  presumes  an  audience  

uninterested  in  the  reasons  for  things,  or  incapable  of  understanding  them. 

 Like  a  novel,  it  is  essential  to  read  this  book  in  the  order  in  which  

it  is  written,  but  unlike  a  novel,  you  can  stop  after  any  chapter  or  theo-

rem  and  come  away  with  something  completely  understood.    But  enough  

of  introductions.    On  to  the  adventure  of  geometry. 
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SYMBOLS 

 

Here  are  the  symbols  and  abbreviations  I  will  use: 

 

A  =  B  A  is  equal  to  B 

A  >  B  A  is  greater  than  B 

A  <  B  A  is  less  than  B 

AB  ⊥  CD  AB  is  perpendicular  to  CD 

AB ║ CD  AB  is  parallel  to  CD 

60°   sixty  degrees 

∠ABC  angle  ABC 

rABC  triangle  ABC 

rABC  ≅ rDEF triangle  ABC  is  congruent  to  triangle  DEF 

£AB   the  square  on  line  AB 

£ABCD  the  square  with  corners  A,  B,  C,  D 

AB · CD  the  rectangle  with  sides  of  length  AB  and  length  CD 

3A   three  times  A 

A  :  B  =  C  :  D A  has  to  B  the  same  ratio  that  C  has  to  D 

A  :  B  >  C  :  D A  has  to  B  a  greater  ratio  than  C  has  to  D 

 

Q.E.D. Short  for   Quod  Erat  Demonstrandum,  a  Latin  expres-

sion  meaning  “that  which  was  to  be  demonstrated,”  a  

customary  way  of  marking  the  end  of  a  demonstrative  

theorem. 
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Q.E.F. Short  for   Quod  Erat  Faciendum,  a  Latin  expression  

meaning  “that  which  was  to  be  done,”  and  a  customary  

way  of  marking  the  end  of  a  construction  or  “how  to”  

theorem. 
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DEFINITIONS 
 
 
 

 
1.  A SOLID is whatever has length, width, and 
depth. 
 A gold brick is a solid, having a length 
HL, a width HW, and a depth HD. 
 
 

 
 
2.  A solid stops at its SURFACE (or surfaces); so a surface has length and width, but no 
depth. 
 The top face of a gold brick is a surface, having a length HL, and a width HW.  

But it has no depth, since it is only the 
face of the brick; if it had any depth, it 
would not be the top face of a brick, but 
it would be a brick itself, even if a very 
slim one. 
 
 

3.  When a surface comes to an end, it stops at a LINE (or lines); so a line has length, but 
no width or depth. 

One edge of the brick's top surface, such as HL, is a line, having a certain length.  
But it has no width or depth.  It has no depth, since it is an edge of a surface, which has 
no depth.  It has no width, since it is only the edge of the surface; if it had any width, it 
would not be only the edge of a surface, but it would be a surface itself, even if a very 
narrow one. 

Today a finite line is often called a “line segment.”  But since infinite lines don’t 
come up too frequently, and it is tedious to say “line segment” every time a finite line is 
meant, I will call a finite line simply a “line.” 
 
 
 
4.  When a line comes to an end, it stops at a POINT; so a point has no length, no width, 
no depth. 
 One end of the edge of the brick's top surface, such as H, is a point, having no 
length, width, or depth.  It has no width or depth, since it is the end of a line, which itself 
has no width or depth.  It has no length, since it is only the end of a line; if it had any 
length, it would not be only the end of the line, but it would itself be a line, even if a very 
short one.  Although it has no shape or size, a point does have one positive feature:  its 
location. 
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5.  A STRAIGHT LINE is a perfectly uniform line.  Every part of it is the same “shape” 
as every other part, regardless of length, and different straight lines differ only in length, 
location, and orientation.  Every other kind of line is called a CURVED LINE. 
 One imaginative way to express the uniformity of a straight line is with the 
following “thought experiment.”  If you look at a straight line on end, it will look like a 
point; that is, none of the line’s length will be visible.  Another way to express the 
uniformity of straight lines is like this:  it is impossible for both  endpoints of one straight 
line to coincide with those of another, without the  straight lines themselves completely 
coinciding. 
 A straight line is sometimes defined as the shortest distance between two points.  
We will see more about the “shortness” of straight lines in Theorem 17.  In the 
meantime, it is enough to note that the reason a straight line is so short and direct 
compared to other lines is because of its uniformity. 
 NOTE:  Since this book is only about straight lines and circles, and no other kinds 
of lines, when I say “line” I will mean one of these, and which one I mean will be clear 
by context. 
 
 
6.  A FLAT SURFACE is a perfectly uniform surface.  Every part of it, regardless of 
size, is the same “shape” all over and on both sides, with no difference of “terrain” 
between one part and another.  A flat surface can also be called a PLANE. 
 One imaginative way to express the uniform terrain of a plane is with the 
following thought experiment.  If you look at a plane on edge, it will look like a straight 
line; that is, none of the plane’s width will be visible. 
 
 

7.  When two distinct lines in the same plane meet at a 
point, the inclination of one to the other is a PLANE 
ANGLE.  The point at which the lines meet is called the 
VERTEX of the angle. 
 Angle ABC is an example.  Since the line AB has 
an inclination to line BC on one side of itself, 1, but 
also another inclination to (or away from) line BC on 

the other side of itself, 2, we may speak of an “interior” angle 1, and an “exterior” angle 
2.  By “angle ABC,” I will mean inclination 1. 
 
 

 
8.  A RECTILINEAL ANGLE is an angle formed by two 
different straight lines. 

Angle DEF is an example. 
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9.  When one straight line stands on another in such a way that 
the two adjacent angles formed are equal to each other, each 
angle is called a RIGHT ANGLE. 
 Thus if AB stands on CD making angle 1 equal to angle 
2, then each of these angles is a “right” angle. 
 
 
10.  A straight line standing on another at right angles is said to 
be PERPENDICULAR to the line on which it stands. 

AB is perpendicular to CD, for example. 
 

 
11.  An OBTUSE ANGLE is a rectilineal angle greater than a 
right angle.  An ACUTE ANGLE is a rectilineal angle less than 
a right angle. 
 Angle CBE is acute, being less than angle CBA, which 
is right.  Angle EBD is obtuse, being greater than angle ABD, 
which is right. 

 
 
12.  An obtuse angle and an acute angle are called SUPPLEMENTARY when they add 
up to two right angles.  Two acute angles are called COMPLEMENTARY when they add 
up to one right angle. 
 Angles CBE and EBD are supplementary; angles CBE and EBA are 
complementary. 
 
 
13.  A BOUNDARY of a thing is its limit, or where it stops. 
 For example, a sphere is bounded by one surface, a square by four lines, a 
straight line by two points. 
 
 

 
14.  A FIGURE is something contained by its 
boundary or boundaries – something which cannot 
be entered or departed from without cutting across 
its boundary or boundaries. 
 A straight line, such as FG, though it is 
bounded by two endpoints, is not a figure, since it is 
possible to pass through the line without passing 
through the endpoints which bound it.  But a 
triangle, such as HKL, is a figure, since it is 
impossible to pass into the triangle or out of it 
without passing through one of the straight lines 
that bound it. 
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15.  A CIRCLE is a plane figure contained by one curved 
line whose every point is the same distance from a single 
point inside it. 
 Figure ADEBFA is a circle, since it is bounded by 
the one line ADEBFA, and all the points on that line, such 
as A,D,E,B,F, are the same distance from C; that is, CA = 
CD = CE = CB = CF. 
 

 
 
16.  The single point inside a circle which is the same distance from every point along the 
curved line bounding the circle is called the circle's CENTER. And the curved line 
bounding the circle is called the circle's CIRCUMFERENCE. 
 C is the center of the circle ADEBF, and ADEBFA is its circumference. 
 
 

 
17.  Any straight line drawn from the center of a circle and 
stopping at the circumference is called a RADIUS of the 
circle.  Thus, by definitions 15 & 16, it is evident that all the 
radii of a circle are equal. 
 The plural of “radius” is “radii.” 
 Any straight line drawn through the center of a circle 

and terminated at each end by the circumference is called a DIAMETER of the circle.  It 
is evident that any diameter of a circle bisects the circle, that is, cuts the circle into two 
equal parts. 
 CD is an example of a radius of circle C, and ACB is an example of a diameter of 
circle C. 
 
 
 
18.  A SEMICIRCLE is the figure contained by a circle’s diameter and the circumference 
cut off by it. 

The figure contained by ADEB and the straight line AB is an example of a 
semicircle. 
 
 
 
19.  A RECTILINEAL FIGURE is a plane figure contained by straight lines only. 
 A TRIANGLE is a plane figure contained by three straight lines. 
 A QUADRILATERAL is a plane figure contained by four straight lines. 
 A POLYGON is any plane figure contained by more than four straight lines. 
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20.  Among triangles, an EQUILATERAL TRIANGLE is one with all three sides equal.  
An ISOSCELES TRIANGLE is one with only two sides equal.  A SCALENE 

TRIANGLE is one without any equal sides. 
 ABC is an equilateral triangle, DEF 
is an isosceles triangle, GHK is a scalene 
triangle. 
 
 

 
21.  Among triangles, a RIGHT 
TRIANGLE is one containing 
a right angle.  An OBTUSE 
TRIANGLE is one containing 
an obtuse angle.  An ACUTE 
TRIANGLE is one with all three of its angles acute. 
 LMN is a right triangle, OPQ is an obtuse triangle, RST is an acute triangle. 
In a right triangle, the side opposite the right angle is called the HYPOTENUSE, and the 
two sides containing the right angle are called LEGS. 

NL is the hypotenuse of triangle LMN;  MN and ML are its legs. 
 
 
22.  If two straight lines lie in one plane together, but never meet each other in either 

direction however far they are extended, they are 
said to be PARALLEL to each other. 
 AB and CD are parallels. 
 

 
 

23.  Among quadrilaterals, a SQUARE is a quadrilateral 
with all four sides equal and all four angles right; a 
RECTANGLE is a quadrilateral with all four angles right 
but not all four sides equal; a RHOMBUS is a 
quadrilateral with all four sides equal but no right angles. 
 EFGH is a square, KLMN is a rectangle, OPQR 
is a rhombus. 
 A PARALLELOGRAM is any quadrilateral 
contained by two pairs of parallel straight lines. 
Quadrilaterals that are none of the above will be called 
TRAPEZIA. 

STUV is a parallelogram, even though it has no 
right angles and not all of its sides are equal.  WXYZ is a 
trapezium. 
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24.  Two straight lines are INCLINED TOWARD EACH OTHER if, when cut by a third 
straight line, the sum of the two interior angles on one side is less than the sum of the two 
exterior angles on that same side. 

For example, if  1 + 2  is less than  3 + 4, then AB and 
CD are inclined to each other toward the right. 
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GEOMETRICAL POSTULATES 
 
 
 
1. A straight line can be drawn from any point to any point. 
 

For example, from A to B. 
 

 
 
2. Any straight line can be extended continuously in a straight line in either direction 
and as far as you please. 
 

For example, AB can be extended to C, 
in such a way that ABC is one straight 
line. 

 
 
 
3. A circle can be drawn around any point as its center and with a radius of any 
given length. 

  
For example, around point P we may draw a circle whose radius 
shall be any given length, such as PL. 
 
 
 

4. All right angles are equal. 
 
Not only are adjacent right angles equal to each other, such as 1 
and 2, but even those that are not adjacent, such as 1 and 3. 
 
 

 
 
 
5. Straight lines inclined towards each other eventually meet, when extended far 
enough. 
  

For example, let A and B be two straight lines that cut 
across another straight line C,  making angles 1 & 2 
to the right of C.  If 1 + 2 is less than 3 + 4, then A 
and B must eventually meet on the right side of C at 
some point. 
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GENERAL PRINCIPLES 
 
 
 
 
1. Things equal to the same thing are also equal to each other. 
 
For example, 36 inches is equal to a yard, but 3 feet is also equal to a yard, so 36 inches 
has to be equal to 3 feet. 
 
 
 
2. When equals are added to equals, the wholes are equal. 
 
For example, if Fred and Jack are both exactly five feet tall, and this summer each will 
grow the exact same amount, then their heights will still be equal. 
 
 
 
3. When equals are subtracted from equals, the remainders are equal. 
 
For example, if two brand new pencils have exactly the same length, and then you 
sharpen them down by exactly the same amount, they will still have equal lengths. 
 
 
 
4. Things that can be made to coincide with each other are equal. 
 
That is, if two things are such that neither one goes outside of the other even a little bit, 
then neither is greater than the other, and so they must be equal.  For example, if the 
bottom surface of a box fits exactly on the surface of a table, nowhere hanging over the 
edge or letting any part of the table's surface show, then the bottom of the box and the 
surface of the table have equal areas. 
 
 
 
5. Every whole is greater than any one of its parts. 
 
The surface area of a whole lake is greater than the surface area of any part of it; fifty 
dollars is greater than any part of fifty dollars, etc. 
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THEOREMS 
 
 
 
 
 
THEOREM 1:  How to make an equilateral triangle. 
 
If someone gives us a straight line AB, how can we make an equilateral triangle on top of 
it so that AB is the base of the triangle? 
 As follows. 
 

[1]  Draw circle X around point A 
with radius AB (by Postulate 3). 
[2]  Draw circle Z around point B 
with radius BA (by Postulate 3). 
[3]  These two circles obviously 
must intersect each other, namely 
at points C and D. 
[4]  Join points A and C with a 
straight line (Postulate 1). 
[5]  Join points B and C with a 
straight line (Postulate 1). 
 

So we have made a triangle, ABC. 
It is in fact equilateral. 
Why?  Because: 
[6]  AC = AB, since these two lines are radii of circle A (see Definition 17). 
[7]  BC = AB, since these are both radii of circle B (Def. 17). 
[8]  AC = BC, since each is equal to AB (Steps 6 & 7; see Common Notion 1). 
[9]  So all three sides of the triangle are equal to one another, making it an equilateral 
triangle (Def. 20). 
 
 
Q.E.F. 
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THEOREM 1 Remarks 
 
 
1. Notice what we have done in this first theorem:  we have made a perfectly 
equilateral triangle without measuring anything.  There is something surprising about 
that.  And who would have thought that circles are helpful for making triangles? 
 
2. The equilateral triangle is the simplest rectilineal figure, and so it makes sense 
that we should begin geometry by making it.  It has the fewest number of sides, and they 
are all the same. 
 
3. Despite the simplicity of the equilateral triangle, it is a figure rich with surprising 
properties, some of which we will discover in this book.  Also, it is very useful for other 
constructions, as we will see once we get to Theorem 7.  We have already accomplished 
something significant in making the equilateral triangle, right here in the very first 
theorem! 
 
 
THEOREM 1 Questions 
 
 
1. Does an equilateral triangle appear to be right, obtuse, or acute? 
 
2. Looking at the diagram, find a way to make a rhombus.  Prove all four of its sides 
are equal.  (We have not yet done enough geometry to prove that its angles are not right 
angles.) 
 
3. Imagine that your compass became so rusty you can no longer adjust it, so that 
you can make circles only of one size.  If the unadjustable radius of your compass is not 
equal to AB in the diagram, but was something less than AB, can you still use it to make 
an equilateral triangle on AB?  (Remember that you still have a straight-edge which lets 
you extend straight lines as far as you like.) 
 
4. Using a method of construction similar to that for the equilateral triangle, can you 
find a way to make an isosceles triangle?  What about a scalene triangle? 
 
5. What happens if you make 3 more equilateral triangles, one on each side of 
ΔABC ? 
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THE SIDE-ANGLE-SIDE THEOREM 
 
 
THEOREM 2:  If in one triangle a side, the next angle, and the next side, are 
respectively equal to a side, the next angle, and the next side in another triangle, then all 
the corresponding sides and angles of the  two triangles are equal, and they have equal 
areas. 
 
Imagine two triangles ABC and DEF such that 

AB = DE 
∠ABC = ∠DEF  (angle ABC equals angle DEF) 
BC = EF 

Then the remaining corresponding sides and angles of these two triangles must also be 
equal, and the two triangles must contain equal areas.  To see this, 
 
 [1]  Imagine moving rABC so that AB lies on DE; since they are equal, they will 
coincide, so that A is on D and B is on E. 

 
[2]  Since ∠ABC = ∠DEF, BC will fall 
along EF, and C will fall on F (since BC = 
EF). 
 
[3]  So A, B, C are sitting on D, E, F.  
Then AC must coincide with DF; for if it 
fell outside it, as the dotted line, then two 
straight lines, namely AC & DF, would cut 
each other at two points and enclose a 
space (which is impossible). 
 

[4]  So AB, BC, AC coincide with DE, EF, DF.  Thus the two triangles have been made 
to coincide exactly, and so they are completely identical (Common Notion 4). 
 
[5]  Since the two triangles are identical, it follows that 

AC = DF & ∠BAC = ∠EDF & ∠BCA = ∠EFD 
that is, the remaining sides and angles are equal, and also the triangles have equal areas. 
 
Q.E.D. 
 
 
THEOREM 2 Remarks 
 
1. This theorem is often called the “Side-Angle-Side” Theorem.  If a side, the next 
angle, and the next side in one triangle are equal to a side, the next angle, and the next 
side in another triangle, then the two triangles are identical to each other. 
 
 

A

B

C

D

E

F

E

D

F

(B)

(A)
(C)



 

 13 

 
2. This “Side-Angle-Side” Theorem is used 
throughout geometry, and throughout this book.  Since 
the areas of the two triangles are equal, and also the 
corresponding sides and angles, this theorem is useful 
for proving the equality of  (1) lines,  (2) angles, and  
(3) areas. 

 
3. An important principle is used in this theorem, 
namely that Two straight lines cannot enclose a space.  
Another way to say the same thing is that Two straight 
lines cannot cut each other more than once.  These 
statements are obvious because of the perfect 
uniformity of straight lines; after cutting once they 
cannot bend back to cut each other a second time. 

 
4. The two triangles in this theorem are not only equal in area, but all their 
corresponding sides and angles are equal.  Such triangles are said to be congruent to each 
other; in fact, any pair of figures which are both the same shape and the same size are 

called “congruent”.  The symbol for congruency is ≅.  The squiggly line over the equal 
sign means “similar”, so that the two symbols together mean “equal and similar to”, or 

“the same size and the same shape”.  So when you read “ΔABC ≅ ΔDEF”, this means 
that all the corresponding sides and angles of triangle ABC and triangle DEF are equal, 
and the two triangles have the same area. 
 
 
 
THEOREM 2 Questions 
 
1. When we are told which initial sides and angles are equal, exactly how do we 
decide which of the remaining angles and sides in the two triangles are “corresponding” 
sides and angles? 
 
2. What if the two triangles in question are mirror images of each other?   Then it is 
not possible to slide one over on top of the other.  So how would we prove the theorem? 
 
3. What if ∠ABC = ∠DEF, AB = DE, but BC is greater than EF?  What can we say 
about the two triangles then? 
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THEOREM 3:  In an isosceles triangle, the base angles are equal to each other, 
and the angles under the base are equal to each other. 
 
 

Imagine an isosceles triangle ABC in which AB 
= AC.  I say that the base angles, namely ABC 
and ACB, those opposite the equal sides, must 
be equal to each other, too.  Moreover, if you 
extend AB to D and AC to E, the angles under 
the base must also be equal to each other, 
namely DBC and ECB.  To see it, just … 
 
[1] Cut off CE = BD by drawing a circle 
around C with a radius equal to BD. 
 
[2] Join BE.  Join CD. 

 
 

[3] AB = AC  (triangle ABC is given as isosceles) 
 BD = CE  (Step 1) 
so AD = AE  (the sums of equals are equal; C.N. 2) 
 
[4] AC = AB  (triangle ABC is given as isosceles) 
 
[5] ∠BAC is common to triangles ADC & AEB 
 
[6] ΔADC ≅ ΔAEB (Steps 3, 4, & 5:  Side-Angle-Side) 
 
[7] ∠ADC = ∠AEB (being corresponding angles of the equal triangles) 
and DC = EB  (being corresponding sides of the equal triangles) 
and BD = CE  (Step 1) 
so ΔBDC ≅ ΔCEB (Side-Angle-Side) 
 
[8] ∠EBA = ∠DCA (being corresponding angles in ΔADC & ΔAEB; Step 6) 
but ∠EBC = ∠DCB (being corresponding angles in ΔCEB & ΔBDC; Step 7) 
so ∠CBA = ∠BCA (the remainders of equals are equal; C.N. 3) 

i.e. the angles at the base of ΔABC are equal to each other. 
 
[9] And the angles under the base of ΔABC are also equal, namely ∠DBC & ∠ECB, 

being corresponding angles of ΔBDC & Δ CEB (Step 7). 
 
Q.E.D. 
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THEOREM 3 Remarks 
 
1. Notice the plan of attack, or strategy of this theorem.  It is to establish first that 
the larger overlapping triangles (ADC and AEB) are identical or congruent, and then to 
use information gained from that to prove the small overlapping triangles under the base 
are identical or congruent (BDC and CEB).  Once that is accomplished, we can derive 
that the base angles are equal as well as those under the base by using corresponding 
angles and by subtracting equals from equals.  To understand more elaborate proofs it is 
always helpful to figure out the overall strategy used. 
 
2. “All isosceles triangles have their base angles equal” is an example of a 
universal truth.  Such truths apply to an unlimited number of cases.  How many isosceles 
triangles exist, have existed, or will exist?  An unlimited number, and they all have their 
base angles equal.  We have just proven this, even though we could not possibly inspect 
every individual isosceles triangle.  When did Theorem 3 begin to be true?  Never.  It was 
always true and always will be.  Its truth did not depend on us proving it – all the proof 
did was allow us to come to know it.  Theorem 3 was true before any geometer existed.  
Can the truth of Theorem 3 ever change?  No.  It is necessarily true and cannot be 
otherwise.  Where is Theorem 3 true?  Does it apply only in the United States?  No.  It is 
true everywhere.  Geometry, and all other sciences, aim especially at understanding truths 
of this kind – universal truths, which are not tied to time and place, and which can never 
change but must always be so. 
 
 
THEOREM 3 Questions 
 

 
1. You can prove this theorem in another way by flipping the 
triangle ABC over onto itself:  since AB = AC, each will fit on top of 
the other when we flip the triangle over, and so ∠ACB will coincide 
exactly with the place where ∠ABC was.  Therefore these two angles 
are equal. 
 
 
2. In Theorem 7 we will learn how to bisect any angle.  Imagine 
that ∠BAC was already bisected for us by the straight line AM.  Given 
that AB = AC, can you see how to prove once more that ∠ABC = 
∠ACB? 
 
 

 
3.      Use Theorem 3 to prove that all three angles of an equilateral 
triangle are equal to each other. 
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THEOREM 4:  If two angles in a triangle are equal to each other, then the sides 
opposite them are also equal to each other, i.e., the triangle is isosceles. 
 

Imagine a triangle ABC, in which ∠ABC = ∠ACB.  Then AB = 
AC, too.  To see this, assume for a moment that AB and AC are 
not equal – let's see if that is really possible.  Suppose, for 
example, that AB > AC.  Then … 
 
[1]  From AB, the supposedly greater of the two sides, cut off BD 
= AC and join CD. 
 
 

[2]  Consider ΔDBC and ΔACB: 
since BD = AC  (we supposedly made it so) 
and ∠DBC = ∠ACB (as given) 
and BC is common to both triangles 
thus ΔDBC ≅ ΔACB (Side-Angle-Side), and so their areas are equal. 

 
[3]  But that is ridiculous, since ΔDBC is a part of ΔACB, and the part is always less than 
the whole (Common Notion 5). 
 
[4]  Since something impossible follows from the assumption that AB > AC, therefore 
the assumption that AB > AC is itself impossible.  So AB is not greater than AC. 
 
[5]  By the same reasoning we can show that AC is not greater than AB. 
 
[6]  Since AB and AC are such that neither is greater than the other, therefore AB = AC 
after all. 
 
Q.E.D. 
 
 
 
 
 
THEOREM 4 Remarks 
 
 
1. By Theorem 3, an equilateral triangle has all three of its angles equal.  Does it 
follow from Theorem 4 that, since an equilateral triangle has any two of its angles equal 
to each other, it must therefore be an isosceles triangle?  An equilateral triangle is 
“isosceles” in the sense that it has at least two of its sides equal, but not in the more 
restrictive sense that it has only two of its sides equal.  We might restate Theorem 4 by 
saying “If a triangle has two angles equal, then it has at least two sides equal, namely 
those opposite the equal angles.” 
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2. Theorem 4 is the “converse” of Theorem 3.  The “converse” of any statement is 
the statement formed by switching its subject and predicate; for example the converse of 
the statement 
 Every bachelor is a man who never married 
is the statement that 
 Every man who never married is a bachelor. 
Not all converses of true statements are themselves true.  For example, 
 Every triangle is a figure = TRUE 
 Every figure is a triangle = FALSE. 
That is why we must often prove the converse of a true statement.  Still, sometimes this is 
unnecessary.  Looking back at Theorem 2, we learned that triangles having certain 
corresponding parts equal will have all corresponding parts equal.  The converse is also 
true, but needs no proof, namely that if two triangles have all corresponding parts equal, 
then they will also have some of their parts equal. 
 So Theorem 4 proves the converse of Theorem 3, since this is what each proves: 
Theorem 3:  An isosceles triangle is a triangle with two equal base angles. 
Theorem 4:  A triangle with two equal base angles is an isosceles triangle. 
 
 
3. The point of proving the converse of a theorem (whenever its converse is true) is 
to show that the property we showed belongs to some figure belongs only to that kind of 
figure.  In Theorem 3 we learned that ALL isosceles triangles have equal base angles – 
but is having equal base angles unique to isosceles triangles (namely those with at least 
two equal sides), or can scalene triangles have that property too?  Well, in Theorem 4 we 
learn that ONLY isosceles triangles have equal base angles.  As soon as the base angles 
are equal, the sides opposite them must also be equal. 
 
 
 
 
THEOREM 4 Question 
 
 
Use Theorem 4 to prove that any triangle with 3 equal angles is an equilateral triangle. 
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THEOREM 5:  Triangles are rigid. 
 
 

Imagine a standing square made out of 4 boards nailed 
together with one nail at each corner:  A, B, C, D.  If you 
gave AB a swift kick, then each nail would act like a hinge-
pin, and the square would slant over into a new shape such as 
AEFD, where all the boards remain the same length, but they 
are now at new angles to each other.  So squares are 
"flexible". 

Can we do the same thing with a triangle?  Imagine 
ΔABM, and suppose another triangle ABN could sit on the 
same base AB, having different angles from ΔABM, and yet
 AM = AN 
and BM = BN. 

 
Is that possible?  No!  To see the impossibility, try to suppose it is possible ... 
 
 
 
[1]  Join MN. 
 
[2]  ∠1 + ∠2 = ∠3  (since AM = AN, ∠AMN = ∠ANM by Thm. 3) 
 
[3]  ∠2 = ∠3 + ∠4  (since BM = BN, ∠BMN = ∠BNM by Thm. 3) 
 
[4]  Now, by Step 3 we can substitute (∠3 + ∠4) in place of ∠2 anywhere we please, 
since they are equal.  So in Step 2 let's replace ∠2 with (∠3 + ∠4), which gives us 
 
     ∠1 + (∠3 + ∠4) = ∠3 
 
 [5]  So ∠3 = ∠3 + ∠1 + ∠4 (Step 4 rearranged), 
which is to say that an angle is equal to itself plus some other angles, which is 
impossible. 
 
[6]  Therefore the original supposition from which this absurdity follows is also 
impossible, namely that the triangle ABM might be flexible, and we could keep all its 
sides the same length but change its angles.  So triangles are rigid. 
 
Q.E.D. 
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THEOREM 5 Remarks 
 
 
1. The kind of proof we just used for Theorem 5, like the proof for Theorem 4 
before it, is called a “reduction to the absurd” (reductio ad absurdum or reductio ad 
impossibile in Latin).  It is also called “indirect proof.” 
 The strategy of such a proof is to assume the opposite of what we wish to prove, 
show that something impossible would necessarily follow from such an assumption, and 
conclude that therefore the original assumption which gave rise to the impossibility is 
itself impossible.  And so the thing we wish to prove is necessarily true – since its 
opposite turned out impossible. 
 Theorem 4 was a perfect example of such a line of reasoning.  We wanted to 
show that any triangle with two equal angles is isosceles.  Assuming the opposite, namely 
that we could have a triangle with equal angles whose opposite sides were not equal, it 
would follow that we could cut out a part of that triangle which is equal to the whole 
triangle.  But that’s impossible.  So we also had to condemn the initial assumption.  That 
is, the sides opposite equal angles in a triangle must be equal, lest an absurdity follow. 
 
2. Another way to state Theorem 5 is this:  given three straight lines making up a 
triangle, it is impossible to take them apart and put them together again and get a different 
triangle.  Try it. 
 
 

3. It is possible to make two triangles on top of 
AB which have identical sides but do not coincide, 
such as rABC and rABD.  Yet they remain 
congruent, having identical sides and angles, and it is 
not AD that AC is equal to, but BD.  The triangles are 
mirror images of each other.  Therefore we do not get 
rADB by “tilting” rACB, but by flipping it over. 
 

 
 
4. Theorem 5 has some applications in building things.  If you look at most bridges 
and frames for roofs, you find triangular braces everywhere – that's because triangles add 
rigidity.  If we use only rectangles, things can fold over, tilt, collapse! 
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THEOREM 5 Questions 
 
1. What if we supposed triangle ANB fell 
inside the original triangle AMB?  Could we still 
prove the theorem then?  Draw yourself a diagram:  
join MN as before, extend AM to any point P and 
extend AN until it meets MB at a point R.  You will 
want to use the part of Theorem 3 about angles 
under the base of an isosceles triangle, since you are 
given that AM = AN (making AMN isosceles) and 
that BN = BM (making BMN isosceles, too).  Begin 
by writing out the angles which must therefore be 
equal, and see if you can find something impossible.  

If so, you will have proved that neither is it possible to squish triangle AMB down to a 
smaller triangle ANB while keeping all the sides the same length. 
 

2. How would the proof go if we assume N fell on MA or on 
MB? 
 
 
 
 
 

3. Five sticks are nailed together to make a pentagon, with only one nail at each 
corner.  How many cross braces are needed to make the figure rigid?  In how many 
different ways can this be done? 
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THE SIDE-SIDE-SIDE THEOREM 
 
 
THEOREM 6:  If the 3 sides of one triangle are equal to the 3 corresponding 
sides of another triangle, then the two triangles will also have their corresponding angles 
equal (namely those between equal sides), and they will have equal areas. 

 
Imagine ΔA, whose three sides are equal to the 
corresponding sides of ΔB.  Since all their sides are equal, 
let them sit on the same base CD, and place them so that the 
equal sides share an endpoint, namely C and D, so that 
 CA = CB 
and DA = DB. 
 
[1]  Now, if points A and B do not coincide with each other, 
then triangles will not be rigid; for then ΔBCD would have 
its three sides all equal to the sides of ΔACD, and yet it 
would slant a little to the right. 
 

[2]  Since triangles are rigid (Thm. 5), A and B must coincide. 
 
[3]  Since points A & B must coincide, therefore CA coincides with CB, and DA 
coincides with DB. 
 
[4]  Since CA coincides with CB and DA with DB, therefore 
 ∠DCA coincides with ∠DCB 
and ∠CDA coincides with ∠CDB 
and ∠CAD coincides with ∠CBD 
 
[5]  Since things which coincide are equal, therefore these two triangles have all their 
corresponding angles equal, and are also equal in area. 
 
Q.E.D. 
 
THEOREM 6 Remarks 
 
 
1. This Side-Side-Side Theorem is in the same family as Theorem 2, the Side-
Angle-Side Theorem.  It is our second Theorem about the conditions required for two 
triangles to be congruent to each other. 
 
2. As with Theorem 2, it does not matter if the two triangles are mirror images of 
each other – we have only to flip one of them over, and then the proof can proceed as it 
does. 
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THEOREM 6 Question 
 
 
Using this Theorem, prove that the two equilateral triangles made on the same straight 
line (one above it and the other below it) are equal to each other. 
 
 
 
 
 
 
THEOREM 7:  How to bisect any rectilineal angle. 

 
Suppose someone gives you an angle ABC. 
How can you cut it exactly in half?  Easy: 
 
[1]  Pick any point D on AB, and make a circle around 
B with radius BD, cutting off BE = BD. 
[2]  Join DE. 
[3]  Make an equilateral triangle DEF on DE (Thm. 1). 
[4]  Join BF. 
 
This line BF bisects angle DBE, that is, ∠FBD = 
∠FBE.  Why?  Because … 
 
 
 

 
 
[5]  BE = BD  (we made it so) 
 
[6]  FE = FD  (they are sides of an equilateral triangle) 
 
[7]  BF is common to both ΔFBD and ΔFBE 
 
[8]  So the 3 sides of ΔFBD are equal to the 3 sides of ΔFBE, and so their corresponding 
angles are equal  (Side-Side-Side, Thm. 6). 
 
[9]  ∠FBD = ∠FBE (being corresponding angles in ΔFBD & ΔFBE). 
 
 
Q.E.F. 
 
 
 

B

E

CFA

D



 

 23 

THEOREM 7 Remarks 
 
 
1. It follows from this Theorem that there is no smallest rectilineal angle, since no 
matter how small it is, we can always use this theorem to bisect it and get two smaller 
angles. 
 
2. The way to trisect any random angle, that is, cut it into 3 equal angles, is not so 
easy; in fact it is impossible if we limit ourselves to using circles and straight lines in a 
plane.  Some angles can be trisected without difficulty, but others, such as the angle of an 
equilateral triangle, require more sophisticated tools than circles and straight lines. 
 
3. Since we are cutting angles in half, we might as well mention here the mechanical 
tool for doing this, the protractor, and the unit it uses, the degree. 
 Suppose you have a circle whose circumference has been divided into 360 equal 
parts for you.  Each part is one 360th of the way around a circle, and it is called a degree.  
Degrees, accordingly, can be used to measure either the length of an arc around the circle, 

or the angle drawn from the center standing on that arc. 
 If we go along the circumference of a circle from A 
through R to B, and we have gone one quarter of the way around, 
then we have gone through 90 of the 360 equal parts of the 
circumference, or 90°.  We can say that the arc ARB is an arc of 
90°, or we can say that the angle ACB is an angle of 90°. 

To go halfway around the circle from B to D is to go 180° 
(since that is half of 360°), and that is to open up an angle into a 

straight line DCB.  Since ∠ACB is 90°, ∠ACD must also be 90° (since together they 
make 180°).  Since they are adjacent equal angles and DCB is a straight line, each of 
them is right.  So a right angle is 90 degrees.  Any angle more than that is obtuse, and 
any angle less than that is acute. 
 A protractor is a simple hand tool used for measuring angles – it is basically a 
circle (or semicircle) with degrees marked off along its circumference and numbered.  In 
geometry, a protractor can be handy for making accurate diagrams, even though we don't 
need it to prove anything. 
 
 
THEOREM 7 Questions 
 
 
1. Will the construction and proof for Theorem 7 still work if we put the equilateral 
triangle on top of DE? 
 
 
2. Draw any triangle and, using the method in Theorem 7, bisect its three angles as 
carefully as you can.  What do you notice about the three bisectors? 
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3. Do you need to draw the sides of the equilateral triangle in order to draw the 
bisector in Theorem 7?  No.  That is only for the sake of the proof.  Then what is the 
fewest number of steps needed in order to bisect an angle? 
 
 
4. If 90° is a right angle, and 180° is two right angles, then give the complementary 
and supplementary angle for each of the following angles:  30°, 45°, 37.5°, 27.368°. 
 
 
 
 
THEOREM 8:  How to bisect any straight line. 

 
Suppose you have a straight line AB you need 
to bisect.  How do you do it? 
 Like this: 
 
[1]  Make an equilateral triangle ABC on AB 
(Thm. 1). 
 
[2]  Bisect ∠ACB with a line CD (Thm 7). 
 
Now I say that the point D, where angle-bisector 
CD meets AB, bisects AB.  That is, AD = DB.  
Why?  Because … 
 

[3]  AC = CB  (being sides of equilateral triangle ACB) 
 
[4]  ∠ACD = ∠BCD (since CD bisects ∠ACB) 
 
[5]  CD is common to both ΔACD and ΔBCD. 
 
[6]  So by the Side-Angle-Side Theorem (Thm 2), the other corresponding sides and 
angles of ΔACD and ΔBCD are also equal. 
 
[7]  AD = DB  (being corresponding sides in ΔACD and ΔBCD) 
 
 
Q.E.F. 
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THEOREM 8 Remarks 
 
1. From Theorem 8 it follows that there is no smallest straight line, since no matter 
how small it is we can use this Theorem to bisect it and get two smaller lines. 
 
2. A rough way to bisect a length in practice is simply by measuring with a ruler or 
tape measure and dividing the length in half numerically.  You can also take a piece of 
paper of the given length and fold it in half, giving the half length. 
 
3. Unlike the problem of cutting an angle into 3 equal parts, the problem of cutting a 
straight line into 3 equal parts is not very difficult.  In fact, later in this book, we will find 
a way to cut any straight line into any number of equal parts.  Before we get there, see 
whether you can come up with a way to do it yourself. 
 
 
 
THEOREM 8 Questions 
 
1. Looking back to the diagram for Theorem 1, can you see the fewest steps needed 
in order to bisect a straight line? 
 
2. Draw any triangle you like and bisect the three sides of it.  Join each vertex of the 
triangle to the midpoint of the opposite side.  What do you notice about the three straight 
lines you have drawn? 
 
 
 
 
 
THEOREM 9:  How to draw a line at right angles to any straight line from any 
point on it. 

 
Suppose you have a straight line AB, and I 
pick a random point P on it.  How can you 
draw a line from P at right angles to AB?  As 
follows. 
 
[1]  Pick any point C on AP, and draw a circle 
around P with radius PC, thus cutting off PD = 
PC. 
 
[2]  Make an equilateral triangle CDR on CD. 
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[3]  Join PR. 
 
We did it:  PR is at right angles to AB.  How do we know?  Because … 
 
[4]  PD = PC  (Step 1) 
 
[5]  CR = DR  (being sides of equilateral triangle CDR) 
 
[6]  PR is common to ΔRPC and ΔRPD. 
 
[7]  So, by the Side-Side-Side Theorem (Thm. 6), all of the corresponding angles of 
ΔRPC and ΔRPD must be equal. 
 
[8]  ∠RPC = ∠RPD (being corresponding angles of ΔRPC & ΔRPD) 
 
[9]  So ∠RPC and ∠RPD are adjacent angles, formed by one line RP standing on 
another, AB, and they are equal to each other.  Therefore they are right angles (Def. 9). 
 
[10]  Thus a straight line, PR, has been set up at right angles to the given line AB and 
from the point P on it. 
 
Q.E.F. 
 
 
 
THEOREM 9 Remarks 
 
 
1. Since we can now draw right angles, we can also draw right triangles.  In fact, we 
have drawn two right triangles in the construction for this Theorem, namely ΔRPC and 
ΔRPD. 
 
2. In order to avoid having to go through all the steps in this construction every time 
a right angle is needed, carpenters and engineers use a tool called a carpenter's "square", 
which is a tool shaped like a big right angle or letter "L".  You can also use a protractor to 
mark off angles of 90°.  Of course, all such tools have to be constructed by employing 
geometrical constructions such as the one we have given here. 
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THEOREM 9 Questions 
 

 
1. Suppose you have a straight line CD that has been 
bisected at P, so CP = PD.  Imagine that three circles of 
the same radius (namely CP or PD) have been drawn 
around point C, point P, and point D. 

The left circle cuts the middle one at point M, the 
right circle cuts the middle one at point N. 
 Extend CM and ND until they meet at a point, R.  
Join RP. 
 If you have drawn all of this carefully, and you 

measure CM and MR, what do you notice?  If you measure angle RPD, how many 
degrees does it seem to be?  See if you can settle the question with a proof. 

 
2. What is the fewest number of steps needed to draw a line from a point P at right 
angles to a line through P? 

 
3. Prove that any point along the perpendicular bisector of a 
straight line is equidistant from both ends of the line.  That is, if 
RB is perpendicular to CD and bisects it at B, and R is any point 
along the perpendicular RB, prove that RC = RD.  
 
 
 

 
 
 
 
 
THEOREM 10:  How to drop a perpendicular line to any straight line from any 
point above it. 
 
Now suppose you have a straight line AB, and I pick a random point P above it.  How 
can you drop a line from P which is perpendicular to AB?  Easy. 

 
[1]  Choose any point D below AB. 
[2]  Draw a circle around P with radius 
PD, thus cutting AB at G and E. 
 
[3]  Join GP; join EP. 
[4]  Bisect GE at H (Thm. 8). 
[5]  Join PH. 
 

PH is in fact perpendicular to AB.  Why?  Because … 
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[6]  PG = PE  (being radii of circle P) 
[7]  HG = HE  (since we bisected GE at H) 
[8]  PH is common to ΔPHG and ΔPHE. 
[9]  So, by the Side-Side-Side Theorem (Thm. 6), all the corresponding angles of ΔPHG 
and ΔPHE are equal. 
[10]  ∠PHG = ∠PHE (being corresponding angles of ΔPHG and ΔPHE) 
[11]  But these two equal angles, ∠PHG and ∠PHE, are adjacent angles formed by one 
line, PH, standing on another, AB, and so they are right angles (Def. 9). 
[12]  Hence PH has been drawn perpendicular to AB (Def. 10). 
 
Q.E.F. 
 
 
 
 
THEOREM 10 Remarks 
 
 
1. Theorem 10 is somewhat the opposite of Theorem 9, since in Theorem 9 the point 
from which we had to draw a perpendicular was on the given line – here in Theorem 10 
the point is above the given line. 
 
 

2. What if P is not directly above the straight 
line AB?  Then we simply have to extend AB 
until it passes underneath P. 
 

 
3. The practical way to draw a straight line perpendicular to AB from a point P is to 
use a tool such as a carpenter's square, the tool shaped like the letter L or like a big right 
angle.  Put one leg of the square on AB and slide it along until the other leg touches point 
P, and then trace the edge of the square from point P down to AB. 
 
 
THEOREM 10 Question 
 
 
Do we need to draw PG and PE in order to draw PH?  No; they were drawn for the sake 
of the proof that PH is perpendicular.  So what is the fewest number of steps actually 
needed to draw a perpendicular from a point to a straight line? 
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THEOREM 11:  When one straight line stands on another one, the adjacent 
angles add up to two right angles. 
 

Obviously if PB stands upon CD at right angles, then 
∠PBC + ∠PBD equals two right angles.  Now what if 
AB stands upon CD, but not at right angles to it?  Will it 
still be true that ∠ABC + ∠ABD = 2 rights?  Yes. 
 
To see it, 
 
[1]  Draw BP at right angles to CD (Thm. 9). 
 

 
 
[2]  Thus ∠PBC + ∠PBD = Two rights 
 
[3]  But ∠PBC + ∠PBD = ∠1 + ∠2 + ∠3 
 
[4]  So  ∠1 + ∠2 + ∠3 = Two rights   (Common Notion 1) 
 
[5]  But ∠1 + ∠2 + ∠3 = ∠ABC + ∠ABD 
 
[6]  So  ∠ABC + ∠ABD = Two rights  (Common Notion 1) 
 
Q.E.D. 
 
 
 
THEOREM 11 Remarks 
 
1. Theorems 9 & 10 began the study of right angles; now we are investigating “two 
right angles.” 
 
2. This Theorem 11 is rather obvious even without a proof.  If CBD is a straight line, 
then BD must go through half of one full rotation to get to BC, which is 180°.  It does not 
make any difference how we divide up that 180° with another line such as AB; the two 
angles into which the 180° has been divided must still add up to 180°. 
 
3. We should note in connection with this Theorem that angles supplementary to the 
same angle are equal to each other.  For example, 
if ∠X + ∠Y = two rights,  
and ∠X + ∠Z = two rights, 
then ∠Y = ∠Z, 

P

A

D
B

C
1

2

3



 

 30 

being both supplementary to ∠X.  This is obvious, since each is equal to two right angles 
minus ∠X (recall that all right angles are equal, and that equals with equals subtracted 
from them leave equal remainders). 
 
4. Recall Postulate 5, which says that inclined straight lines eventually meet.  By 
definition, lines such as A and B are “inclined to each other” if  1 + 2  <  3 + 4.  With the 
help of Thm. 11, we can now define “inclined straight lines” another way. 
 We know that  1 + 3 = two rights 
 and that  2 + 4 = two rights 
 thus   1 + 2 + 3 + 4 = four rights 
 so if   1 + 2 is less than two rights, 
 it follows that  3 + 4 is more than two rights. 

In other words, if  1 + 2  is less than two 
rights, then these two inside angles are less 
than the outside angles  3 + 4, and therefore 
the two lines A and B will incline to each 
other toward the right, and eventually meet 
there.  So we can now restate our fifth 

postulate like this:  if two straight lines make less than two right angles on one side of a 
third straight line, then they will eventually meet on that side. 
 
 
 
THEOREM 11 Questions 
 
 
1. What is ∠2 called in relation to ∠3? 
 
2. What is ∠3 called in relation to ∠ABC? 
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THEOREM 12:  If two adjacent angles  add up to two right angles, then the two 
lines other than the line common to both angles are in a straight line with each other. 
 

Let ∠APB and ∠BPC be two adjacent 
rectilineal angles beginning at the point P, and 
suppose that 
 ∠APB + ∠BPC = two rights. 
Then AP and PC must be in a straight line with 
each other. 
 
Why is that? 

 
Simple.  Suppose that PC is not the extension of AP in a straight line, then 
 
[1] Extend AP in a straight line to some point X  (Post. 2) 
 
[2] Thus ∠1 + ∠2 = two rights   (Thm. 11) 
 
[3] But ∠1 + ∠2 + ∠3 = two rights, 

That is, ∠APB + ∠BPC = two rights, since that is how they were given to us. 
 
[4] So ∠1 + ∠2 = ∠1 + ∠2 + ∠3, 

putting together Steps 2 & 3, since each side is supposedly equal to two right 
angles. 

 
[5] But that is crazy.  For ∠1 + ∠2 is only a part of ∠1 + ∠2 + ∠3, and the whole 

never equals a part of itself (Common Notion 5). 
And since this impossibility follows from our initial supposition that PC is not the 
extension of AP in a straight line, therefore that initial supposition is also 
impossible. 

 
[6] Therefore PC is the extension of AP in a straight line, i.e. AP and PC are in a 

straight line with each other. 
 
Q.E.D. 
 
 
 
THEOREM 12 Remarks 
 
 
1. Theorem 12 is the converse of Theorem 11.  Theorem 11 showed that angles 
adding up to a straight line must add up to two right angles; Theorem 12 shows that 
angles adding up to two right angles must add up to a straight line. 
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2. Notice that we use Postulate 4 for the first time in this theorem.  In Step 4 we say 
that 
 ∠1 + ∠2 = ∠1 + ∠2 + ∠3 
on the grounds that each side is equal to two right angles.  We are presuming that “two 
right angles” is always the same amount, i.e. that all right angles are equal. 
 
3. Notice that if from the equation in Step 4 we subtract ∠1 + ∠2 from both sides, 
we get ∠3 = nothing!  If that were true, then PX would coincide with PC, and AP would 
be in a straight line with PC, which is what we set out to prove. 
 
THEOREM 12 Question 
 
Does it make any difference to the proof if someone says that PX actually falls below 
PC? 
 
 
 
 
 
THEOREM 13:  When two straight lines cut each other, they make the vertical 
angles equal to each other. 

 
Imagine two straight lines AB and CD cutting 
across each other at P. 
The “vertical angles” in the diagram are equal to 
each other, that is 
 1 = 3 
 2 = 4 
Can it be proven?  Of course. 
 

 
[1]  ∠1 + ∠2 = two rights  (Thm. 11). 
 
[2]  ∠3 + ∠2 = two rights  (Thm. 11). 
 
[3]  ∠1 + ∠2 = ∠3 + ∠2  (Steps 1 + 2, Common Notion 1) 
 
[4]  Subtracting ∠2 from each side of Step 3, we have 
 ∠1 = ∠3   (Common Notion 3) 
 
[5] ∠2 = ∠4    is proven in the same way. 
 
 
Q.E.D. 
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THEOREM 13 Remarks 
 
 
1. Theorem 13 demonstrates a kind of symmetry:  the angle on one side of two 
cutting straight lines is a mirror image of the angle on the opposite side of the vertex. 
 The reason for this symmetry is clear enough:  it is a result of the uniformity of 
straight lines.  Two straight lines cannot make one size opening on one side and another 
size opening on the other side of the vertex.  They tend toward each other on one side in 
the same way that they tend away from each other on the other. 
 
 

2. What about the converse?  If we state the 
total converse of Theorem 13, it is not true, namely 
If two rectilineal angles are equal, then they are 
formed by two cutting straight lines.  Obviously, 
two rectilineal angles can be equal and yet be far 
apart from each other.  But the partial converse of 
Theorem 13 is true, namely If two rectilineal angles 
are equal and share a common vertex, and one leg 
of one angle is in a straight line with the alternate 
leg of the other angle, then the remaining legs are 
also in a straight line with each other. 

 
To be more concrete, look at the adjoining figure:  If 1 = 2, and line A is in line with line 
C, then line B must also be in line with line D. 

 
On the other hand, if A is in line with line D, the adjacent leg in the other angle, it is not 
true that B has to be in line with line C. 
 
 
 
THEOREM 13 Questions 
 
1. Prove the partial converse of Theorem 13 stated above in Remark 2. 
 
2. Looking back at the diagram for Theorem 13, how many degrees does ∠1 + ∠2 + 
∠3 + ∠4  equal? 
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THEOREM 14:  If any side of a triangle is extended, the exterior angle is greater 
than either of the interior and opposite angles. 
 
 

Take any triangle – ABC will do.  Extend any side, 
say BC, to D. The angle ACD is called an “exterior 
angle,” and this theorem says 

∠ACD > ∠BAC 
and ∠ACD > ∠ABC. 
If you want proof, then … 
 
 
 

[1]  Bisect AC at E.   (Thm. 8) 
[2]  Join BE and produce it far enough to cut off EF = BE. 
[3]  Join CF.  Now, 
 
[4]  EF = BE    (we made it so) 
[5]  EA = EC    (we bisected AC at E) 
[6]  ∠AEB = ∠CEF   (Thm. 13; they are vertical angles) 
[7]  So by the Side-Angle-Side Theorem (Thm. 2), the other corresponding angles of 
ΔAEB and ΔCEF are equal. 
[8]  ∠1 = ∠2    (being corresponding angles of ΔAEB & ΔCEF) 
[9]  But ∠ACD >∠2   (since the whole is greater than the part) 
[10]  So ∠ACD > ∠1   (putting together Steps 8 & 9) 
[11]  So ∠ACD > ∠BAC  (∠1 is ∠BAC) 
 And that is one part of what we wanted to prove. 
[12]  ∠ACD > ∠ABC is proved by bisecting BC, and by extending AC to any point G. 

Then by the same argument as before, 
∠BCG > ∠ABC 

But ∠ACD = ∠BCG  (Thm. 13; they are vertical angles) 
Thus ∠ACD > ∠ABC. 
[13]  So the exterior angle ACD is greater than either of the opposite and interior angles, 
namely ∠ABC and ∠BAC. 
 
Q.E.D. 
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THEOREM 14 Remarks 
 

 
1. Here we learn that 
 ∠3 > ∠1 
and ∠3 > ∠2. 
 
 

 
2. In Theorem 27, we will learn that 

∠3 = ∠1 + ∠2 
which explains why ∠3 is greater than either one of them taken alone. 
 
 
 
 
THEOREM 14 Questions 
 
 
1. In Step 12 of Thm. 14, I said “by the same argument as before, ∠BCG > ∠ABC.”  
Go through the actual steps.  Make a diagram for yourself, bisecting BC this time. 
 
2. Join AF in the original diagram or in your copy of it.  What shape does AFCB 
appear to be? 
 
 
 
 
 
THEOREM 15:  In any triangle, a greater side will have opposite to it a greater 
angle. 
 

 
Look at triangle ABC.  If it is given that 

AC > AB, 
it must also be true that the angle opposite AC is 
greater than the angle opposite AB, that is: 

∠ABC > ∠BCA. 
Why?  Let's see … 
 
 

[1]  Since AC > AB, we can cut off AD = AB.  Join BD. 
 
[2]  ∠1 = ∠2    (Thm. 3, since AB = AD) 
 

1

2

3

A

D

C
B

1

2

3



 

 36 

[3]  ∠2 > ∠3    (Thm. 14; since ∠2 is exterior to ΔBDC) 
 
[4]  ∠1 > ∠3    (Putting Steps 2 & 3 together) 
 
[5]  ∠ABC > ∠1   (Since the whole is greater than the part) 
 
[6]  ∠ABC > ∠3   (Putting Steps 4 & 5 together) 
 
[7]  That is, ∠ABC > ∠BCA  (∠BCA is the same as ∠3) 
 
Q.E.D. 

 
 
 
THEOREM 15 Remarks 
 
 
1. It follows from Theorem 15 that in any triangle: 
  The greatest angle is the one opposite the greatest side. 
  The least angle is the one opposite the least side. 
 We already know from Theorem 3 that in any triangle: 
  Angles opposite to equal sides are themselves equal. 
 
 
2. These facts might lead us to think that angles in a triangle are somehow 
proportional to their opposite sides, for example that if one side is double another side, 
then the opposite angle is double the opposite angle.  Unfortunately, that is completely 
FALSE!  To see this better, take a look at Question 2 below. 
 
 
 
THEOREM 15 Questions 

 
1. Using Theorem 15, prove that if 
two triangles have two sides equal to two 
sides, but one base greater than the other 
base, then the included angle is also 
greater than the included angle.  That is, 
 
 

If  A = C 
and  B = D 
but  E < F 
Show that 1 < 2 
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2. Draw an equilateral triangle GHK.  Bisect GK at M and 
join HM.  Now just focus on ΔHMK.  Clearly HK is double MK, 
but are their opposite angles respectively double?  That is, is ∠2 
double ∠1?  Prove it is not so. 
 
 
 

 
 
THEOREM 16:  In any triangle, a greater angle will have opposite to it a greater 
side. 
 

Look at triangle ABC.  If it is given that 
 ∠1 > ∠2, 
then it must also be true that the side opposite ∠1 is greater 
than the side opposite ∠2, which is to say that 
 AC > AB 
Who says?  Pure logic says . . . 
 
 
 

[1]  There are only three possibilities: 
 Either AC = AB 
 Or AC < AB 
 Or AC > AB 
 
[2]  Assume AC = AB, and let's see what happens. 
 
[3]  Then ∠1 = ∠2   (Thm. 3) 
[4]  But ∠1 > ∠2   (They are given to us that way) 
[5]  So AC cannot be equal to AB. 
 
[6]  Assume AC < AB, and let's see what happens. 
 
[7]  Then ∠1 < ∠2 
since Thm. 15 says that in any triangle, a greater side stands opposite a greater angle. 
[8]  But ∠1 > ∠2   (They are given to us that way) 
[9]  So AC cannot be less than AB. 
 
 
[10]  Since AC is neither equal to AB (Step 5), nor less than AB (step 9), therefore AC is 
greater than AB. 
 
Q.E.D. 
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THEOREM 16 Remarks 
 
 
1. From Theorem 16 we now know that, in any triangle: 
  The greatest side is the one opposite the greatest angle. 
  The least side is the one opposite the least angle. 
We already know, from Theorem 4, that 
  Sides opposite equal angles are themselves equal. 
 
2. Theorem 16 is the converse of Theorem 15.  The strategy here is the process of 
elimination.  If there are only three possibilities, and we eliminate two of them, then the 
third one must be true. 
 
3. Notice there is no construction whatsoever in the proof for Theorem 16; it is a 

matter of pure logic. 
 
4. Even though angles are not exactly proportional to sides in a triangle, we now 
know that the order of inequality among angles corresponds to the order of inequality 
among their opposite sides. 
 If you have a protractor, but not a ruler, you can still tell which is the greatest side 
in the triangle just by measuring the angles. 
 If you have a ruler, but not a protractor, you can still tell which is the greatest 
angle in the triangle just by measuring the sides. 
 
 
 
 
THEOREM 16 Questions 
 

 
1. Using Theorem 16, prove that if two 
triangles have two sides equal to two sides, but 
the included angle in the one triangle is less than 
the included angle in the other, then the base is 
also less than the base.  That is, 
 

 
Given that  A = C 
and that  B = D 
but that  1 < 2 
show that  E < F 
Use the process of elimination (either E = F or E > F or E < F), Theorem 6, and the 
conclusion of Question 1 after Theorem 15. 
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2. Given the lengths of some of the sides in each of these 
triangles, say what we know about the labeled angles. 

 
 
 

3. Given the number of degrees in some of the angles of 
these triangles, say what we know about the labeled sides. 
 
 
 
THEOREM 17:  In any triangle, any side is less than the sum of the other two 
sides, but greater than their difference. 

 
Take any triangle ABC.  Any two sides of it added 
together must be greater than the third side, that is: 
 BA + AC > BC 
and AC + BC > BA 
and BC + BA > AC 
 
Proof: 
 
[1] Extend BA to D so that AD = AC. 
[2] Join CD. 
 
 

 
[3] ∠BCD > ∠2  (since ∠2 is part of ∠BCD) 
[4] ∠BCD > ∠1  (∠2 = ∠1, since AD = AC) 
[5] So in ΔDBC, the side opposite ∠BCD is greater than the side opposite ∠1 (Thm. 
16). 
[6] BD > BC  (being the sides opposite ∠BCD & ∠1 respectively) 
[7] BA + AC > BC (BD = BA + AD, and AD = AC) 
[8] Likewise we can prove that 
 AC + BC > BA 
and BC + BA > AC 
[9] Thus in rABC any side is less than the sum of the other two.  It follows also that 
any side must be greater than the difference between the other two.  For example, 
 BA > BC – AC.  Why?  Because 
 BA + AC > BC (any two sides are greater than the third) 
so BA > BC – AC (subtracting AC from both sides). 
 
Q.E.D. 
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THEOREM 17 Remarks 
 
 
1. We could also look at the theorem this way:  if you had to race someone from A 
to B, would you run first from A to C, then from C to B?  No way.  AB is the shortest 
distance from A to B. 
 
2. A more general version of this theorem is this:  A straight line is the shortest 
distance between two points.  Every jointed or curved path is longer. 
 Obviously, that does not mean that the straight path is always the easiest to travel.  
The shortest distance between two points on either side of a forest is a straight line, but 
the quickest way through might be a curved path that takes us around the trees!  Hence 
the expression “as the crow flies”, which means I am telling you the straight line 
distance, although the path you actually take to walk the distance might be curved and 
therefore much longer.  Crows don’t have to move around obstacles. 
 
3. Although the straight line is the shortest distance between two points, there is 
obviously no longest distance between two points.  You can take as convoluted a path 
from point A to point B as you like, and there will always be one even more convoluted 
and longer. 
 This often happens in mathematics, that there is one kind of limit, e.g. a shortest 
or smallest, but there is no limit in the opposite direction, e.g. a longest or greatest. 
 
4. This theorem shows that there is a condition that must be fulfilled before any 3 
straight lines will be able to make a triangle.  Any two of those lines added together has to 
be greater than the third.  Otherwise, you can't make a triangle with those 3 straight lines.  
For example, try to make a triangle whose sides are equal to 1, 2, and 3 unit lengths (say 
1 inch, 2 inches, and 3 inches).  Good luck! 
 This means that as soon as I give you two sides to make a triangle with, I have 
placed a restraint on what you can use for the third side:  whatever you use has to be less 
than the sum of the two sides I already gave you, but greater than their difference.  For 
example, if I give you a side of 4 feet and a side of 7 feet, you cannot use 24 feet for the 
other side, since that is bigger than 11 feet (the sum of the two sides I gave you).  On the 
other hand, you cannot use 2 feet, since that is smaller than 3 feet (the difference between 
the sides I gave you).  Any side you choose must therefore be greater than 3 feet and yet 
less than 11 feet. 
 
5. This condition is not true with regard to the angles of a triangle, i.e. it is not true 
that any 2 angles in a triangle, taken together, have to add up to more than the remaining 
angle.  It is possible, for example, to have a triangle whose angles are 1°, 1°, and 178°. 
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THEOREM 17 Questions 
 
 
1. Say which of the following triads of straight lines can be used to form a triangle, 
and which cannot (say the lengths are all in inches): 
 
(a) 3 4 5 
 
(b) 1 2 3 
 
(c) 1 2 1 
 
(d) 4 5 6 
 
(e) 1 10 11 
 
(f) 1 1 1 
 
(g) 3 2 3 
 
(h) 7 9 8 
 
 
2. If I give you a line 5” long, and another that is 6” long, the Theorem states that 
any third line able to form a triangle with them must be between 1” and 11”; it must be 
more than 1” long, and less than 11” long.  What is the range of possible lengths for the 
third side of a triangle with one side of 8 miles and another side of 11 miles? 
 
 
3. Cut out six thin strips of paper with the following lengths in inches: ½, 1, 2, 6, 8, 
10, 19.  Measure exactly.  Color the 10-inch strip red.  Next make any triangle you like 
using any three of these strips as sides. 
 I will now make a prediction:  the triangle you made uses the red strip, and the 
angle opposite to it is a right angle. 
 Why was I able to predict that you used the red strip?  (The reason I know the 
angle opposite it is a right angle you will learn in Theorem 37.) 
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THEOREM 18:  The shortest distance from a point to a straight line is the 
perpendicular from the point to the line. 
 

If P is a point and AB a straight line below it, what is the 
shortest distance between P and AB?  Clearly the shortest 
distance between P and some point on AB is the straight 
line between them, since the shortest distance between 
any two points is a straight line (Thm. 17).  For example, 
PB is the shortest distance between P and B.  And if R is 
a random point on AB, PR is the shortest distance 
between P and R.  But which among these sorts of 

straight lines is shortest?  The perpendicular line PL.  PL is shorter than any other straight 
line drawn from P to any random point R on AB.  Here’s why: 
 
[1] ∠1 > ∠2 (∠1 is exterior to ΔPLR; Thm. 14) 
[2] ∠3 > ∠2 (∠3 = ∠1, since both are right angles) 
[3] Therefore in ΔPLR, the side opposite ∠3 is greater than the side opposite ∠2 
(Thm. 16), that is 
[4] PR > PL. 
 
Q.E.D. 
 
 
 
 
THEOREM 19:  How to make a triangle out of any three straight lines (provided 
any two of them together are greater than the third). 
 

Take any three straight lines X, Y, Z 
which are such that any two added 
together make a line greater than the third 
one.  Can you make a triangle out of 
them?  You bet. 
 
[1]  Call line X “DA”, and extend it out to 
E as far as you need. 

 
[2]  Cut off AB = Y, and BF = Z. 
 
[3]  Draw a circle around A with radius AD. 
 
[4]  Draw a circle around B with radius BF. 
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[5]  Since AD and BF add up to more than AB (given), the circles with radii AD and BF 
will overreach each other along AB.  So at least a part of AB is inside both circles at 
once.  Thus the circles around A and B overlap. 
 
[6]  Since BA and AD add up to more than BF (given), thus BD is greater than the radius 
of circle B, and so point D lies outside circle B. 
 
[7]  Since AB and BF add up to more than AD (given), thus AF is greater than the radius 
of circle A, and so point F lies outside circle A. 
 
[8]  Thus circle A and circle B must cut each other.  For they overlap each other (by Step 
5), and each passes outside of the other, since D on circle A lies outside circle B (Step 6), 
and F on circle B lies outside circle A (Step 7). 
 
[9]  Call the point where circles A and B cut each other point C. 
 
[10]  Join AC and join CB, forming triangle ABC. 
 
[11] AC = AD = X 
 AB = Y 
 BC = BF = Z 
 
[12]  So triangle ABC has been made, with its sides equal to X, Y, and Z. 
 
Q.E.F. 
 
 
 
THEOREM 19 Remarks 
 
 
1. Theorem 19 is the converse of Theorem 17. 
 

Thm. 17 says: If 3 lines can form a triangle, then any 2 of them is greater than the 
remaining one, 

Thm. 19 says: If 3 lines are such that any 2 of them is greater than the remaining 
one, then they can form a triangle. 
 
 
 
THEOREM 19 Question 
 
Make a triangle with sides equal to 3”, 4”, and 5”.  What do you notice about it? 
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THEOREM 20:  How to make an angle equal to any angle. 
 
 

Suppose an angle X is drawn on the wall, and I 
point out a straight line PR somewhere else on the 
wall.  Can you draw an angle beginning at P, 
equal to X, and having PR as one of its sides? 
 
Sure you can.  Just . . . 
 
 
 
[1]  Pick points A & B at random on each of the 
legs of ∠X, and join them. 
 

[2]  Extend RP, and 
cut off PS = XA 
cut off PT = XB 
cut off TV = AB 

 
[3]  Make ΔPZT = ΔXAB (Thm. 19) 

And so by the Side-Side-Side Theorem, the corresponding angles of these two 
triangles must be equal. 

 
[4]  ∠ZPT = ∠AXB (being corresponding angles of ΔPZT & ΔXAB) 
 
[5] But ∠ZPT begins at P, and PT lies along PR, and ∠AXB is the given angle X. 
 
Q.E.F. 
 
 
 
 
 
THEOREM 20 Remark 
 
 
Theorem 20 obviously enables us to do more than duplicate an angle; it enables us to 
duplicate an entire triangle. 
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THE ANGLE-SIDE-ANGLE THEOREM 
 
THEOREM 21:  If in a triangle two angles and the side joining them are 
respectively equal to two angles and the side joining them in another triangle, then all the 
corresponding sides and angles of the two triangles are equal, and the triangles have the 
same area. 
 

Imagine two triangles ABC & DEF, such 
that 
 
∠BAC = ∠EDF 
AB = DE 
∠ABC = ∠DEF 
 
Then the remaining sides and angles of these 
two triangles must be equal, too.  Why, you 
ask?  Because: 
 

 
[1]  Pick up ΔABC in your imagination and place AB on top of DE. 
 Since AB = DE, A will sit on D and B will sit on E. 
 
[2]  Since ∠BAC = ∠EDF, therefore AC and DF will lie in line together. 
 
[3]  Since ∠ABC = ∠DEF, therefore BC and EF will lie in line together. 
 
[4]  Since AC lies on DF (Step 2), 
and since BC lies on EF (Step 3), 
the meeting point of AC & BC sits on the meeting point of DF & EF. 
 
[5]  That is, C sits on F. 
 
[6]  So if the base AB is placed on the base DE, then 
 A coincides with D 
 B coincides with E 
and C coincides with F 
 
[7]  So the 3 sides of ΔABC coincide with the 3 sides of ΔDEF, and so all of their 
corresponding sides and angles are equal and they also have equal areas (Side-Side-Side 
Theorem). 
 
Q.E.D. 
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THEOREM 21 Remarks 
 
 

1. This is our third triangle-congruence theorem.  We now 
have: 
 SAS (Side-Angle-Side) 
 SSS (Side-Side-Side) 
 ASA (Angle-Side-Angle) 
 

2. As with the other congruence theorems, it is possible for the given triangles to be 
mirror images of each other.  In that case, we must flip over one of the triangles to show 
that they can coincide. 
 
 
THEOREM 21 Questions 
 
1. Prove Theorem 21 by reduction to the absurd.  Start by assuming, if possible, that 
EF > BC.  That will make it possible to cut off a part of EF that is equal to BC.  Find an 
absurdity, and you will have found a proof. 
 
2. Some Boy Scouts stood at the edge of a canyon at point E, across from a tree on 
the other side of the canyon standing at T.  They needed to measure the distance across 

the canyon, namely the distance ET.  But how could they 
measure a distance across a canyon?  Here is what they did.  
They marked E with a stake, and from it sighted along a 
straight stick, pointing it at T, putting the stick in line with ET.  
Next, they walked out to some point P further along the edge 
of the canyon, so that ∠TEP was a right angle, and then they 
marked P with a tall pole.  Then they continued in a straight 
line to S until PS was the same distance as EP, and then 
marked S with another stake.  Then they walked away from the 
canyon along the line SD so that SD was at right angles to PS.  
They stopped at the point D where the pole at P was in the 

same line of sight with the tree at T across the canyon.  Then they just measured SD, and 
said that was the same length as the distance ET across the canyon.  Prove they were 
right. 
 Incidentally, how could they ensure EP is at right angles to ET?  They could 
stretch a string E in the same line of sight with T, say 40 feet long, then form a triangle 
with EP being 30 feet long, and KP 50 feet long.  Why angle KEP would be 90° we shall 
see later. 
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ANGLE-ANGLE-SIDE THEOREM 

 
THEOREM 22:  If two triangles have two angles equal to two angles, and a side 
equal to a side (namely a side opposite an equal angle), then they will have all their 
corresponding sides and angles equal, and they will also have equal areas. 

 
Suppose you have two triangles ABC and DEF such 
that 
 ∠BCA = ∠EFD 
 ∠BAC = ∠EDF 
 AB = DE 
Then the remaining sides and angles of the two 
triangles must be equal, too.  To prove it: 
 
 
 

[1]  Pick up ΔABC and place AB on top of DE. 
 Since AB = DE, A will sit on D and B will sit on E. 
[2]  Since ∠BAC = ∠EDF, 
 AC must lie along DF. 
 But is AC the same length as DF? 
[3]  Suppose, if possible, that AC is shorter than DF, and C lands at {C} along DF.  Let's 
see if that works . . . 
 
[4]  ∠1 = ∠2   (since ΔD{C}E is the same as ΔACB) 
[5]  ∠3 = ∠2   (since the original triangles are given that way) 
[6]  ∠3 = ∠1   (putting Steps 4 & 5 together) 
[7]  So exterior ∠1 is equal to the opposite and interior ∠3 in triangle E{C}F – which is 
absurd, since the exterior angle of a triangle must always be greater than an interior and 
opposite angle (Thm. 14). 
[8]  Since the absurdity in Step 7 follows from our assumption in Step 3 that AC < DF, 
therefore that assumption is also absurd, and so AC is not less than DF. 
[9]  For the same reason, neither can AC be greater than DF, such that C would fall as 
[C] along DF extended.  For then exterior ∠3 would equal interior and opposite ∠4. 
[10]  Since AC is not less than DF (Step 8), and AC is not greater than DF (Step 9), thus 
AC is equal to DF. 
[11]  Since AB = DE, ∠BAC = ∠EDF, and AC = DF (Step 10), therefore all 
corresponding sides & angles of ΔABC & ΔDEF are equal and they also have equal areas 
(Thm. 2). 
 
Q.E.D. 
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THEOREM 22 Remarks 
 
 
 
1. This is our fourth triangle-congruence theorem.  Now we have 
 

SAS  SSS  ASA  AAS 
 
Essentially, we need 3 pieces of information about a pair of triangles to determine 
whether or not they are equal; we need to know either that 

(a)  two sides and an included angle are equal to two sides and an included angle, 
or that 

(b)  three sides are equal to three sides, or that 
(c)  two angles and one side are equal to two angles and one corresponding side. 
 

 
2. What happens if the two sides given as equal are not 
corresponding sides?  For example, what if AB = DF?  Then, as we 
shall see later, although the triangles might not be congruent, they 
will still be similar. 
 

 
3. The difference between Theorem 21 and Theorem 22 is simply this:  in Theorem 
21, we are given two triangles having two angles equal to two angles, and the side 
adjoining the equal angles equal to the side adjoining the equal angles.  In Theorem 22, 
however, the sides given as equal are not the ones adjoining the pairs of equal angles, but 
another pair of corresponding sides.  
 
 
 
THEOREM 22 Question 

 
 
1. What if two sides and a non-included angle are given as 
equal to two sides and a corresponding non-included angle?  Should 
there be an SSA theorem?  As a hint, consider rABC, and suppose 
a circle around center B with radius AB cuts AC at D.  Compare 
rABC with rDCB.  Will it be possible to make any more 
triangles with ∠1 and side BC, having another side equal to AB? 
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THEOREM 23:  If two straight lines are cut by a third making the alternate 
angles equal, then the two straight lines are parallel. 
 

Imagine you have three straight lines:  AB, 
CD, EF.  Suppose EF cuts AB and CD in such 
a way that 
 ∠1 = ∠2 
Then AB and CD are parallels. 
Let's prove it. 
 

[1] Suppose, if possible, that AB and CD are not parallel, but rather EB and FD meet 
toward the right (when extended far enough) at some point X. 

 
[2] Then they form a triangle EFX. 
 
[3] ∠1 is the exterior angle of triangle EFX, 
 ∠2 is one of the interior and opposite angles of triangle EFX. 
 And yet . . . 
 
[4] ∠ 1 = ∠2  (they are given to us that way) 
 
[5] And so the exterior angle of triangle EFX is equal to one of its interior and 

opposite angles, which is absurd, since by Theorem 14 the exterior angle is 
always greater. 

 
[6] Since the absurdity in Step 5 follows from our initial assumption that AB and CD 

are not parallel, but meet and form a triangle, therefore that assumption is absurd, 
and we must say instead that AB and CD are parallel, and never meet so as to 
form a triangle with EF. 

 
Q.E.D. 

 
 
 
THEOREM 23 Remarks 
 
 
1. Here we begin the study of parallels. 
 
2. It is amazing that we can prove that two straight lines never meet, even though we 
can't actually extend them forever and check.  We have managed a way around that! 
 
3. The straight line EF is called a transversal in relation to the straight lines AB and 
CD, since it cuts across them both. 
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THEOREM 23 Question 
 
 
Prove Theorem 23 in another way by the symmetry of the diagram; is there reason to 
think that what happens on one side of EF must also happen on the other side?  And if so, 
can you see how that will help prove the theorem?  Recall that two straight lines cannot 
enclose a space. 
 
 
 
 
THEOREM 24:  If two straight lines are cut by a third making interior angles on 
one side add up to two rights, then the two lines are parallel. 
 

Suppose AB & CD are cut by EF so that 
∠2 + ∠3 = two right angles. 
Then AB is parallel to CD. 
 
Why? 
 
 
 
 

[1] ∠2 + ∠3 = two right angles (given) 
 
[2] ∠2 + ∠1 = two right angles (Thm. 11) 
 
[3] ∠2 + ∠3 = ∠2 + ∠1   (Putting together Steps 1 & 2) 
 
[4] ∠3 = ∠1    (Subtracting ∠2 from both sides of Step 3) 
 
[5] AB is parallel to CD   (Since ∠3 = ∠1; see Thm. 22) 
 
Q.E.D. 
 
 
 
THEOREM 24 Remarks 
 

 
1. Compare Theorem 24 to our fifth postulate.  Postulate 5 
says that if 1 + 2 < 180°, then the two lines must meet out 
toward the right somewhere.  Theorem 24 says that if 1 + 2 = 
180°, then the two lines do not meet anywhere. 
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2. Notice that the postulate is about lines that do meet, and this theorem is about 
lines that do not meet. 
 

 
3. It follows from this theorem that there cannot be two 
perpendiculars from one point to one straight line, but only one.  
Assume that you could have two perpendiculars, PR & PL, from 
the same point P to the straight line AB.  Then we have formed a 
triangle PRL having two right angles in it, namely ∠PRL & 
∠PLR.  By Theorem 24, RP and LP have to be parallel!  And so 
either RP and LP do not meet (and therefore there is no point P 
common to them), or one of those two angles is less than a right 
angle. 

 
 
 
THEOREM 24 Questions 
 
 
1. What if 1 + 2 > 180°?  What happens then? 
 

2. Is it possible to prove Theorem 24 
independently of Theorem 23?  Try bisecting EF in the 
diagram at its midpoint M, then drop MP perpendicular 
to AB, and extend PM to T on CD.  As with Theorem 
23, think about the symmetry of the figure.  If you can 
prove ∠MTF is a right angle (compare rEMP and 
rFMT), then you can see that whatever happens on 

one side of PMT must also happen on the other side of it. 
 
 
 
THEOREM 25:  If a straight line cuts two parallels, it makes interior angles on 
one side add up to two rights, and it makes equal alternate angles. 

 
Let AB and CD be two parallel straight lines cut by 
EGHF, making alternate angles 1 & 3, and interior 
angles 2 & 3 on one side of EGHF. 
 
Then 2 + 3 = two right angles 
and 1 = 3 
 
Here’s how we know: 
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[1]  Suppose, if possible, that 1 > 3. 
 
[2]  Then 1 + 2 > 3 + 2 (adding equals to unequals gives unequals) 
 
[3]  But 1 + 2 = two rights (Thm. 11) 
 
[4]  So two rights > 3 + 2 (putting together Steps 2 & 3) 
 
[5]  So AB and CD eventually meet on the side of angles 3 & 2, if AB and CD are 
extended far enough. (Postulate 5, as restated in Thm.11, Remark 4) 
 
[6]  But that is absurd, since AB and CD are given to us as parallel straight lines, i.e. lines 
that never meet no matter how far they are extended. 
 
[7]  Therefore our initial supposition, namely that 1 > 3, is also absurd. 
 
[8]  By the same kind of argument, we can show that 1 < 3 is also absurd. 
 
[9]  Since 1 is neither greater than 3 (Step 7) nor less than 3 (Step 8), therefore 1 = 3. 
 
[10]  But 2 + 1 = two right angles (Thm. 11) 
 
[11]  Thus 2 + 3 = two right angles (Since 1 = 3, by Step 9) 
 
Q.E.D. 
 
 
 
 
THEOREM 25 Remarks 
 
 
1. This theorem is the converse of Theorems 23 and 24. 
 
2. In this theorem, we make the first use of our 5th Postulate, namely in Step 5. 
 
3. Notice the order of Theorems 23 & 24 & 25.  In Theorems 23 & 24, we are given 
lines that are disposed to a transversal at certain angles, and then we prove that they must 
be parallel.  In Theorem 25 we are given lines that are parallel, and then we prove that 
they are disposed to a transversal at certain angles.  We begin by giving ourselves what 
we know we can have, namely two lines disposed at certain angles to a transversal;  we 
can construct that.  But we do not know how to construct parallel straight lines (or even 
that they exist) until after Theorems 23 & 24.  That is why we wait until Theorem 25 to 
give ourselves a pair of parallels, and ask what has to be true about them. 
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4. We have just proved that if AB & CD are parallel, then ∠2 + ∠3 must add up to 
180°.  That means that if ∠2 + ∠3 do not add up to 180° (but add up to something more 
or less than that), then AB & CD are not parallel. 
 If they add up to less than 180°, then they meet out toward the right side, which is 
what the fifth postulate says.  If they add up to more than 180°, then they will meet on the 
other side of GH, toward the left, since the angles on that side will then add up to less 
than 180°. 
 
 
THEOREM 25 Questions 
 
 

1. Using Theorem 25, prove that only one line through a 
point P can be parallel to any given line AB.  Start by assuming 
the possibility of having two parallels to AB drawn through the 
same point P (call the other one PX), and join P to any random 
point R along AB, making PR a transversal. 

 
 
 
 
2. If A is parallel to B, and ∠4 = 35°, then how many 
degrees is ∠1? 
 
 
 

 
 
 
 
 
THEOREM 26:  Straight lines parallel to the same straight line are parallel to 
each other. 
 

Should you require proof for this, let A, B, C be three 
straight lines such that 
  A is parallel to B 
and  B is parallel to C 
Then it must also be true that 
  A is parallel to C. 
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To prove it: 
 

[1] Cut all three straight lines with another straight line D; in doing so you form 
angles 1, 2, 3, 4. 

 
[2] ∠1 = ∠2  (since A is parallel to B; Thm. 25) 
 
[3] ∠2 = ∠3  (vertical angles are equal; Thm. 13) 
 
[4] ∠1 = ∠3  (putting Steps 2 & 3 together) 
 
[5] ∠3 = ∠4  (since B is parallel to C; Thm. 25) 
 
[6] ∠1 = ∠4  (putting Steps 4 & 5 together) 
 
[7] A is parallel to C (since ∠1 = ∠4; Thm. 23) 
 
Q.E.D. 
 
 
 
 
THEOREM 26 Remarks 
 
 
1. Parallelism, according to Theorem 26, is similar to the relationship of equality.  
Just as lines equal to the same line are equal to each other, so too lines parallel to the 
same line are parallel to each other. 
 
 
2. Notice this kind of statement does not apply to the relationship of 
perpendicularity:  it is not true that perpendiculars to the same line are perpendicular to 
each other. 
 Some family relationships are like equality and parallelism, and others are more 
like perpendicularity.  For example: 
 Brothers to the same person are brothers to each other. 
On the other hand, we cannot say that 
 Parents to the same person are parents to each other. 

 
 
 
3. Another theorem similar to Theorem 26 is this:  If the sides of 
one angle are parallel to the sides of another angle, then the two 
angles are either equal or supplementary.  Consider the case of 
∠ABC and ∠DEF, where AB║EF and BC║DE.  Join BE, and 
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suppose that each angle lies on opposite sides of BE.  It is easy to see that ∠1 = ∠2, i.e. 
that ∠ABC = ∠DEF.  For: 
 1 + 3 = 4 + 2 (since AB║EF; Theorem 25) 
and 3 = 4  (since BC║DE; Theorem 25) 
thus 1 = 2  (subtracting the equal angles 3 & 4 from each side). 
 Obviously the converse of this theorem is not true, namely “If two angles are 
equal, then the sides of one are parallel to the sides of the other”. 
 
 
 
THEOREM 26 Questions 
 
 
1. What true statement can we make about two straight lines that are perpendicular 
to the same straight line? 
 
 

2. There is an easy case of Theorem 25.  Suppose A is 
parallel to B, and C is parallel to B, and B is in between A and C.  
In that case, see if you can prove that A and C are also parallel, 
without using any prior theorems at all.  (If we are instead given 
that A║C and B║C, we need a proof such as the one we gave.) 

 
 
 

 
3. Show that if two straight lines cut, then so do their 
parallels.  Suppose AB ‖EF, and CD ‖GH, and suppose 
that AB cuts CD at a point X.  Prove that GH must also cut 
EF. 
 Start by joining GE and extending it.  Since GE 
passes through E, but EF is the only parallel to AB through 
E, BE must cut AB at some point, say K.  Likewise GE 
must cut CD at some point, say L.  You have now formed a 
triangle KXL.  Can you see how to proceed from there? 
 

 
 
4. In Remark 3 above, we chose 
one particular case of two angles 
whose corresponding sides are parallel, 
namely the case where each angle falls 
on an opposite side of the line joining 
their vertices.  See if you can prove the 
theorem in some of the remaining 

cases, and state when the angles are equal, and when they are supplementary to each 
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other.  Consider, for example, what happens when  (1)  Each angle falls on the same side 
of the line joining their vertices, as ∠GHK and ∠LMN,  (2)  Each angle straddles the line 
joining their vertices, but in such a way that parallel lines are on the same side of it, as 
∠OPQ and ∠RST, or (3)  Two of the parallel lines lie on the same side of the line joining 
the vertices, but the other two parallel lines lie on opposite sides of it, as in ∠UVW and 
∠XYZ. 
 
 
 
THEOREM 27:  How to draw a line parallel to any straight line, and passing 
through any point. 

 
If I give you a straight line AB and a point P, can you 
draw a straight line through P parallel to AB?  
Absolutely. 
 
 

[1] Pick any point X on AB. 
[2] Join PX, forming angle PXB. 
[3] Draw PL so that ∠LPX = ∠PXB. (Thm. 20) 
[4] That makes PL parallel to AB. (Thm. 23) 
 
 
Q.E.F. 
 
 
 
THEOREM 27 Remarks 
 
1. In practice, for example in carpentry, this kind of construction is difficult to use 
with accuracy.  If ∠LPX is even slightly unequal to ∠PXB, then LP and AB will become 
obviously not parallel fairly quickly. 
 
 
THEOREM 27 Questions 
 
 

1. A more practical way to draw a line 
parallel to another line AB through a point P is 
to draw PA perpendicular to AB using a 
carpenter's square, go out to the other end of 

AB and draw BR also perpendicular to AB (and make it equal to AP in length), and then 
join PR. 
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Prove that PR is parallel to AB by first assuming the opposite, namely that AB and PR do 
meet, say out to the right at some point X.  Use Angle-Angle-Side to show that the two 
resulting triangles AXP and BXR must be equal – and say why that is impossible. 
 
 
2. Now prove that quadrilateral ABRP is a rectangle. 
 
 
 
 

THE TRIANGULAR ANGLE-SUM THEOREM 
 
 
THEOREM 28:  In any triangle the three angles added together equal two right 
angles, and the exterior angle equals the two interior and opposite angles added 
together. 
 

Take any triangle you want, such as ABC, having 
angles 1, 2, 3.  Extend any side such as BC to any 
point X forming exterior angle ACX. 

I say that 
(a)  ACX = 2 + 3 
(b)  1 + 2 + 3 = two right angles 

 
 
[1] Draw CP parallel to BA (Thm. 27), thus dividing exterior angle ACX into the two 

angles 4 and 5. 
 
[2] 2 = 4    (since BA is parallel to CP; Thm. 25) 
 
[3] 3 = 5    (since BA is parallel to CP; Thm. 25) 
 
[4] 2 + 3 = 4 + 5   (putting together Steps 2 & 3) 

Thus ACX = 2 + 3. 
 
[5] 1 + 2 + 3 = 1 + 4 + 5  (equals added to equals make equals) 
 
[6] 1 + 4 + 5 = two right angles (BCX is a straight line; Thm. 11) 
 
[7] 1 + 2 + 3 = two right angles (putting together Steps 5 & 6) 
 
 
Q.E.D. 
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THEOREM 28 Remarks 
 
 
 
1. This theorem is actually quite surprising, if you think about it.  Triangles can be 
wildly different shapes from each other, and yet the three angles in any of them will 
always add up to the same sum! 
 
 
2. Recall Theorem 14, which says that ∠ACX has to be greater than ∠2 and also 
greater than ∠3.  Now we see, more precisely, that it is greater than either because it is 
equal to the sum of both of them. 
 
 
3. A corollary of this theorem, meaning “a side-result we get for free” is that Any 
two angles of a triangle add up to LESS than 180°, because only all three together add up 
to 180°.  This corollary is the exact converse of the 5th Postulate. 
 Corollary:  In a triangle, 2 angles add up to less than 180° 
 5th Postulate:  2 angles (on one side of a transversal)  that add up to less than 180° 
are angles in a triangle, i.e. the two outside lines forming the angles must eventually meet 
and form a triangle. 
 
 
4. Another corollary to the theorem is this:  In any right triangle, the right angle is 
the greatest angle.  That has to be, since if there were another angle equal to or greater 
than the right angle, the sum of the three angles in the triangle would be greater than 
180°.  Also, since the side opposite the greatest angle is the greatest, it follows that in any 
right triangle the hypotenuse is the greatest side. 
 Yet another corollary is this:  In any obtuse triangle, the obtuse angle is the 
greatest.  The same reason applies, and obviously the side opposite the obtuse angle must 
be the greatest. 
 
 
5. It also follows from this theorem that In any right triangle, the angles other than 
the right angle are complementary to one another.  Since the right angle plus the other 
two equals two right angles, therefore the other two together equal one right angle, i.e. 
they are complements of each other. 
 
 
THEOREM 28 Questions 
 
 
1. Draw any triangle on a piece of paper and label its angles 1, 2, 3.  Next cut out the 
triangle with a pair of scissors.  Now tear off each angle of the triangle and line up the 
three angles so that they all come to a single point.  Do the three of them add up to a 
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straight line?  See if you can come up with two reasons why this procedure does not 
constitute a proof that the angles in every triangle add up to exactly to two right angles. 
 
2. Using Theorem 28, you should be able to find the angle-sum of any rectilineal 
figure, by cutting it into triangles and adding up the angles.  Start with a quadrilateral:  
what is the angle-sum of any quadrilateral?  What is the angle-sum of any pentagon?  Of 
any hexagon?  Can you find a general rule, so that given the number of sides in a convex 
polygon, you can state the sum of its angles? 

 
3. What if one or more of the sides of a polygon is  
“dented in”?  For example, take quadrilateral ABCD, where ∠ABC is 
“dented in”.  Does that affect the sum of the angles in the figure? 
 
 

 
4. Prove Theorem 28 by drawing a straight line RAL through 
point A parallel to the base BC. 
 
 

 
5. Place any straight edge (such as a 
pencil) along BC, then rotate it through 
∠BCA; from CA, next rotate the straight 
edge through ∠CAB; from AB, finally 

rotate the straight edge through ∠ABC.  You have rotated the straight edge through the 3 
angles of the triangle.  Can you see that the straight edge has turned through exactly one 
half a full rotation, namely 180°? 
 
6. Using Theorem 17, prove that every angle in an equilateral triangle is acute.  
Prove, further, that every angle in an equilateral triangle is 60°. 
 Can a scalene triangle be right?  Acute?  Obtuse? 
 Can an isosceles triangle be right?  Acute?  Obtuse? 
 
7. Armed with Theorem 28, go back to Theorem 1 Question 2 and prove that the 
figure is a rhombus. 
 
8. In Theorem 19, we showed how to make a triangle given any three straight lines 
(as long as any two of them summed up to more than the third line).  Can we make a 
triangle with any three angles?  Yes, as long as the three of them add up to two right 
angles. 

Suppose ∠1, ∠2, ∠3 add up to 180°.  Given a 
straight line AB, can you make a triangle, using AB 
as one of the sides, whose three angles are ∠1, ∠2, 
and ∠3? 

 
 

D

C
B

A

R A L

CB

2

13

A

B C

A

B C

A

B C

A

B C

1 2 3



 

 60 

9. Since we now know that the angles of a triangle add up to two right angles, or 
180°, it is possible to make a triangle whose angles are 30°, 60°, 
and 90°, since these add up to 180°.  Suppose triangle ABC is 
just such a triangle.  Prove that in such a triangle, AB is double 
the length of AC, and furthermore that this triangle is actually the 
left half of an equilateral triangle.  Start by making an equilateral 
triangle on AC; since the angles of an equilateral triangle each 
equal 60°, therefore ΔAEC will sit right inside angle BAC.  And 
since AE = AC, and AC < AB (since AB is the hypotenuse and 
thus the longest side of triangle ABC), AE < AB, too, and thus E 

will land somewhere between A and B.  See if you can prove that it lands exactly in the 
middle of AB, and you will be nearly done.  (Hint:  prove EC = EB first, using Thm.3.) 
 
  
 
THEOREM 29:  If two triangles have two angles equal to two angles, then the 
remaining angle is equal to the remaining angle. 

 
Picture two triangles ABC & DEF which 
are such that 

1 = 4 
2 = 5 

Then it must also be true that 
3 = 6 

Why?  Well, because 
 
 
 

[1] 1 + 2 + 3 = two rights  (Thm. 28) 
 
[2] 1 = 4 
 2 = 5     (the angles are given that way) 
 
[3] 4 + 5 + 3 = two rights   (putting together Steps 1 & 2) 
 
[4] 4 + 5 + 6 = two rights   (Thm. 28) 
 
[5] 4 + 5 + 3 = 4 + 5 + 6   (putting together Steps 3 & 4) 
 
[6] 3 = 6     (subtracting 4 + 5 from both sides) 
 
 
Q.E.D. 
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THEOREM 29 Remarks 
 
1. Just by applying Thm. 28, we see that given any two angles of a triangle, the third 
can be determined.  In fact, even if we do not know the two angles of a triangle 
separately, but we know their sum, then we also know what the remaining angle must be. 
 For example, if ∠1 = 30°, and ∠2 = 50°, then since they add up to 80°, the 
remaining angle, ∠3, must be 100° in order for all three of the angles to add up to 180° 
(as Thm. 28 says they must). 
 And if ∠1 + ∠2 = 121°, then even if we don't know their values separately, we 
still know that ∠3 must be 59°, in order for all the angles to add up to 180°. 
 
2. Notice that we cannot say the same thing about the sides of a triangle, namely that 
given any 2 of them, we can figure out the length of the third side.  Suppose, for example, 
that Side One = 5”, and Side Two = 6”.  What is the third side?  There's no telling.  Could 
it be 8”?  Yes, since 5, 6, 8 are such that any two are greater than the third.  Could it be 
10”?  Yes, since 5, 6, 10, are also such that any two are greater than the third.  Could it be 
3”?  Yes, since 5, 6, 3 are also such that any two of them are greater than the third. 
 
 
THEOREM 29 Questions 
 
 
1. Are triangles ABC and DEF the same size?  Are they the same shape? 
 
2. If ΔABC has an angle of 35°, and another angle of 42°, then what is the value of 
the remaining angle? 
 
 
 
 
 
THEOREM 30:  If one pair of opposite sides in a quadrilateral are both parallel 
and equal, then the quadrilateral is a parallelogram. 

  
Consider quadrilateral ABCD, in 
which AB & CD are both parallel 
and equal.  Then ABCD is a 
parallelogram, meaning that AC & 
BD are also parallel, and what’s 
more AC = BD. 
 

 
On what grounds can we make such a claim? 
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[1] Join AD, forming ΔACD and ΔABD. 
 
[2] ∠1 = ∠2  (since AB is parallel to CD; Thm. 25) 
 
[3] AB = CD  (these lines are given that way) 
 
[4] AD is common to ΔACD & ΔABD. 
 
[5] So, by the Side-Angle-Side Theorem, all the corresponding sides and angles of 

ΔACD & ΔABD are equal. 
 
[6] ∠CAD = ∠BDA (being corresponding angles of ΔACD & ΔABD) 
 
[7] AC is parallel to BD (since ∠CAD = ∠BDA; Thm. 23) 
 
[8] AC = BD  (being corresponding sides of ΔACD & ΔABD) 
 
Q.E.D. 
 
 
 
 
 
THEOREM 30 Remark 
 
 
We could also state Theorem 30 in another way:  If two straight lines are parallel and 
equal, then the straight lines joining their corresponding endpoints are also parallel and 
equal.  
 
 
 
 
THEOREM 30 Questions 
 
 
1. Construct a parallelogram on a given straight line CD, and having a given point A 
above CD as one of its corners. 
 
2. Prove that every square is a parallelogram. 
 
3. Prove that every rectangle is a parallelogram. 
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THEOREM 31:  In any parallelogram, the opposite sides and angles are equal, 
and the diagonal bisects the parallelogram. 

 
If ABCD is a parallelogram, then by definition 
AB is parallel to CD, and BC is parallel to 
AD.  But it will also be the case that 
 ∠ABC = ∠ADC 
 ∠BAD = ∠BCD 

AB = CD 
 BC = DA 

And AC, the diagonal, will bisect the area of the parallelogram. 
 
[1] 1 = 2   (since AB is parallel to CD; Thm. 25) 
 
[2] 4 = 3   (since BC is parallel to AD; Thm. 25) 
 
[3] AC is common to ΔABC & ΔADC. 
 
[4] So, by the Angle-Side-Angle Theorem, all the corresponding sides and angles of 

ΔABC & ΔADC will be equal, and the triangles themselves are equal in area. 
 
[5] So the diagonal AC cuts the parallelogram ABCD into two triangles of equal area, 

i.e. AC bisects the area of the parallelogram, and 
 
[6] AB = CD  (being corresponding sides of ΔABC & ΔADC) 
 
[7] BC = DA  (being corresponding sides of ΔABC & ΔADC) 
 
[8] 5 = 6   (being corresponding angles of ΔABC & ΔADC), 

that is, ∠ABC = ∠ADC. 
 
[9] 1 + 4 = 2 + 3  (putting together Steps 1 & 2), 

that is, ∠BAD = ∠BCD. 
 
Q.E.D. 
 
 
 
THEOREM 31 Remark 
 
 
Theorem 31 is the partial converse of Thm. 30, which says that in a quadrilateral, if one 
pair of sides is both parallel and equal, then the other pair is parallel and equal.  31 says 
that in a quadrilateral, if both pairs of sides are parallel, then both pairs of sides are equal. 
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THEOREM 31 Questions 
 
 
1. Prove that if ABCD is a quadrilateral, and AB = BC = CD = DA, then also 
AB║CD and AD║BC.  (In other words, prove that every rhombus is a parallelogram.) 
 
2. Prove that if ABCD is a quadrilateral, and ∠ABC = ∠ADC and ∠BAD = ∠BCD, 
then also AB║DC and AD║BC. 
 This, together with the solution to Q.1 above, proves the full converse of Thm. 31. 
 
3. Prove that the diagonals of any parallelogram bisect each other. 
 
4. Prove the converse:  that if the diagonals of a quadrilateral bisect each other, then 
the quadrilateral is a parallelogram. 
 
5. Prove that the diagonals of a rectangle are equal. 
 
6. Prove the converse, that if the diagonals of a quadrilateral are equal, then the 
quadrilateral is a rectangle. 
 
7. Prove that the diagonals of any equilateral quadrilateral are perpendicular to each 
other; then prove the converse, that if the diagonals of a quadrilateral are perpendicular to 
each other, the quadrilateral is equilateral (i.e. has all its sides equal to each other, and so 
is either a square or a rhombus). 
 
 
 
 
THEOREM 32:  Parallelograms on the same base and in the same parallels have 
equal areas. 

 
Imagine two parallels AF and BE that 
contain two parallelograms ABED and 
CBEF which stand on base BE.  Then 
ABED and CBEF have equal areas.  
Surprised?  Well, here's proof: 
 

 
[1] AD = BE  (being opposite sides of a parallelogram) 
 CF = BE  (being opposite sides of a parallelogram) 
so AD = CF 
 
[2] AD + CD = CF + CD (adding CD to both sides of AD = CF) 
i.e. AC = DF 
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[4] AC = DF  (Step 3) 
 AB = DE  (being opposite sides of a parallelogram) 
 BC = EF  (being opposite sides of a parallelogram) 
so by the Side-Side-Side Theorem, ΔABC & ΔDEF are congruent triangles and so have 
the same area. 
 
[5] 1 + 4 = 4 + 3  (simply renaming the areas of the equal triangles) 
 
[6] 1 = 3   (subtracting area 4 from each side of Step 5) 
 
[7] 1 + 2 = 2 + 3  (adding area 2 to each side of Step 6) 
 
[8] That is,  ABED = CBEF 
 
 
 Q.E.D. 
 
 
 
 
THEOREM 32 Remarks 
 
 
1. Notice how parallelograms ABED & CBEF have the same area, but do not have 
the same shape.  One cannot simply be placed right on top of the other one so as to 
coincide with it.  This shows that things can be equal, or have the same quantity, without 
being exactly identical in every way, e.g. without having the same shape. 
 The word congruent is commonly used to name the relationship between figures 
that have not only the same size, but also the same shape, as we remarked after Theorem 
2 (Remark 4).  Congruent triangles, for example, would be those which are entirely 
identical, according to the theorems of Side-Angle-Side or Side-Side-Side or Angle-Side-
Angle.  You might say that “congruence” is a particular kind of equality, the most perfect 
kind of equality. 
 
2. Theorem 32 is a bit surprising.  Parallelogram CBEF could be tilted toward the 
right without limit, making it a wildly different shape from parallelogram ABED, and yet 
the two would always have exactly the same area. 

 
3. Notice it easily follows that parallelograms on 
equal bases and in the same parallels have equal areas.  
If parallelograms 1 and 2 are in the same parallels and 
have equal bases, just slide 2 until its base coincides 
with that of 1, and we are back to Thm. 32. 

 
 
 

21
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THEOREM 32 Questions 
 
 

 
 
1. Prove Thm. 32 in the case where C lands 
between A and D. 
 
 

 
 
2. Prove Thm. 32 in the case where point C lands 
right on  point D. 
 
 
 

 
3. Prove the converse, namely that if parallelograms ABCD & EFGH have the same 
area and their equal bases AB & EF are in a straight line, then their tops DC & HG must 

also be in a straight line.  Start by assuming DC & 
HG are not in a straight line, but, say, DC is higher 
up, and extend DC to V, and EH & FG to L & K 
forming a new parallelogram ELKF. 
 

 
 
 
THEOREM 33:  Triangles on the same base and in the same parallels have equal 
areas; and a triangle on the same base and in the same parallels as a parallelogram has 
half the area of the parallelogram. 
 

Let there be two triangles, ABC and ABG, 
standing on base AB and inside the same 
set of parallels AB and GC. 
 Then ΔABC and ΔABG have the 
same area (even if they don't have the 
same shape).  We prove it like this: 
 

 
 
[1] Draw AK parallel to BG, making parallelogram ABGK. 
 
[2] Draw BL parallel to AC, making parallelogram ABLC. 
 
[3]   ABGK = ABLC  (Thm. 32) 
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[4]   ΔABG = ½ABGK  (Thm. 31) 
 ΔABC = ½ABLC  (Thm. 31) 
 
[5] ΔABG = ΔABC, 

since by Steps 4 & 5 these two triangles are halves of two equal things, namely 
the parallelograms ABGK & ABLC. 

 
[6] Also, it is evident that ΔABC is equal to half of parallelogram ABGK, since it is 

half its equal, namely parallelogram ABLC. 
 
Q.E.D. 
 
 
THEOREM 33 Remarks 
 
1. Obviously, it follows that a triangle is half of any rectangle that stands in the same 
parallels and has an equal base. 
 
2. Notice that in Step 5 we use the principle that the halves of equal things are equal. 
 
3. The converse for this Theorem can be proved in the same way that the converse 
for Theorem 32 is proved (see Q.3 after Thm. 32).  And, just like with Thm. 32, the two 
triangles need not have the same base, but equal bases is enough. 
 
4. What we call the “base” of a triangle is not any special side of it – any of the three 
sides can be called its “base”.  In this case we call the “base” the side which lies along 
one of the parallels. 
 

 
5. Notice that since ΔABG and ΔDEF are 
inside the same set of parallels, the 
perpendicular dropped from G to the bottom 
parallel will be equal to the perpendicular 
dropped from F to the bottom parallel.  For 

that reason, these triangles can be said to have the same height or altitude.  The “height” 
or “altitude” of a triangle is the perpendicular drawn from its vertex to the base of the 
triangle.  And just as a triangle can have three “bases”, so too it has three “heights” (or 
“altitudes”), namely one in relation to each base. 
 

 
6. Obviously, the perpendiculars drawn from A and B to the 
upper parallel will also be equal to the “height” of triangle ABG. 
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THEOREM 33 Questions 
 
 
1. If a rectangle has Side One = 3”, and Side Two = 4”, then what is the total area of 
the rectangle in square inches?  What operation does one perform on 3 & 4 to get the 
right answer?  Why is that the operation performed?  Draw a diagram that shows your 
procedure was right. 
 
2. What if one side of a rectangle is 2 and the other is 2½?  Will that change the 
procedure?  Draw a diagram of the rectangle, and divide it into squares showing that the 
answer is still correct using the same procedure. 
 Accordingly, the formula for calculating the area of a rectangle is 
 A = bh 
Where A means the area of the rectangle, and b means the length of its base, and h means 
the height of the rectangle, and putting b and h right next to each other means to multiply 
them.  The result is the number of unit square areas in the rectangle. 
 
3. Show that the formula for finding the area of a triangle is 
 A = ½bh 
Where A means the area of the triangle, and b means the length of its base, and h means 
the height of the triangle. 
 

 
4. Look at triangle ABV.  VH has been 
dropped perpendicularly to AB extended. 
 VH = 8 feet 
 AB = 13 feet 
How many square feet of area is in triangle 
ABV?  Just apply the second part of Thm. 33. 
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THEOREM 34:  In any parallelogram, the “complements” of any two 
parallelograms about the diagonal are equal. 

 
Take a parallelogram ABCD and 
join the diagonal AC.  Pick any point 
K on AC, and draw 

HKG parallel to AB 
EKF parallel to AD 

thus forming parallelograms EH and 
GF sharing the original diagonal as 

their own diagonals, and also forming two “complementary” parallelograms EG & HF 
(or 1 & 2).  These complementary parallelograms must be equal in area, because . . . 

 
[1] 5 = 6   (AK bisects parallelogram EH) 
 
[2] 3 = 4   (KC bisects parallelogram GF) 
 
[3] 5 + 3 = 6 + 4  (putting together Steps 1 & 2) 
 
[4] 5 + 3 + 1 = 6 + 4 + 2, 

since diagonal AC bisects the area of parallelogram ABCD. 
 
[5] 1 = 2, 

subtracting the equal areas 5 + 3 and 6 + 4 from each side of the equal areas in 
Step 4. 

 
Q.E.D. 
 
 
 
 
THEOREM 34 Remarks 
 
1. It is also true that if we join and extend GE, and then join and extend FH, and then 
extend CA, these three straight lines will all meet each other in the same point!  In fact, 
that will still be true even if EF and HG do not pass through the same point along the 
diagonal AC (just as long as they are each parallel to one of the sides of the original 
parallelogram).  We don’t have the tools to prove it, yet, though. 
 
2. Notice that the little parallelograms EH and GF seem to be the same shape as the 
original parallelogram BD. 
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THEOREM 34 Question 
 

 
Now prove the converse of Thm. 34.  Let 1 & 2 
(DVCH and GVFE) be parallelograms of equal 
area drawn inside the opposite angles of the larger 
parallelogram ACBE by drawing DVF║CB, and 
GVH║AC.  Join AB.  You should be able to show 
that V lies on AB. 

 Start by assuming that V does not lie on diagonal AB, but instead DVF passes 
through AB at another point X.  Then draw YXZ║AC and see what happens when you 
apply Thm. 34. 
 
  
 
THEOREM 35:  How to make a square. 
 

If I give you a straight line such as AB, can you 
build a square on it so that AB is one of the sides?  
No problem. 
 
[1] Draw AE perpendicular to AB, and make it 
as long as you need (Thm. 9). 
 
[2] Cut off AD = AB  (by drawing a circle 
around A, with radius AB). 

 
[3] Draw  DK parallel to AB   (Thm. 27) 
 Draw  BM parallel to AD   (Thm. 27) 

Call the intersection of DK and BM the point C. 
 
[4] ABCD is a parallelogram   (since AB║CD, AD║BC) 
 
[5] 1 + 2 = two rights    (Thm. 25) 
but 1 = one right     (we made AD ⊥ AB) 
so 2 = one right 
 
[6] But the angles opposite 1 & 2 are equal to them, since ABCD is a parallelogram 

(Thm. 31), 
so 3 = one right     (being opposite ∠1) 
and 4 = one right     (being opposite ∠2) 
 
[7] And the sides opposite AB & AD are equal to them, since ABCD is a 

parallelogram (Thm. 31), 
so DC = AB 
and CB = AD 
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[8] But AB = AD     (we made them so) 
 
[9] So AB = AD = DC = CB   (putting together Steps 7 & 8) 
 
[10] So ABCD is equilateral (Step 9), and has all right angles (Steps 5 & 6), and so it 

is a square (Def. 23) 
 
Q.E.F. 
 
 
THEOREM 35 Remarks 
 
1. We have now made two regular rectilineal figures, the equilateral triangle and the 
square.  A regular rectilineal figure is one all of whose sides are equal and all of whose 
angles are equal.  We have made the 3-sided regular figure, and the 4-sided; we will learn 
how to do the 5-sided, 6-sided, 8-sided, 10-sided, 12-sided, and 15-sided later. 

 
2. As you know, rectangles, rhombuses, and 
squares are special kinds of parallelograms.  
Moreover, a square can be considered as a special 
kind of rectangle, namely one whose sides are all 
equal.  A square can also be considered as a special 
kind of rhombus, namely one which has been 
“squared up”. 
 Because a square is a parallelogram, its 
diagonals bisect each other; because a square is a 

rectangle, its diagonals are equal to each other; and because a square is equilateral (like a 
rhombus), its diagonals are perpendicular to each other. 
 
 
3. Make a square on two consecutive sides of your original square, and then add a 
fourth square in between the two added squares.  You now have one big square made out 
of the four little squares. 
 Look at one of the little squares and compare it to the big square. 
 How do the lengths of their sides compare?  How do their areas compare?  Does 
the area of a square increase in the same proportion as the length of its side increases? 
 
 
THEOREM 35 Questions 
 
1. Using a compass and a straight edge, what is the fewest number of steps in which 
you can make a square on a given straight line as one of its sides?  Count each circle or 
straight line you make as one step. See if you can find the top two corners of the square in 
5 steps. 
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2. As we will see later, among all quadrilaterals, the square has the greatest area for 
a given perimeter, and conversely the least perimeter for a given area.  We can say the 
same thing about the equilateral triangle among all triangles.  Proof will come later. 
 
 

THE PYTHAGOREAN THEOREM 
 
THEOREM 36:  In any right triangle, the square on the hypotenuse is equal to 
the sum of the two squares on the remaining sides. 
 

ΔABC has a right angle at A.  If we make a 
square on each side, as ABFG, ACKH, 
BCED, then the area of the square on 
hypotenuse BC, namely BCED, is equal to 
the area of the other two squares combined.  
Let’s prove it. 
 
[1] Drop AL perpendicular to DE, thus 
forming rectangles BL & LC. 
 Join AD, join CF. 
 
[2] Since ∠GAB & ∠BAC are both 
right angles, therefore GAC is one straight 
line (Thm. 12). 
 

[3] FB = AB   (ABFG is a square) 
 BC = BD   (BCED is a square) 
 ∠FBC = ∠ABD  (each is ∠ABC plus a right angle) 
so ΔFBC = ΔABD  (Side-Angle-Side) 
 
[4] 2ΔFBC = 2ΔABD  (the doubles of equal areas are equal) 
[5] 2ΔFBC = £ABFG, 

since this triangle and parallelogram share a common base FB and stand within 
the same parallels FB & GAC (Thm. 33). 

[6] 2ΔABD = rectangle BL, 
since this triangle and parallelogram share a common base BD and stand within 
the same parallels BD & AL (Thm. 33). 

[7] £ABFG = rect. BL  (putting together Steps 4, 5, 6) 
[8] £ACKH = rect. CL  (by a corresponding argument) 
[9] £ABFG + £ACKH = rect. BL + rect. CL 
[10] rect. BL + rect. CL = £BCED (both parts of a whole equal the whole) 
[11] £ABFG + £ACKH = £BCED (putting together Steps 9 & 10) 
 
Q.E.D. 
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THEOREM 36 Remarks 
 
 
1. This is the most famous theorem in all of geometry.  The first general proof of it 
is attributed to Pythagoras, a Greek philosopher who lived five centuries before Christ.  
Legend has it he was so delighted by the Theorem that he went out and sacrificed an ox 
in thanksgiving to the gods for so beautiful a truth. 
 
2. In the diagram for this theorem, FC, AL, and BK all pass through one point!  If 
you draw a careful diagram, you can verify this for yourself – but we won’t burden 
ourselves with a proof for it right now. 
 
3. Numerically, the way to calculate the area of a square, as with any rectangle, is to 
multiply the number of unit lengths in one side by the number of those same unit lengths 
in an adjacent side.  But since any two adjacent sides of a square are equal, it follows that 
we need only multiply the numerical length of one side times itself to obtain the number 
of unit squares in the whole square.  The algebraic symbol for the product of any number 
n times itself is n2.  So if a is the hypotenuse of a right triangle, and b and c are its other 
two sides, we can express the Pythagorean Theorem this way: 
 
 a2 = b2 + c2 
 
 
THEOREM 36 Questions 
 

 
 
1. Illustrate the Pythagorean Theorem by making a 
puzzle.  If DEF is a right triangle, and DF the hypotenuse, 
and FDKL the square on it, then extend KD to H on the 
larger of the two other squares, and draw EG parallel to 
DF.  If you draw this carefully, and then cut out areas 1, 2, 
3, 4, 5, you will see that they can be placed together to 
make a square identical to DFLK. 
 
 

 
 
2. We can now prove another “Triangle Congruence 
Theorem”, although it is limited to right triangles.  If we 
have two right triangles ABC and DEF, and two sides of 
one of them equal two corresponding sides in the other, 
then the triangles are identical.  This is true even if the 
corresponding sides are not around the right angle. 

Let AB = DE, and BC = EF.  Using the Pythagorean Theorem, show that these two 
triangles are identical. 
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3.  See the two figures at left?  Each is made by 
taking four identical right triangles with sides a, 
b, c (c being the hypotenuse).  Can you verify 
the Pythagorean Theorem by looking at these 
two figures?  In the left figure, we see that the 
square on  c  is equal to the big square minus 

four triangles.  In the right figure, we see that the squares on  a  and  b  together are equal 
to the big square minus four triangles. 

 
 

 
4.  Given the triangle at left, with legs of 6 and 8 containing a right 
angle, how long is the hypotenuse?  
 
 
 

 
5.  Given the triangle at left, with one leg of 12 and the hypotenuse of 
15, how long is the other leg? 
 
 
 
 

 
6.  Given that the hypotenuse of a right triangle is 13 units long, 
and one leg is 12, how long is the other leg? 
 
 

 
 
7.  ARB is a right triangle, AB its hypotenuse.  AR = 4, RB = 
3, and ABCD is a square.  What is the area of the figure 
ARBCD? 
 
 
 

 
8.  EFG is a right triangle, EF its 
hypotenuse.  EF = 25, EG = 24, and 
GFKH is a square.  What is the area of 
triangle GTF? 
 

 
9.  XY = 15, XZ = 25.  What is the area of triangle XYZ? 
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THEOREM 37:  If the square on one side of a triangle equals the sum of the 
squares on the remaining sides, then the triangle is a right triangle. 
 

Suppose you have a triangle ABC in which  
£AB = £AC + £BC.  Then the angle opposite 
AB is a right angle, i.e. ∠ACB is a right angle.  
Here's proof: 
 
[1] Draw CN at right angles to AC, and cut 
off NC = BC. 
 
[2] Join NA. 

 
[3] £AN = £AC + £NC  (Pythagorean Theorem) 
[4] £AN = £AC + £BC   (By Step 1  NC = BC, so £NC = £BC) 
[5] £AB = £AC + £BC   (ΔABC is given this way) 
[6] £AB = £AN    (Putting together Steps 4 & 5) 
[7] so AB = AN 
[8] but NC = BC   (Step 1) 
[9] and CA is common to ΔANC & ΔABC 
[10] so ΔANC ≅ ΔABC  (Side-Side-Side) 
[11] thus ∠ACN = ∠ACB  (Corresponding angles of ΔANC & ΔABC) 
[12] but ∠ACN is a right angle (We made it so) 
[13] so ∠ACB is a right angle  (Putting together Steps 11 & 12) 
 
Q.E.D. 
 
 
THEOREM 37 Remarks 
 
1. Theorem 37 is simply the converse of the Pythagorean Theorem:  so not only do 
all right triangles have the Pythagorean property, but only right triangles have that 
property. 
 
2. It follows that the square on the side of an acute or obtuse triangle does not equal 
the sum of the squares on the remaining two sides. 
 
3. A triangle whose sides are 3 units long, 4 units long, and 5 units long is a right 
triangle, and the longest side, 5, is its hypotenuse.  This fact is often used in carpentry.  If 
you need to make a very large right angle, say at the corner of a house's foundation, then 
a little carpenter's square won't do.  You might be off (or the carpenter's square might be 
off) of 90° by only a miniscule amount near the square, but by the time you extend 
straight lines far from the square, you might have an appreciable difference between 
where you end up and where a precise 90° angle would end up.  You can get around this 
by marking lengths along a string (with knots) that are 3, 4, and 5 units long; if you 

A

BCN



 

 76 

stretch them tight and form a triangle with them (there is only 1 triangle you can form 
with them!), then the angle between the sides of lengths 3 & 4 (feet or yards or whatever) 
will be a right angle. 
 
 
THEOREM 37 Questions 
 
1. Using Theorem 37, prove that a triangle having one side 3 feet long, another side 
4 feet long, and the remaining side 5 feet long is a right triangle, and that the 5-foot long 
side is the hypotenuse. 
 
2. Notice that 3, 4, and 5 fit the Pythagorean equation a2 = b2 + c2, 
 
since 52 = 32 + 42 
 
i.e. 25 = 9 + 16. 
 
3, 4, and 5 are not the only whole numbers that do that.  Any three whole numbers which 
do that are called “Pythagorean Triples”.  Here are all the Pythagorean Triples in which 
no member is greater than 50: 
 
3 4 5   14 48 50 
 
5 12 13   15 20 25 
 
6 8 10   15 36 39 
 
7 24 25   16 30 34 
 
8 15 17   18 24 30 
 
9 12 15   20 21 29 
 
9 40 41   21 28 35 
 
10 24 26   24 32 40 
 
12 16 20   27 36 45 
 
12 35 37   30 40 50 
 
In each case, the squares of the first two numbers, when added together, equals the square 
of the third number.  Obviously, some of these triples are based on others, e.g. 30, 40, 50, 
is based on 3, 4, 5.  Can you see any others that are based on 3, 4, 5? 
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HOOK THEOREMS 

 
(1)  DESARGUES’ THEOREM. 
 
As an inducement to further study, I will end 
each chapter of this book with a theorem or two, 
stated but left unproved.  Each of these will have 
some bearing on the material of the chapter to 
which it is appended, and in some cases it will be 
possible to prove it by using the theorems of the 
chapter itself.  But in most cases, it will simply 
be a theorem of particular interest, illustrating 
some of the wonders of geometry which grow 
out of the elements covered in this book.  I will 
call these “HOOK THEOREMS.”  And as the 
first of these “hooks”, I give you Desargues’ 
Theorem:  If two triangles,  ABC,  abc,  in the 
same plane, be such that the three straight lines 
joining their vertices  (aA,  bB,  cC)  all intersect 
in one point  V,  then the three points of 
intersection of their corresponding sides  (X, Y, 
Z) will lie in a straight line. 
 
 
 
(2)  SUM OF PERPENDICULARS FROM A POINT IN AN EQUILATERAL 
TRIANGLE. 
 
Here is another “hook theorem.”  Take an equilateral triangle ABC, and pick any point P 
inside it.  Now draw the perpendiculars from P to the three sides:  PQ, PR, PS.  If you add 
up those three lengths, their sum is equal to AT, the altitude of the triangle (the 
perpendicular drawn from A to BC). 
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(3)  PAPPUS’  THEOREM. 
 
Here is a third hook.  If  DF, KG  be any two straight lines in a plane, and E, H  be any 
points on them, and we form three “X” figures by joining DH & EK (intersecting at L), 
EG & FH (intersecting at N), DG & FK (intersecting at M), then L, M, N will lie in a 
straight line. 
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DEFINITIONS 
 
 

 
 

 
1.  A rectangle is said to be CONTAINED BY any two of 
its adjacent sides, and any two straight lines are said TO 
CONTAIN a rectangle made with adjacent sides equal to 
them. 

 For example, rectangle R is contained by DE and EF. 
And if A and B are two straight lines equal to DE and EF respectively, then R is 

the rectangle which A and B contain. 
 
 
 
 

2.  This is not so much a definition, but more an 
introduction of a way of to symbolize rectangles.  Up till 
now, we have designated a rectangle such as R by its four 
corners, calling it “Rectangle DEFC”.  But since every 
rectangle is uniquely determined by the lengths of any two 
of its adjacent sides, we can also use these to identify a 
rectangle. 

For example, we can designate DEFC by writing DE ⋅ EF, which means “The rectangle 
contained by DE and EF.”  Likewise, A⋅B means “The rectangle contained by lines A 
and B.” 
 If we wish to name the side of any rectangle as the sum of or difference between 
two straight lines, then we simply place parentheses around the sum or difference.  For 
example, (A + B)(A – B) means “The rectangle contained by (A + B) as one side, and by 
(A – B) as the adjacent side.” 
 
 
 

 
3.  IDENTICAL RECTANGLES are those contained 
by equal corresponding sides.  We can also call such 
rectangles CONGRUENT. 
 For example, if  GH = LM and  HK = MN, 
then  GH ⋅ HK and  LM ⋅ MN are identical 
rectangles, having the same shape and area. 
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THEOREMS 
 
 
THEOREM 1:  The rectangle contained by any line L and the sum of two other 
lines (A + B) is equal to the sum of the rectangles contained by L and A and by L and B. 

 
That is to say  L (A + B)  =  L ⋅A  +  L ⋅B 
 
This is obvious just from the diagram. 
 
Q.E.D. 

 
 
 
 
 
THEOREM 1 Remarks 
 
1. This simple theorem is not limited to just two lines.  If we had a third line C, then 
it is likewise true that the rectangle contained by L and (A + B + C) is equal to the sum of 
the rectangles  L ⋅A  +  L ⋅ B  +  L ⋅ C. 
 
 

 
2. This theorem is obviously true for subtraction as well, 
 i.e. L (X – Y)  =  L ⋅X  –  L ⋅Y 
 
 
 

 
3. This theorem is a cousin to a very similar theorem about numbers, since the 
number of square units of area in a rectangle is found by multiplying the numerical 
measure of the sides.  The theorem about numbers says  Any number n multiplied by the 
sum of any two numbers (m + p) is equal to the sum of the products n × m and n × p.  As 
with the rectangles, there can be more than two numbers in the sum.  Thus if we add a 
third number, r, it will be true that   n (m + p + r)   =   n × m  +  n × p  +  n × r. 
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THEOREM 2:  If through any point on the diagonal of a square two lines are 
drawn parallel to each side of the square, then the four resulting figures inside are two 
squares along the original diagonal and two identical complementary rectangles. 

 
 
Take any square AGFD, and choose any random 
point R along its diagonal DG.  Now draw BRE 
parallel to AD, and CRH parallel to DEF.  I say that 
CRED and BGHR are squares, and that ABRC and 
RHFE are identical rectangles. 
 
[1]  Look at rDAG and rDFG.  Each is evidently 
an isosceles right triangle, and because CR is 

parallel to AG, rDCR is clearly an isosceles right triangle.  Again, because ER is 
parallel to FG, rDER is clearly an isosceles right triangle.  Thus CRED is evidently a 
square.  For the same reasons, BGHR is also a square. 
 
[2]  Now CAB is a right angle, and AB║CR and AC║BR, so it is clear that ABRC is a 
rectangle.  Likewise RHFE is a rectangle.  Moreover, since CR = RE (being sides of 
square CRED) and BR = RH (being sides of square BGHR), therefore ABRC and RHFE 
are identical rectangles. 
 
Q.E.D. 
 
 
 
THEOREM 2 Questions 
 
1. What figures do we get if DR = RG? 
 
2. What figures do we get if BE and CH are drawn parallel to the sides of the square, 
but they do not intersect along either diagonal of the square? 
 
3. What if AGFD were a rectangle?  What four figures would we get?  By drawing 
two lines parallel to its sides, could we ever get a square?  Could we ever get two 
squares?  Four squares? 
 
4. What if AGFD were a rhombus?  What four figures would we get? 
 
5. Prove the converse, i.e. prove that if two little squares situated in opposite corners 
of a big square touch at their corners, their common corner lies on the diagonal of the 
original square (and the other two figures are identical rectangles). 
 
6. Prove another form of the converse, i.e. prove that if two identical rectangles in 
opposite corners of a square touch at their corners, that common corner lies on the 
diagonal of the original square (and the other two figures are squares). 
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THEOREM 3:  Given any two lines, the square on their sum is equal to the sum of 
the squares on each plus twice the rectangle they contain. 
 

This theorem, while not fascinating in itself, is useful 
for better upcoming theorems, and has the virtue of 
being easily proved.  Start with a figure like that in 
Theorem 2, namely a big square DFKG, its diagonal 
GF, any point R on it, and LRM ║ DF, and ERH ║FK. 
 
[1] A brief examination of the figure reveals that 
 £DF  =  £LR + £EF + 2 DE · ER 
 

[2] Now since LR = DE, 
 and since ER = EF, 
 we can substitute these lengths in the Step 1 equality, and say that 
 £DF  =  £DE + £EF + 2 DE · EF 
 
[3] Which is to say that given any two lines DE and EF, the square on their sum 
(£DF) is equal to the sum of the squares on them (£DE + £EF) plus twice the rectangle 
they contain (2 DE · EF). 
 
Q.E.D. 
 
 
THEOREM 3 Remarks 
 
1. This theorem has a cousin theorem about numbers, namely that The square of the 
sum of two numbers is equal to the sum of the squares of each number plus twice their 
product.  That is, if n and m are our numbers, then  (n + m)2  =  n2  +  m2  +  2nm. 
 

 
2. This theorem was about the square on the sum of 
two lines.  Something similar is true about the square on the 
difference between two lines.  Let DF and FE be the given 
lines, so that £DE is the square on their difference.  Now 
add a square HKZQ onto the figure.  Then obviously 

£LRHG  +  2 DF⋅ FM  =  £DFKG  +  £HKZQ, 
 or £LRHG  =  £DFKG  +  £HKZQ  –  2 DF⋅ FM 
(subtracting 2DF⋅FM).  Renaming these quadrilaterals by 
their sides (or lines equal to their sides), we get 

£DE  =  £DF  +  £EF  –  2 DF⋅ FE. 
In other words, given any two lines DF and FE, the square on their difference 

(£DE) is equal to the sum of the squares on them (£DF + £EF) minus twice the 
rectangle they contain (2 DF · FE).   Q.E.D. 
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THEOREM 4:  The difference between any two squares equals the rectangle 
contained by the sum and the difference of their sides. 

 
 
Like Theorem 3, this theorem is not so much 
interesting now as useful later.  But it’s short!  Lay 
out the same figure as in Theorem 3, but this time 
tack on rectangle FNTM, identical to DERL, or DE 
· ER. 
 
 

[1] Inspecting the diagram verifies that 
  £DF  –  £LR  =  £EF  +  2 DE · ER 
 but DN · NT  =  £EF  +  2 DE · ER 
 so £DF  –  £LR  =  DN · NT 
 
[2] Since LR = DE 
 and DN = (DF + DE) 
 while NT = FM = EF = (DF – DE) 
 we can substitute these lengths in the equality of Step 1, and say that 
  £DF – £DE  =  (DF + DE)(DF – DE) 
 
[3] In other words, the difference between any two squares (£DF – £DE) equals the 
rectangle contained by the sum of their sides (DF + DE) and the difference between their 
sides (DF – DE). 
 
Q.E.D. 
 
 
 
THEOREM 4 Remarks 
 
 
1. The corresponding truth about numbers is that The difference between the squares 
of two numbers is equal to the product of the sum of those numbers and the difference 
between those numbers.  That is, supposing the numbers are n and m, and n is the greater 
of the two, then n2  –  m2  =  (n + m)(n  –  m) 
For example  72  –  42  =  (7 + 4)(7 – 4). 
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THEOREM 5:  How to make a single rectangle equal to any two given rectangles. 
 
Suppose you have two rectangles 
with no length of any side common 
to both, and yet you would like to 
make one big rectangle equal to the 
two of them.  Easy.  Put their corners 
together as ABCD and DEFG in 
such a way that CD and DG are in a 
straight line.  Extend BA out to P, 
and CDG out to R, as far as needed.  
Next, 
 

[1] Join AG. 
 
[2] Extend AG and EF to where they intersect at K. 
[3] Extend FG up to M, and KL up to T, thus completing the large rectangle AEKT, 
and the two rectangles along its diagonal, AMGD and GLKF. 
[4] Now,  DEFG = MGLT 

since these rectangles are complementary parallelograms (Ch.1, Thm. 34). 
 
[5] And  MG = AD (being opposite sides of rectangle AMGD) 
 
[6] Therefore MGLT is equal to DEFG in area, but has one side equal to a side of 
rectangle ABCD.  So if we slide MGLT over until it is right up against ABCD, the two of 
them will form one rectangle together.  And the area of that rectangle will be equal to 
ABCD + DEFG. 
 
Q.E.F. 
 
 
 
THEOREM 5 Remarks 
 
1. Notice that we can use this construction to add together as many rectangles as we 
please into one big rectangle.  Suppose, instead of just two rectangles, you had three, 
namely 1, 2, and 3, and you wanted to make a big rectangle equal to the three of them.  
Using the theorem, make a rectangle R which is equal to 1 + 2.  Using the theorem again, 
make a rectangle T which is equal to R + 3.  Since R = 1 + 2, thus T = 1 + 2 + 3. 
 
2. Notice that rectangles DEFG and MGLT have the same area but they do not have 
the same shape.  That leads us to expect a difference in their perimeters, or the total 
length around their sides.  In fact, it is quite possible for two different rectangles to 
contain the same area, but with unequal perimeters. 
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For example, consider two rectangles, one of which is 2” × 6”, the other of which 
is 3” × 4”.  Each has an area of 12 square inches, but the 2” × 6” rectangle has a perimeter 
of 16 inches, whereas the 3” × 4” rectangle has a perimeter of only 14 inches. 

 A 2” × 5” rectangle also has a perimeter of 
14 inches, but it has less area than the 3” × 4” 
rectangle, i.e. only 10 square inches of area.  
Stranger still, a 1” × 7” rectangle has a bigger 
perimeter than the 3” × 4” rectangle, namely 16 
inches, and yet it has less area (namely 7 square 
inches).  So if your yard is 30 yards by 40 yards, 
and mine is 10 yards by 70 yards, then the fence 
around your yard is shorter than the fence around 
my yard, and yet your yard is bigger than mine. 
 
 
 
 
 

 
 
 
THEOREM 6:  If a perpendicular is drawn from a circle’s circumference to its 
diameter, the square on it equals the rectangle contained by the segments of the diameter. 

 
 
In any circle with center M and any diameter 
AMB, choose any point along the circumference 
and drop PR perpendicular to AB.  I say that  
£PR = AR ⋅ RB. 
 
 

The proof: 
 
[1] Join PM. 
 
[2] Now, £PR + £MR = £MP  (Pythagorean Theorem) 
 so £PR = £MP – £MR   (subtracting £MR from each side) 
 
[3] Thus £PR = £MB – £MR  (MP = MB, being radii of the circle) 
 
[4] But £MB – £MR = (MB + MR)(MB – MR), 
 because of Theorem 4 above, the theorem about the difference of two squares. 
 
[5] Thus £PR = (MB + MR)(MB – MR), 
 putting Steps 3 & 4 together. 

6

2

4

3

5

2

7
1

Area = 12
Perimeter = 16

Area = 12
Perimeter = 14

Area = 10
Perimeter = 14

Area = 7
Perimeter = 16

P

BRMA



 

 86 

 
[6] i.e. £PR = (AM + MR)(MB – MR), 
 since AM = MB, both being radii of the circle. 
 
[7] But (AM + MR)  is just AR, 
 and (MB – MR) is just RB. 
 So (AM + MR)(MB – MR) = AR ⋅ RB. 
 
[8] Thus £PR = AR ⋅ RB   (putting together Steps 6 & 7) 
 
 
Q.E.D. 
 
 
 
 
THEOREM 7:  How to make a square that has the same area as any given 
rectilineal figure. 
 

Suppose you have a rectilineal figure ABCDE 
with as many sides as you want (in this case, 
five).  How can you make a square that is equal 
to it in area?  The general procedure is to cut it 
up into triangles, turn each triangle into a 
rectangle, turn all the rectangles into one big 
rectangle, and turn that big rectangle into a 
square. 
 
[1] You can always divide a rectilineal 
figure into triangles by joining its vertices 
together, say into Δ1 and Δ2 and Δ3. 
 
[2] Now make a rectangle equal to each 
triangle. 

To do this, just take each triangle, such 
as Δ1, and draw a line JP through its vertex 
parallel to its base AC.  Next, draw AF and CG 
perpendicular to base AC, forming rectangle 
ACGF.  Since Δ1 and ACGF are on the same 

base and in the same parallels, therefore Δ1 is half of rectangle ACGF  (Ch.1, Thm. 33). 
Bisect AC at M, and draw MH perpendicular to base AC, dividing ACGF into 

two rectangles AFHM and HMCG.  These rectangles are identical, since AM = MC and 
since HM is a side common to both.  Since they have equal areas, and since the two 
together make up rectangle ACGF, either one of these rectangles is half of rectangle 
ACGF. 
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But that means each of these rectangles is equal to Δ1, which is also half of 
rectangle ACGF.  That is how to make a rectangle equal to a triangle.  And so, equal to 
Δ1, Δ2, Δ3 etc., we will have rectangle 1, rectangle 2, rectangle 3 etc. 

 
[3] Now make a rectangle equal to rectangle 1 + rectangle 2, using Theorem 5 above. 
 Next, make a rectangle equal to that rectangle plus rectangle 3, again using 
Theorem 5.  The result is a rectangle equal to Δ1 + Δ2 + Δ3.  Continuing this process as 
often as needed, we can make a rectangle equal to any number of triangles added 
together. 
 
[4] Let KLNP be the finished product, namely a rectangle whose area is equal to 

Δ1 + Δ2 + Δ3. 
 
[5] Extend KL to R so that LR = LN. 
 Bisect KR at O and make a circle with center O and radius OR. 
 Extend NL to Q on the circle's circumference. 
 
[6] Now £QL = KL ⋅ LR  (Ch.2, Thm.6) 
 
[7] But KL⋅LR = Δ1 + Δ2 + Δ3 (Step 4) 
 
[8] So £QL = Δ1 + Δ2 + Δ3  (putting together Steps 6 & 7) 
 
[9] i.e. £QL = ABCDE  (ABCDE is composed of those 3 triangles) 
 
So if we build a square on QL, it will be equal in area to the figure ABCDE. 
 
Q.E.F. 
 
 
 
 
THEOREM 7 Remarks 
 
 
1. This theorem obviously does not enable us to make a square equal to any plane 
figure, but only to a rectilineal figure.  The construction requires us to resolve the given 
figure into triangles, which we can’t do if we are given, for example, a circle. 
 
2. To make a square equal to a given rectangle, we can skip right down to Step 5 in 
the construction and start making our semi-circle.  There is no need to divide the 
rectangle into triangles. 
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THEOREM 7 Question 
 
 
 
ABCD is an isosceles trapezium, which means 
that AB = CD and BC║AD.  Let BE and CF each 
be drawn perpendicular to BC.  Supposing that 
 AE = 10 feet long, 
 BE = 18 feet long, 
 EC = 30 feet long, 
find out how long is the side of a square with an area equal to the area of trapezium 
ABCD. 
 Start by noticing that BCEF is in fact a rectangle (which you can prove because 
BC║AD).  Then prove that ΔABE ≅ ΔDCF.  Then use the Pythagorean Theorem to 
determine the length of BC.  Having done that, you will be able to calculate the areas of 
all the triangles in the trapezium.  Adding these together, you will have the area of the 
trapezium itself, and taking the square root of that area, you should be able to find the 
length of the side of the square equal to ABCD. 
 
 
 
THEOREM 8:  An isosceles triangle has less perimeter than any other triangle 
under the same height and on an equal base. 
 
 
This theorem, along with Theorems 9 and 10, is interesting in its own right, but I include 
all of them here for the sake of the upcoming Theorem 11 ... 

 Suppose ABC is an isosceles 
triangle.  Draw AP║BC.  Let ARK be any 
other triangle in the same parallels (slid 
over, if necessary, until its vertex 
coincides with vertex A of rABC), and 
let its base RK be equal to BC – thus the 
two triangles have equal areas.  
Nonetheless, I say that the perimeter of 
ΔABC is less than the perimeter of ΔARK. 
 
 

[1] Cut off  BG = RC.  Join AG.  Thus it is evident that rARG is also isosceles. 
 
[2] Now GC = BC – BG  (obviously) 
 but BC = RK   (given) 
 and BG = RC   (we made it so) 
 so GC = RK – RC 
 i.e. GC = CK 
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[3] Thus if we extend AC to E so that  AC = CE  as well, it is obvious that AKEG is a 
parallelogram, since AC = CE and GC = CK. 
 
[4] Now EK + AK > AE  (since AKE is a triangle) 
 or GA + AK > 2AC  (GA = EK, opp. sides of a parallelogram) 
 or GA + AK > BA + AC  (BA = AC) 
 thus RA + AK > BA + AC  (GA = RA; Step 1:  rARG is isosceles) 
 
[5] If we now add the lines RK and BC, given as equal, to either side of this 
inequality, we get 
 RA + AK + RK > BA + AC + BC 
which is to say that the perimeter of rARK is greater than that of rABC. 
 
Q.E.D. 
 
 
 
THEOREM 9:  Given any quadrilateral which is not equilateral, how to make an 
equilateral quadrilateral with the same area but less perimeter. 
 
Suppose ABCD is a quadrilateral, but it is not equilateral.  The following steps will make 
an equilateral quadrilateral equal to it, but having less perimeter. 

 
[1] Join any diagonal, say AC. 
 Draw WBX and YDZ parallel to AC. 
 Draw FCG and EAG perpendicular to WX. 
 Thus EFGH is a rectangle. 
 
[2] Bisect its sides at K, L, M, N.  Join KM and 
join NL thus cutting EFGH into four identical 
rectangles, and forming at the same time the 
obviously equilateral quadrilateral KLMN (whose 
sides are not joined in the diagram, in order to 
avoid clutter). 
 
 

[3] Now it is evident that rAKC is isosceles, and so too rAMC. 
 Thus rAKC = rABC, but has less perimeter (Ch.2, Thm.8) 
 and rAMC = rADC, but has less perimeter (Ch.2, Thm.8) 
 so quadrilateral AKCM = quadrilateral ABCD, but has less perimeter 
 
[4] Again it is clear that rKLM is isosceles, and so too rKNM. 
 Thus rKLM = rKCM, but has less perimeter (Ch.2, Thm.8) 
 and rKNM = rKAM, but has less perimeter (Ch.2, Thm.8) 
 so quadrilateral KLMN = quadrilateral AKCM, but has less perimeter 
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[5] Putting together Steps 3 & 4, it is clear that quadrilateral KLMN equals 
quadrilateral ABCD, but has less perimeter.  And KLMN is equilateral. 
 
Q.E.F. 
 
 
THEOREM 9 Remark 
 
It is of course possible that ABC should be isosceles, and thus AKC would have the same 
perimeter as ABC, coinciding with it, and not less perimeter.  But that does not affect the 
proof, since ABCD has to have some unequal adjacent sides, being given as not 
equilateral. 
 
 
 
 
THEOREM 10:  Any square of the same area as a rhombus has less perimeter 
than the rhombus. 

 
Let ABCD be a rhombus.  Then the square 
which has the same area as it must have a 
lesser perimeter.  To see why, simply 
 
[1] Draw DG perpendicular to AD.  
Clearly DG is less than DC, the side of the 
rhombus, since DC is the hypotenuse in 
right triangle DGC.  So extend DG to E so 

that DE = DC, the side of the rhombus, and complete square DEKA.  Extend AB and DC 
to L and M on the uppermost parallel. 
 
 [2] DEKA is a square with the same perimeter as rhombus ABCD, because they both 
have four sides equal to AD. 
 But DEKA = ALMD (parallelograms on same base, under same height) 
 and ALMD > ABCD (whole is greater than part) 
 so DEKA > ABCD 
 
[3] Now any square of less area than DEKA has less perimeter than it. 
 But the square equal to ABCD has to be of less area than DEKA (by Step 2). 
 Therefore the square equal to ABCD has less perimeter than DEKA, 
 i.e. less perimeter than ABCD. 
 
Q.E.D. 
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THEOREM 11:  A square has the least perimeter of all quadrilaterals with the 
same area, and the greatest area of all quadrilaterals with the same perimeter. 
 
 
 

PART ONE:  Suppose you have a square S and any other 
non-square quadrilateral A having the same area.  Then 
the perimeter of S is less than the perimeter of A.  Proof: 
 
[1] If A is a rhombus, then it is clear that square S has 
less perimeter, since the two of them have equal areas 
(Thm.10). 
 

[2] If A is not a rhombus, and thus is not equilateral, then make an equilateral 
quadrilateral R with the same area as A but less perimeter (Thm.9).  If R happens to be a 
square, then since it has the same area as square S, it will be identical to it, and thus again 
it is clear that S, just like its twin R, must have less perimeter than A. 
 
[3] If R is a mere rhombus, then it is clear that square S has less perimeter than it, 
since they have equal areas (Thm.10).  But R was made with less perimeter than A.  
Therefore S has still less perimeter than A.    Q.E.D. 
 
 
 

 
PART TWO:  Now suppose you have a square S and any 
other non-square quadrilateral P having the same 
perimeter.  Then the area of S is greater than the area of 
P. 
 
Make square E equal in area to P (Thm.7).  Since square 
E is equal to P, it has a lesser perimeter than P (by Part 

One above).  But square S has a perimeter equal to that of P, and thus has a greater 
perimeter than that of square E.  But a square with a greater perimeter has a greater area.  
So S is greater than E, and therefore is greater than P. 
 
 
Q.E.D. 
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THEOREM 11 Remarks 
 

1. We have seen that a rhombus can be made with the 
same area as any non-equilateral quadrilateral, while using 
less perimeter.  It is easy to see that a rectangle can be made 
with an area equal to any rhombus, while using less perimeter 
(just take the rectangle on the same base and under the same 

height and you will see it – remember that a hypotenuse is the longest side of any right 
triangle).  Now in Theorem 11 we see that the square (which is equilateral and right 
angled) contains the maximum quadrilateral area for any perimeter, and also that it has 
the minimum perimeter for any given quadrilateral area. 
 It can similarly be proved (in fact, more easily), using Theorem 8, that the 
equilateral triangle has, among triangles, the maximum area for a given perimeter, and it 
also has, among triangles, the minimum perimeter for a given area. 
 There is a lesson here:  the more uniform the rectilineal figure is, the greater an 
area it can encompass with a given perimeter, and the less perimeter it will need to 
encompass a given area. 
 
 

 
2. But what about comparing the 
equilateral triangle and the square?  Which 
one of them makes “better” use of a given 
perimeter?  Which one holds more area for a 
given perimeter?  Let’s see.  Say equilateral 
triangle ABC and square SQUR each have a 
perimeter of 12 inches. 

 Then SR = 3 
 and AB = 4. 
 
Drop CE at right angles to AB. 
Since CB is the hypotenuse in ΔCEB, thus CB > CE. 
 Make ED = CB, so now ED = 4. 
 Complete square AGKB. 
Since ΔABD > ΔABC 
thus 2ΔABD > 2ΔABC 
so AGKB > 2ΔABC,  since AGKB is equal to 2ΔABD, being a parallelogram on the 
same base with rABD and under the same height.  But AGKB, being a square whose 
side is 4 inches, has an area of 16 square inches.  Therefore ΔABC has an area less than 
half of that, i.e. ΔABC is less than 8 square inches. 
 On the other hand, square SQUR has an area greater than 8 square inches; since 
its side is 3 inches, it has an area of 9 square inches. 
 So when a square and an equilateral triangle have the same perimeter, the square 
has a greater area. 
 There is another lesson here:  the greater the number of sides in the uniform 
rectilineal figure, the more area it can hold with a given perimeter. 
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3. If among rectilineal figures those which are more uniform and have a greater 
number of sides can hold more area within a given perimeter, what plane figure would 
hold the most area within a given perimeter? 
 
 
THEOREM 12:  How to extend a straight line so that the square on the original 
line is equal to the rectangle contained by the whole new line and the extension. 
 

Suppose you had a straight line AS, and you 
want to extend AS to some point B so that 
 £AS = AB · BS 
Here’s how to do it: 
[1] Draw any square ASKG. 
[2] Bisect AS at C. 
[3] Join CG; join CK. 
 

[4] Now, AC = CS  (each is half of AS) 
 and AG = KS  (being two sides of square ASKG) 

and ∠CAG = ∠CSK (each is a right angle in square ASKG) 
so the corresponding sides of ΔCAG and ΔCSK are equal. (Side-Angle-Side) 
 
[5] So CG = CK  (being corresponding sides of ΔCAG and ΔCSK) 
 Thus the circle around C as center and with radius CG will pass through both G 
and K.  Draw it and call the points where it cuts AS extended “D” and “B”. 
 
[6] Since SK is perpendicular to DB, the diameter of the circle, therefore 

 £SK = DS⋅BS  (Ch.2, Thm. 6) 
 
[7] But £SK = £AS  (SK = AS, being two sides of square ASKG) 
 So £AS = DS⋅BS  
 
[8] Now CD = CB  (being radii of the circle) 
 and CA = CS  (each is half of AS) 
 so DA = SB  (being remainders of equals with equals subtracted) 
 so DA + AS = AS + SB (adding the same thing, AS, to both sides) 
 i.e. DS = AB 
 
[9] But £AS = DS⋅BS  (Step 7) 
 so £AS = AB⋅BS (DS = AB; Step 8) 
 
Q.E.F. 
 
Line ASB is cut at S in a famous ratio called “The Golden Section,” which we will learn 
more about in Chapter 6.  In the next chapter, we will need this construction to make a 
regular pentagon. 
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“HOOK”:  MARION’S THEOREM. 
 
 
In 1993 Mathematics Teacher published this interesting theorem:  Take any triangle 
ABC, and cut each side into three equal segments.  Then join each vertex to the two 
section-points on the opposite side.  This will form a hexagonal figure in the middle.  
This hexagonal figure has an area exactly one tenth that of the whole triangle.  Similar 
theorems result from cutting the opposite sides into other odd-numbered portions. 
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DEFINITIONS 
 
 
 
 
 
1.  EQUAL CIRCLES are those with equal radii. 
 
 
 
 
2.  A CHORD of a circle is any straight line joining two points on 
its circumference. 
 For example, KD is a chord. 
 

 
 
 
 
3.  An ARC of a circle is any portion of its circumference. 
 For example, ARC is an arc. 
 
 
 

 
 
4.  The side of a circular arc on which lies the straight line joining its endpoints is its 
CONCAVE side.  The other side is its CONVEX side. 
 For example if  FH, the straight line joining the 
endpoints of arc FGH, lies below FGH, then the underside 
of arc FGH is concave, and its top side is convex. 
 
 
 

 
5.  A STRAIGHT LINE TANGENT TO A CIRCLE is one 
which touches the circle at some point but does not go inside it 
when it is extended in either direction. 
 For example, ATB is tangent to the circle at T. 
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6.  Two CIRCLES EXTERNALLY TANGENT TO EACH 
OTHER are those which touch each other at some point on 
their convex sides, but do not cut into each other there.  A 
CIRCLE INTERNALLY TANGENT TO ANOTHER 
CIRCLE is one whose convex side touches the concave side 
of another circle at some point without cutting out of it there. 
 For example, the two circles outside each other are 
externally tangent at X, and the circle inside the other circle 
is internally tangent to it at N. 
 
 

7.  A SEGMENT OF A CIRCLE is a figure 
contained by any arc of the circle’s circumference 
and the straight line (called the BASE of the 
segment) joining the endpoints of that arc. 
 For example, S is a segment of a circle, and 
so is G. 

 
 
 
8.  An ANGLE IN A SEGMENTis the angle joining the 
endpoints of a segment's base to any point on its 
circumference. 
 For example, CDE is an angle in a segment. 
 
 
 

 
9.  A rectilineal angle drawn inside a circle 
is said to STAND ON the arc that it cuts off, 
and to be AT THE CENTER if its vertex 
lies on the center of the circle, but AT THE 
CIRCUMFERENCE if its vertex lies on the 
circumference of the circle. 
 For example, angle HKL stands on 

arc HL, and it is at the center of the circle.  Angle MNO stands on arc MO, and it is at 
the circumference. 
 
 
 
10.  A rectilineal figure is said to be INSCRIBED IN A CIRCLE 
when the vertex of every one of its angles lies on the circle's 
circumference.  When this happens, the circle is said to be 
CIRCUMSCRIBED AROUND A RECTILINEAL FIGURE. 
 For example, ABCDE is inscribed in a circle, and the 
circle is circumscribed around it. 
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11.  A rectilineal figure is said to be CIRCUMSCRIBED 
AROUND A CIRCLE when every side of it is tangent to the 
circle.  When this happens, the circle is also said to be 
INSCRIBED IN A RECTILINEAL FIGURE. 
 For example, GHKLM is circumscribed around a circle, 
and a circle is inscribed in it. 
 
 
 
12.  A REGULAR POLYGON is one all of whose sides are equal and all of whose angles 
are equal. 
 For example, a square, if we call it a polygon (often the name "polygon" is 
reserved for rectilineal figures having more than four sides), is a regular polygon, since 
all four of its sides are equal AND all four of its angles are equal.  On the other hand, a 
rhombus is not a regular figure, since not all of its angles are equal, although all its sides 
are equal.  Likewise a rectangle, although its four angles are all equal, is not regular, 
since not all its sides are equal.  A regular polygon must be both equilateral and 
equiangular. 
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THEOREMS 
 
THEOREM 1:  How to find the center of a circle. 
 
 

Up till now, we have been making our own circles, and so 
we started with the center.  But what if I make my own 
circle, and then give it to you without showing you where 
the center is that I used to make it?  Can you find the 
center?  Here is the way to do it: 
 
[1] Pick any two points A and B on the circumference. 
 
[2] Join AB, and bisect it at C. 

 
[3] Draw CD perpendicular to AB, extend it to E, and bisect DE at M. 
 
Then M is the center of the circle.  Why?  First of all, the center has to lie somewhere 
along DE, for if it did not, but was somewhere else like the point X, then 
 
[4] Join XA, join XC, join XB. 
 
[5] Now AX = XB (X is supposedly the center of the circle) 
  AC = CB (we bisected AB at C) 
  CX is common to ΔACX and ΔBCX 
 so the corresponding angles of ΔACX and ΔBCX are equal, 

because of the Side-Side-Side Theorem. 
 
[6] So ∠ACX = ∠BCX (being corresponding angles of ΔACX & ΔBCX) 
 But these two angles are adjacent, and therefore they are both right angles. 
 So ∠ACX is a right angle. 
 
[7] Thus ∠ACX = ∠ACD (since both are right angles; we made ∠ACD right) 
 But that is impossible, since ∠ACD is only part of ∠ACX. 
 
[8] Therefore our initial assumption, namely that the center of the circle does not lie 
on the line DE, is itself impossible.  So the center of the circle does lie on DE 
somewhere. 
 
[9] Since the center of the circle is equidistant from D and E, it must lie at the 
midpoint of DE, that is, at M. 
 
Q.E.F. 
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THEOREM 1 Remarks 
 
 
1. From this Theorem it is plain that Whenever a line bisects any chord of a circle at 
right angles, the center of the circle must lie on that line. 
 
2. Plainly, then, if the perpendicular bisectors of two different chords in a circle 
intersect each other at one point, that point must be the center. 
 
 
 
 
THEOREM 2:  Any chord of a circle falls entirely inside that circle. 
 

 
 
Let A and B be any two points on a circle.  Then every point 
between A and B lies inside the circle.  Proof: 
 
[1]  Choose any random point R along AB.  Join CR. 
 

 
[2]  Thus ∠CRA > ∠CBR  (∠CRB is exterior to rCRB) 
 but ∠CAR = ∠CBR  (rACB is isosceles) 
 thus ∠CRA > ∠CAR 
and so the sides opposite these angles in rCAR are unequal in the same order, that is 
  CA > CR 
 
[3] So CA, the radius of the circle, is greater than CR.  Therefore R lies inside the 
circle.  Thus every point along AB lies inside the circle. 
 
Q.E.D. 
 
 
THEOREM 2 Remarks 
 
 
1. This Theorem is rather obvious for big chords drawn inside the circle, but what 
about very small ones?  The smaller the chord is, the closer it gets to the circumference of 
the circle, and the less distinguishable from the circumference it becomes.  Without this 
Theorem, we might think that very small chords could actually coincide with a very small 
part of the circumference, or that a very small portion of a circle is no different from a 
straight line. 
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2. A corollary of this Theorem:  no straight line can have more than two points in 
common with the circumference of a circle.  So a straight line cannot cut the 
circumference of a circle more than twice. 
 
 
 
 
THEOREM 3:  If a straight line through the center of a circle bisects a chord not 
drawn through the center, it cuts it at right angles. 

 
 
 
Suppose AB passes through C, the center of a circle, and it 
also bisects chord DE at M.  Then AMB is at right angles to 
DME.  Here's why: 
 
 
 

 
[1] Join CD; join CE. 
 
 
[2] Now CD = CE (they are radii) 
 and MD = ME (it is given that M bisects DE) 
 and MC is common to ΔCMD and ΔCME 
 so the corresponding angles of ΔCMD and ΔCME are equal (Side-Side-Side). 
 
[3] Thus ∠CMD = ∠CME, being corresponding angles of ΔCMD and ΔCME. 
 But these two angles are adjacent; therefore they are each right angles. 
 Thus AMB is at right angles to DME. 
 
Q.E.D. 
 
 
 
THEOREM 3 Question 
 
 
Why must we stipulate that the bisected line is not through the center? 
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THEOREM 4:  If a straight line through the center of a circle cuts a chord at 
right angles, it bisects it. 
 

 
 
 
Suppose AB passes through C, the center of a circle, and 
also cuts DE through M at right angles.  Then DM = ME.  
Here's why: 
 
 
 
 

 
[1] Join CD; join CE. 
 
[2] Now CD = CE  (they are radii) 
 and ∠CDM = ∠CEM (because ΔCDE is isosceles) 
 and ∠CMD = ∠CME (they are given as right angles) 
 so the corresponding sides of ΔCMD and ΔCME are equal, 
  because of the Angle-Angle-Side Theorem. 
 
[3] Thus DM = ME  (being corresponding sides of ΔCMD & ΔCME) 
 
 
Q.E.D. 
 
 
 
 
 
THEOREM 5:  If two straight lines in a circle cut each other, but their 
intersection is not the center of the circle, then they do not bisect each other. 
 
 

Imagine that AB and CD are drawn inside a circle, and 
they cut each other at a point X, but X is not the center 
of the circle.  Then X cannot bisect both AB and CD.  
Here's what happens if you suppose it does: 
 
[1] Assume CX = XD 
 and  AX = XB 
 
[2] Find M, the center of the circle. (Thm. 1) 
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[3] Join MX. 
 
[4] Now  ∠CXM is a right angle, since M is the center and X is supposedly the 
midpoint of CD (Thm. 3). 
 
[5] But ∠BXM is a right angle, too, since M is the center and X is supposedly the 
midpoint of  AB (Thm. 3). 
 
[6] So  ∠CXM = ∠BXM, 
 that is, the whole is equal to the part, which is impossible. 
 So it is also impossible for AB and CD to bisect each other. 
 
Q.E.D. 
 
 
 
THEOREM 5 Questions 
 
 
1. What if one of the lines is a diameter?  Does that affect the proof? 
 
2. Can one of the two lines (which cut each other not through the center) be bisected 
 by the other? 
 
 
 
 
THEOREM 6:  If two circles cut each other, they cannot have the same center. 
 
 

 
 
Conceive of two circles, circle A and circle B, 
that cut each other at some point C.  Then they 
have different centers.  Why? 
 
 
 
 

[1]  Let M be the center of circle A.  Join MC. 
 
[2]  Since circles A and B cut each other, each passes into and back out of the other, so 
choose any point P on circle B that is outside circle A.  Join MP. 
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[3]  Since M is inside circle A (being its center), and P is outside circle A (that is how we 
chose it), thus MP must pass out of circle A at some point, X.  Thus MX is only part of 
MP, and so 
  MX < MP 
 but MX = MC  (these being radii of circle A) 
 so  MC < MP 
 
[4]  Hence MC and MP, being unequal, are not radii of circle B.  And thus M cannot be 
the center of circle B.  But M is the center of circle A.  Therefore circles A and B have 
different centers. 
 
Q.E.D. 
 
 
 
 
THEOREM 6 Remarks 
 
 
The flip side of this Theorem is this:  If two circles DO have the same center, then they 
don't cut each other. 
 
 
 
THEOREM 7:  If two circles touch one another, then they cannot share the same 
center. 
 

 
  
Imagine circle A touching circle B internally at a 
point T.  These two circles cannot possibly have the 
same center.  Why not? 
 
[1]  Let M be the center of circle A.  Join MT. 
 
 

[2]  Since circle A touches circle B inside it, then at least some of circle B must be 
outside of circle A.  Choose any point P on circle B that is outside circle A.  Join MP. 
 
[3]  Since M is inside circle A (being its center), and P is outside circle A (that is how we 
chose it), thus MP must pass out of circle A at some point, X.  Thus MX is only part of 
MP, and so 
  MX < MP 
 but MX = MT  (these being radii of circle A) 
 so MT < MP 
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[4]  Hence MT and MP, being unequal, are not radii of circle B.  And thus M cannot be 
the center of circle B.  But M is the center of circle A.  Therefore circles A and B have 
different centers. 
 
Q.E.D. 
 
 
 
THEOREM 7 Remarks 
 
 
1. Notice that the proof of the Theorem is only about internally tangent circles.  
What about externally tangent circles?  Can they have the same center?  Obviously not.  
If they are outside each other, and touch each other at some point but don't cut into each 

other there, then clearly they have different centers, because each circle's 
center is inside it, and therefore outside the other one.  Besides, nothing 
prevents us from making an argument similar to that above for the case 
of externally tangent circles. 
 

2. Taking Theorems 6 and 7 together, we see now that If two distinct circles DO 
have the same center, then their circumferences do not have any points in common at all.  
Circles which have the same center are called "concentric" circles – like the circular 
waves on the surface of a pond into which we have dropped a pebble. 
 
 
 
THEOREM 8:  If three lines drawn from one point inside a circle to three points 
on its circumference are equal to each other, then that point is the center. 
 

 
Imagine a circle with a point M inside it, and three 
points along the circumference, A, B, C.  If  MA = 
MB = MC, then M has to be the center of the circle.  
Now the proof. 
 
 
[1] Bisect BC at E; join ME. 
 
[2] Bisect AC at D; join MD. 

 
 
[3] Now AM = MC (we are given that the three original lines from M are equal) 
 and AD = DC (we bisected AC at D) 
 and MD is common to ΔAMD and ΔCMD 
 so the corresponding angles of ΔAMD and ΔCMD are equal (Side-Side-Side) 
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[4] Thus ∠ADM = ∠CDM, being corresponding sides of ΔAMD and ΔCMD.  But 
these two angles are also adjacent; therefore they are right angles. 
 
[5] So MD is at right angles to AC (Step 4) and it also bisects AC (Step 2), and 
therefore the center of the circle lies somewhere along MD, as we saw in the way to find 
a center (Ch.3, Thm.1). 
 
[6] But likewise we can prove that the center has to lie along ME somewhere, since 
ME will also be at right angles to BC, and it bisects it. 
 
[7] Therefore the center of the circle is a point common to both MD and ME.  But M 
is the only point common to ME and MD (since two different straight lines can never 
have more than one point in common, because they cannot cut each other twice).  
Therefore M is the center of the circle. 
 
 
Q.E.D. 
 
 
 
 
THEOREM 8 Remarks 
 
 
1. Why 3 lines?  If 2 lines drawn from one point to the circumference of a circle are 
equal, isn't that enough to conclude that the point is the center?  No.  Just look back at the 
diagram for this Theorem.  AD = DC, and yet D is not the center of the circle.  3 is the 
minimum number of equal lines required to conclude that we have found the center, and 
4 is superfluous. 
 It often happens in mathematics (and elsewhere in life) that Three is enough.  We 
need at least 3 straight lines to make a rectilineal figure – two won't do.  And things often 
come in threes.  For example, there are three basic relationships between two comparable 
quantities:  greater than, less than, equal to.  And accordingly there are three main species 
of triangle (equilateral, isosceles, and scalene), and three species of angle (right, obtuse, 
and acute).  If you are watchful for it, you will see, over and over again, that important 
things often come in threes. 
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2. Can three equal lines be drawn to a circle from a point outside the circle?  No.  It 
will be possible to draw two equal lines from it to the circle, but it will be impossible to 
draw three equal lines to the circle.  Assume for a moment 
that a point P has been chosen outside a circle, and PE = PG 
= PH.  To see the impossibility of this, draw from center K 
the lines KE, KG, KH.  Now, if PGK happens to be a single 
straight line, then 
 KG = HK  (radii) 
and GP = PH  (they are assumed equal) 
so KG + GP = PH + HK 
i.e. KP = PH + HK 
which is impossible, since PHK is a triangle, and so side KP 
has to be less than the sum of the remaining sides. 
 
 On the other hand, if PGK is not a straight line, then 
join PK.  In this scenario, PGK is a triangle instead of a 
straight line, and 
 KG = KH  (radii) 
and GP = HP  (they are assumed equal) 
and KP is common to ΔPGK and ΔPHK 
so ΔPGK ≅ ΔPHK (Side-Side-Side) 
which is impossible, since then these two triangles would 
have equal areas, whereas ΔPGK is only part of ΔPHK. 
 
 
 
 
THEOREM 9:  The circumferences of two distinct circles cannot have more than 
two points in common. 

 
Imagine two different circles, circle 1 and circle 2.  The 
circumferences of these two circles cannot have more than 
two points in common.  Why not? 
 
[1]  Suppose they have two points in common, namely A and 
B.  Now choose any third point P on the circumference of 
circle 1. 
 
[2]  Join MA, MB, MP. 

 
[3]  Since circles 1 and 2 have common points at A and B, therefore they cannot have the 
same center (Thms. 6 & 7).  But M is the center of circle 1.  Therefore M is not the center 
of circle 2. 
 

K

H

P

E

G

K

H

P

E

G

A

B

M

P

1

2



 107 

[4]  Now if three equal straight lines from M fall upon the circumference of a circle, then 
M will be its center (Thm.8).  But M is not the center of circle 2 (Step 3), and hence three 
equal straight lines cannot be drawn from M to the circumference of circle 2. 
 
[5]  Since MA, MB, MP are three equal straight lines from M (being radii of circle 1), 
hence they do not all fall on the circumference of circle 2 (Step 4).  But MA and MB do 
fall on the circumference of circle 2 (given).  Therefore MP does not. 
 
[6]  Therefore any random point P on circle 1 other than A and B cannot lie on circle 2.  
Therefore circles 1 and 2 cannot have more points in common than A and B. 
 
Q.E.D. 
 
 
 
THEOREM 9 Question 
 
So the maximum number of times two circles can cut each other is twice.  Is it possible 
for two circles to cut each other only once? 
 
  
 
 
THEOREM 10:  If he circumferences of two circles have two points in common, 
then they cut each other at those two points. 
 

Suppose the circumferences of circles 1 and 2 have two 
points in common, namely T and P.  I say the circles cut 
each other, rather than touch each other, at these two 
points. 
 
[1]  Join TP and bisect it at M.  Draw a perpendicular to 
TP at M, cutting circle 1 at A and B, and circle 2 at C and 
D. 
 
[2]  Since TP is a chord in both circles, therefore it lies 
inside both (Thm.2).  Thus the circles overlap each other. 
 

[3]  Since TP is a chord in both circles, therefore its perpendicular bisector is a diameter 
of both circles (Thm.1).  Since TM is perpendicular to these diameters, therefore the 
square on TM equals the rectangles contained by the segments into which M divides the 
diameters (Ch.2, Thm.6), i.e. 
 
  £TM  =  AM · MB 
 and £TM  =  CM · MD 
 thus AM · MB  =  CM · MD. 
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[4]  Now MB cannot equal MD, since then B and D would be the same point, and thus 
circles 1 and 2 would have three points in common, which is not possible (Thm.9).  
Therefore they are unequal.  Suppose 
  MB < MD. 
But then, since the rectangles are equal, it is necessary that 
  AM > CM. 
 
[5] Since MA > MC (Step 4), thus point A on circle 1 lies outside circle 2. 
 Since MB < MD (Step 4), thus point D on circle 2 lies outside circle 1. 
Thus each circle falls partly outside the other. 
 
[6]  Since circles 1 and 2 partly overlap (Step 2) and each falls partly outside the other 
(Step 5), therefore each cuts into and out of the other.  Since T and P are the only points 
shared by their circumferences, therefore these are the points at which they cut one 
another. 
 
 
 
THEOREM 10 Remarks 
 
A corollary to this Theorem, or another way of stating it, is that If two circles touch one 
another, whether internally or externally, their circumferences have no point in common 
other than the one point of contact. 
 
 
 
THEOREM 11:  If one circle is internally tangent to another, the straight line 
joining their centers (when extended) passes through their point of contact. 
 

 
Circle 1 is internally tangent to circle 2 at point C.  Find A, the 
center of circle 2, and join AC.  I say that the center of circle 1 
lies along AC. 
 
[1]  Inside circle 1, pick any random point P not on line AC.  
Join AP and extend it until it cuts circle 1 at D and circle 2 at 
E.  Join PC. 
 

 
[2] Now AP + PC > AC  (since APC is a triangle) 
 but AC = AE   (being radii of circle 2) 
 so AP + PC > AE 
 or AP + PC > AP + PE  (AE is AP + PE) 
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[3] So PC > PE   (subtracting AP from each side in Step 2) 
 but PE > PD   (whole and part) 
 so PC > PD 
 
[4] Thus PC and PD, being unequal, are not radii of circle 1, and therefore P is not 
the center of circle 1.  Thus no point which is not on AC can be the center of circle 1.  
Therefore the center of circle 1 lies along AC. 
 
[5] Hence the straight line joining center A and the point of contact, C, passes 
through the center of circle 1.  And therefore the straight line joining the centers of the 
circles, when extended, passes through the point of contact. 
 
Q.E.D. 
 
 
 
THEOREM 12:  If two circles are externally tangent, the straight line joining 
their centers passes through their point of contact. 
 

 
Circle 1 and circle 2 are externally tangent at 
point C.  Find A, the center of circle 1, and B, 
and join AC, extending it through circle 2 
until it meets it again at point B.  I say that the 
center of circle 2 lies along CB. 
 
 

[1]  Inside circle 2, pick any random point P not on line CB.  Join AP, which must pass 
out of circle 1 at a point (D), and into circle 2 at another point (E). 
 
[2] Now AC + PC > AP  (APC is a triangle) 
 but AC = AD   (these being radii of circle 1) 
 so AD + PC > AP 
 or AD + PC > AD + DE + EP 
 
[3] So PC > DE + EP   (Subtracting AD from both sides) 
 Thus PC > PE   (Subracting DE from the lesser side) 
And so, being unequal, PC and PE are not radii of circle 2, and therefore P is not the 
center of circle 2.  Thus no point which is not on CB can be the center of circle 2.  
Therefore the center of circle 2 lies on CB. 
 
[4] Thus the straight line joining center A and the point of contact, C, passes through 
the center of circle 2 when extended.  That is, the line joining the centers passes through 
the point of contact. 
 
Q.E.D. 
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THEOREM 13:  In any circle, equal chords are equally distant from the center. 
 

 
 
Imagine a circle in which two equal chords, AB and CD, 
have been drawn.  Then the perpendiculars drawn to them 
from the center will be equal. 
 Find the center, M, and drop ME at right angles to 
AB, and MG at right angles to CD.  I say that ME = MG.  
Here's the proof: 
 
 

[1] First,  AE = EB, 
since ME is drawn from the center at right angles to AB (Ch.3, Thm.4). 

 
[2] So  EB = ½AB 
 So too  CG = ½CD 
 
[3] But  AB = CD (given) 
 so  EB = CG (the halves of equals are equal) 
 
[4] Therefore £EB = £CG (squares built on equal sides are equal) 
 
[5] So  £MB  –  £EB = £MB  –  £CG, 
 since this is subtracting equal squares from the same square. 
 
[6] But  £MB = £MC, 

since the squares on equal sides are equal, and MB = MC, since both are radii of 
the circle. 

 
[7] So  £MB  –  £EB = £MC  –  £CG, 
 putting together Steps 5 & 6. 
 
[8] But  £MB  –  £EB = £ME (Pythagorean Theorem) 
 and  £MC  –  £CG = £MG (Pythagorean Theorem) 
 
[9] Therefore £ME = £MG   (Putting together Steps 7 & 8) 
 
[10] So  ME = MG, 
 since the sides of equal squares have to be equal. 
So the perpendicular distances of equal chords from the center of the circle are equal. 
 
Q.E.D. 
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THEOREM 13 Remarks 
 
 
Why do we call the perpendicular distance between a point and a line the distance 
between them?  Because 1. there is only one perpendicular distance, and 2. it is the least 
distance. 
 
 
THEOREM 13 Questions 
 
 
Prove the converse, using the same diagram.  Given that ME = MG, i.e. that the 
perpendicular distances of chords AB and CD from the center are equal, prove that the 
chords themselves are equal. 
 
 
 
 
THEOREM 14:  The diameter is the longest chord inside a circle, and chords 
closer to the center are greater than those further away from it. 

 
 
 
Imagine a circle with diameter AB, whose midpoint C is 
therefore the center of the circle.  Now take any other 
chord RN inside the circle.  I say that AB > RN.  Why? 
 
[1] Join CR; join CN. 
 

 
[2] Now CR + CN > RN (since RCN is a triangle) 
 
 
[3] But CR = AC 
 and CN = CB  (since all these are radii of the circle) 
 
[4] So AC + CB > RN (putting together Steps 2 & 3) 
 i.e. AB > RN 
 
Q.E.D. 
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That's the first part of the Theorem.  For the next part, 
take any other chord DE, whose perpendicular distance 
from the center (namely CP) is greater than RN's 
perpendicular distance from the center (namely CG).  I 
say that RN > DE.  Why? 
 
 
 
 

[1] Join CD; join CE. 
 
[2] Now £CG < £CP, 
 since we are given that CG < CP, and a square on a lesser line is a lesser square. 
 
[3] Now whenever we subtract a lesser thing from something, it leaves a greater 
remainder than if we subtract something greater from it.  So if we subtract £CG from 
£CD, it leaves a greater remainder than if we subtract £CP from £CD.  That is, 
  £CD  –  £CG > £CD  –  £CP 
 
[4] But £CD = £CR, 
 since CD = CR, being radii of the circle, and the squares on equal lines are equal. 
 
[5] So £CR  –  £CG > £CD  –  £CP (putting together Steps 3 & 4) 
 
[6] But £CR  –  £CG = £RG  (Pythagorean Theorem) 
 and £CD  –  £CP = £DP  (Pythagorean Theorem) 
 
[7] So £RG > £DP    (putting together Steps 5 & 6) 
 
[8] i.e. RG > DP,  since the side of a greater square is greater. 
 Thus 2RG > 2DP,  since double a greater line remains greater than double the 
lesser line. 
 
[9] But 2RG = RN, 
 since CG is drawn from the center and at right angles to RN  (Ch.3, Thm.4). 
 Also 2DP = DE, for the same reason. 
 
[10] So RN > DE    (putting together Steps 8 & 9) 
 
Q.E.D. 
 
 
 
 
 
 

D
E

N

R

C

G

P



 113 

THEOREM 15:  A straight line drawn at right angles to the end of a circle's 
radius is tangent to the circle. 
 

 
Conceive of a circle with center C and radius CT, and TG 
drawn at right angles to CT. 
 I say that TG is tangent to the circle, i.e. that 
although it touches it at T it falls entirely outside the 
circle forever after, not cutting into the circle at all.  
Here’s why. 
 

 
[1]  Choose any random point P along TG other than T.  Join CP. 
 
[2]  Looking at triangle CPT, since angle CTP is right, therefore ∠CPT is acute. 
 
[3] Hence ∠CTP > ∠CPT 
 thus CP > CT  (opposite a greater angle is a greater side) 
 
[4] But CT is a radius of the circle.  Therefore, since CP is greater than a radius of the 
circle, P must lie outside the circle. 
 
[5]  But P is just a random point on TG other than T.  Hence every point on TG other than 
T itself lies outside the circle.  Therefore TG is tangent to the circle at T. 
 
Q.E.D. 
 
 
 
 
THEOREM 15 Remarks 
 
 
1. Will TG cut into the circle on the other side, namely to the right of CT?  No.  
Because ∠CTG is a right angle, therefore when we extend GT to the right, the angle 
adjacent to it will also be a right angle, and so the exact same proof will apply on the 
right side as well. 
 
2. We could state the Theorem another way:  a straight line drawn at right angles to 
a circle’s radius has one and only one point in common with the circumference of the 
circle, namely the endpoint of the radius to which it is drawn at right angles. 
 
3. Notice that this Theorem gives us an easy construction for a tangent to any point 
on the circumference of a circle:  if the point is T, merely find the center of the circle 
(Thm.1), say C, and join CT, and then draw a straight line at right angles to CT through 
point T. 
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THEOREM 16:  Any straight line drawn at less than a right angle to the end of a 
circle's radius cuts into the circle. 
 

 
 
 
Conceive a circle with center C, radius CA, and a straight 
line AS drawn at any acute angle CAS.  I say that AS cuts 
through the circle. 
 
 
 
 
 

[1]  Drop CP perpendicular to AS (extended, if need be). 
 
 
[2]  Extend AP to B so that AP = PB.  Join CB. 
 Since AP = PB 
 and CP is common 
 and ∠CPA = ∠CPB  (both being right) 
 thus rCPA ≅ rCPB  (Side-Angle-Side) 
 hence CB = CA 
Thus, since CB is equal to the radius CA and is drawn from the center C, CB is also a 
radius of the circle, and therefore B is on the circumference of the circle. 
 
 
[3]  But B lies along the line AS, and A is another point on AS on the circumference of 
the circle.  Therefore line AS (extended, if need be) joins two points on the circumference 
of the circle, and therefore it is a chord (Thm.2). 
 
 
Q.E.D. 
 
 
 
 
THEOREM 16 Remarks 
 
 
1. From this Theorem it follows that it is impossible to draw two tangents to a circle 
touching it at the same point.  For each and every point on the circumference of a circle, 
there is one and only one tangent, namely the straight line drawn through it at right angles 
to the radius drawn to it. 

C

A

B

P
S



 115 

2. This Theorem is truly surprising.  To see why, draw the tangent AT at right angles 
to CA, and draw a line AS making CAS an acute angle as close to a right angle as you 
like.  By the Theorem, AS must cut into the circle at A 
and out again at some other point (very close to A).  
Now there is a space between the circumference of the 
circle and the tangent AT all the way down to the point 
A.  And a straight line has no thickness, and so in a way 
it doesn't take up any space.  And yet we still can't find 
room to stick a straight line like AS in between the 
tangent and the circle without cutting into the circle! 
 
 
 
THEOREM 17:  How to draw a straight line tangent to any circle from any point 
outside it. 
 
If I give you a circle M, and a point P outside it, can you draw a line from P tangent to 
circle M?  Sure.  All you have to do is … 
 
 
[1] Find the center, C. 
 
[2] Join CP, cutting circle M at A, and draw another 
circle around C with radius CP. 
 
[3] Draw AB at right angles to PAC, cutting circle P at B. 
 
[4] Join CB, cutting circle M at D. 
 
[5] Join DP.  This line DP is in fact tangent to circle M.  Here's why: 
 
[6]  AC = CD  (being radii of circle M) 
 and CB = CP  (being radii of circle P) 
 and ∠ACB = ∠PCD (being in fact the same angle) 
so the corresponding angles of ΔACB and ΔPCD are equal (Side-Angle-Side) 
 
[7] So ∠CDP = ∠CAB (being corresponding angles of ΔACB & ΔPCD) 
 
[8] Thus ∠CDP is a right angle, 

since it equals ∠CAB, which we made a right angle. 
 
[9] But CD is a radius of circle M, and so DP, drawn at right angles to CD, is tangent 
to circle M  (Thm.15). 
 
Q.E.F. 
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THEOREM 18:  If a straight line is tangent to a circle, then the radius joined to 
the point of tangency is perpendicular to the tangent. 
 
 

Picture a circle with center C, to which 
straight line TN is tangent at T.  Then 
∠CTN is a right angle.  The proof: 
 
[1] Extend NT to M.  Since NT is 
tangent to the circle, therefore NTM does 
not cut the circle, but lies outside the circle. 
 

 [2] If ∠2 were less than a right angle, then TN would cut the circle at T, and so NTM 
would not be tangent to the circle (Thm.16).  But NTM is tangent to the circle, and 
therefore ∠2 is not less than a right angle. 
 
[3] If ∠2 were more than a right angle, then ∠1 would be less than a right angle 
(since together they add up to two rights), and so TM would cut the circle at T, and so 
NTM would not be tangent to the circle (Thm.16).  But NTM is tangent to the circle, and 
therefore ∠2 is not more than a right angle. 
 
[4] Since ∠2 is neither less than a right angle (Step 2), nor more than a right angle 
(Step 3), therefore it is a right angle.  That is, ∠CTN is a right angle. 
 
 
Q.E.D. 
 
 
 
THEOREM 18 Remarks 
 
 
1. We can now show that the two tangents to a 
circle from any one point R must be equal.  Let O be 
the center of a circle, and join RO.  Calling the tangents 
RA and RB, draw the lines OA and OB.  Now, ∠RAO 
= 90°, and likewise ∠RBO = 90° (by Theorem 18).  So 
ΔRAO and ΔRBO are both right triangles, and the 
Pythagorean Property applies. 
i.e. £RO = £OA + £RA (ΔRAO is a right triangle) 
or £RO = £OB + £RA  (since OA = OB, therefore £OA = £OB) 
but £RO = £OB + £RB  (ΔRBO is a right triangle) 
thus £RA = £RB   (since each is equal to £RO  –  £OB) 
so RA = RB. 
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2. We can see from Theorem 18 that If a straight line is drawn at right angles to a 
circle's tangent at the point of tangency, the line will pass through the center of the circle.  
Use the same diagram as in Theorem 18.  We are given that MTN is tangent at T, and we 
want to show that the perpendicular at T passes through the center.  Find center C and 
join TC.  Then by Theorem 18 TC is perpendicular to MTN.  Therefore the line 
perpendicular to MTN at the point of tangency passes through the center of the circle. 
 
3. Prove that there are only two tangents to a circle from a given point outside it. 
 
 
 
THEOREM 19:  An angle at the center of a circle is double an angle at the 
circumference if they stand on the same arc. 
 
 
 

Consider a circle with center M, and an 
angle AMB standing on arc AB, and another 
angle ACB also on arc AB but having its 
vertex C at the circumference instead of at 
the center.  Then, surprisingly, ∠AMB is 
double ∠ACB.  To see why, first join CM 
and extend it to D. 
 
Letting numbers designate angles, 
 

 
[1]  4 + 2  =  3 + 1 + 5  (4 + 2 is exterior to rBMC) 
 but 5  =  3 + 1   (rBMC is isosceles) 
 so 4 + 2  =  3 + 1 + 3 + 1 
 
[2] and 4  =  3 + 6   (4 is exterior to rAMC) 
 but 6  =  3    (rAMC is isosceles) 
 so 4  =  3 + 3 
 
[3] thus (3 + 3) + 2  =  3 + 1 + 3 + 1 (Steps 1 & 2) 
 thus 2  =  1 + 1   (subtracting 3 from each side twice) 
Hence angle 2 is double angle 1, i.e. ∠AMB is double ∠ACB. 
 
 
Q.E.D. 
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THEOREM 19 Remarks 
 
 
 
 
1. Does it make any difference if CM goes between 
the legs of the angles? 
 
 
 

 
 
2. The angle at the center and the angle at the 
circumference do not actually have to be on the same arc in 
order for the theorem to hold.  They need only be on equal 
arcs.  In a circle with center K let  arc EF = arc HG.  
Choose a random point R on the circumference and draw 
RH and RG.  Then it is still true that 
 ∠EKF = 2∠HRG 
Start by drawing KH and KG.  Now, since the arcs EF and HG are equal, therefore if pie-
piece EKF is rotated clockwise so that E is on G, then also F will be on H.  Therefore KE 
and KG will coincide while KF and KH also coincide.  In other words, ∠EKF will 
coincide with ∠GKH.  Therefore 
 ∠EKF = ∠GKH 
but 2∠HRG = ∠GKH (Thm.19) 
so 2∠HRG = ∠EKF 
 
 
 
 
 
THEOREM 20:  In a circle, angles at the circumference standing on the same 
arc are equal. 
 
 

Imagine a circle with center M, and let ARC be any arc of 
its circumference.  Now let ∠1 and ∠2 be any two angles 
at the circumference standing on arc ARC.  I say ∠1 = ∠2. 
 Join MA and join MC to find out why. 
 
 
[1] ∠1 = ½∠AMC, 
since ∠1 is at the circumference, ∠AMC is at the center, 
and they stand on the same arc (Thm.19). 
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[2] ∠2 = ½∠AMC, 
since ∠2 is at the circumference, ∠AMC is at the center, and they stand on the 
same arc (Thm.19). 

 
[3] Therefore ∠1 = ∠2, 
 since each is half of ∠AMC (Steps 1 & 2). 
 
Q.E.D. 
 
 
THEOREM 20 Remarks 
 
1. As with the last theorem, this Theorem does not depend 
on the angles at the circumference being on the same arc; they 
need only be on equal arcs.  So if  arc EF = arc HG, and P and R 
are points chosen on the circumference, then 
 ∠EPF = ∠HRG 
Take center K, and draw KH and KG. 
Now ∠HRG = ½∠HKG (Thm.19) 
But ∠EPF = ½∠HKG (since arc EF = arc GH; Thm.19, Remark 2) 
So ∠EPF = ∠HRG 
 
 
2. The converse of this last Remark is also true:  The arcs 
on which stand equal angles at the circumference are equal.  
That is, 
if ∠EPF = ∠HRG 
then arc EF = arc HG. 
If you doubt it, assume for a moment that the arcs are not equal; 
suppose arc EF is greater than arc HG.  Therefore a part of arc 
EF will be equal to arc HG, say 
 arc EL = arc HG 
then ∠EPL = ∠HRG (by Remark 1 just above) 
but ∠EPF = ∠HRG (given) 
so ∠EPF = ∠EPL, 
which is impossible, since the whole never equals a part of itself.  So it is impossible that 
arc EF should be greater than arc HG.  Likewise HG cannot be greater than EF.  
Therefore the arcs are equal. 
 
 
3. Theorem 20 is just as true if the two angles are not in the same circle, but instead 
are in two different but equal circles 1 and 2.  That is, if ∠X at the circumference of 
circle 1 stands on arc A, and ∠Z at the circumference of circle 2 stands on arc B, and arc 
A = arc B, then also ∠X = ∠Z. 
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THEOREM 21:  The opposite angles of a quadrilateral inscribed in a circle add 
up to two right angles. 
 
 
Imagine a quadrilateral ABCD whose four corners lie 
on the circumference of a circle. 
Then ∠ABC + ∠ADC = two right angles 
and ∠DCB + ∠DAB = two right angles. 
Join AC and join BD to begin the proof. 
 
[1] First ∠1 = ∠4   
 (both stand on arc AB; Thm.20) 
 
[2] And ∠2 = ∠3    (both stand on arc AD; Thm.20) 
 
[3] So ∠1 + ∠2 = ∠3 + ∠4   (adding together Steps 1 & 2) 
 
[4] But ∠1 + ∠2 + ∠DAB = two rights (DAB is a triangle) 
 
[5] So ∠3 + ∠4 + ∠DAB = two rights (putting together Steps 3 & 4) 
 
[6] i.e. ∠DCB + ∠DAB = two rights  (∠3 + ∠4 is ∠DCB) 
 
[7] But since the angles of any quadrilateral add up to four right angles (since it is 
made up of two triangles, each of whose angles add up to two right angles), and since 
∠DCB + ∠DAB equal two rights, therefore the remaining angles of quadrilateral ABCD 
must add up to the remaining two right angles.  That is, ∠ABC + ∠ADC = two rights. 
 
Q.E.D. 
 
 
THEOREM 21 Remarks 
 
 
1. It follows from this that a quadrilateral whose opposite angles do not add up to 
two right angles cannot be inscribed in a circle.  Take two identical equilateral triangles 
and put two of their sides together – you now have a rhombus one pair of whose opposite 
angles are 60° and 60°.  Such a quadrilateral cannot be inscribed in a circle – draw it for 
yourself and confirm it with a diagram. 

A quadrilateral that can be inscribed in a circle is sometimes called a "cyclic" 
quadrilateral.  "Cyclic" comes from the Greek word for "circle".  Since a pair of angles 
that add up to two right angles are called supplementary angles, we can restate Theorem 
21 like this:  In cyclic quadrilaterals, opposite angles are supplementary. 
 

A
B

C

D

1

2

3
4



 121 

2. The converse of Theorem 21 is also true, and it goes 
like this:  If the opposite angles in a quadrilateral are 
supplementary, then we can circumscribe a circle around 
it. 
 Suppose quadrilateral ABCD is such that its 
opposite angles are supplementary.  Bisect AB at E and BC 
at G.  Draw lines perpendicular to AB and BC at E and G, 
and where these two perpendiculars meet call M.  Join MA, 
MB, MC. 
Now ΔAEM ≅ ΔBEM  (Side-Angle-Side) 
so MA = MB 
and ΔCGM ≅ ΔBGM  (Side-Angle-Side) 
so MB = MC 
Thus MA = MB = MC, and so the circle with center M and 
radius MA will pass through A, B, and C. 
 
 But will it pass through D, the other corner of quadrilateral ABCD?  Yes, it must. 
 For suppose it did not, but rather D fell inside the circle.  Then extend AD until it 
cuts the circle at X.  Join CX. 
Now ∠3 + ∠2 = two rights  (quadrilateral ABCX is inscribed in a circle) 
but ∠1 + ∠2 = two rights  (quadrilateral ABCD is given that way) 
so ∠1 = ∠3,  that is, an angle exterior to triangle CDX is equal to one of its interior 
and opposite angles, which is impossible (Ch.1, Thm.14).  So it is impossible for D to fall 
inside the circle.  Likewise it is impossible for it to fall outside the circle.  Therefore D 
falls on the circumference of the circle. 
 

 
3. Theorem 21 has a cousin theorem about 
quadrilaterals that are circumscribed around circles.  
Consider quadrilateral ABCD, circumscribed around a 
circle and so having its four sides tangent to the circle at 
E, F, G, H.  Although its opposite angles do not have to 
add up to two right angles, its opposite sides must have 
the same sum, that is    AD + BC = AB + DC. 
 
 
The proof is easy.  Since AH is tangent to the circle at H, 

and AE is tangent to it at E, therefore AH and AE are two tangents to the same circle 
from the same point, and thus 
 AH = AE (Thm.18, Remark 1) 
and HD = DG (Same reason) 
and BF = BE (Same reason) 
and CF = CG (Same reason) 
so AH + HD + BF + CF = AE + DG + BE + CG 
or (AH + HD) + (BF + CF) = (AE + BE) + (DG + CG) 
i.e. AD + BC = AB + DC. 
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THEOREM 22:  In any circle, the arcs cut off by equal chords are equal. 
 
 
Imagine a circle with any 
center M and having two 
equal chords AB and CD in it 
cutting off arcs ARB and 
CLD.  Then these two arcs 
must be equal.  To see the 
proof, draw these lines:  MA, 
MB, MC, MD. 
 
 
[1] First, AB = CD  (the chords are given as equal) 
 and MA = MC  (being radii of the circle) 
 and MB = MD  (being radii of the circle) 
 so ΔAMB ≅ ΔCMD (Side-Side-Side) 
 
[2] Since ΔAMB and ΔCMD are congruent, therefore if we were to rotate the pie-
piece MARB clockwise so that A is on C, then also B would be on D, and so the arc ARB 
would then coincide with the arc CLD (for if it fell outside as the dotted line, the radii 
from M would not all be equal!). 
 
[3] Since the arcs ARB and CLD can be made to coincide with each other, therefore 
they are equal. 
 
 
Q.E.D. 
 
 
THEOREM 22 Remarks 
 
 
 
1. The converse of this Theorem is also true.  That is, In 
any circle, the chords of equal arcs are equal.  For instance, 
if arc ARB = arc CLD 
then AB = CD. 
If possible, assume that 
 AB > CD 
then make DE = AB, which is easily done by making a circle 
(not shown) around point D with a radius equal to AB. 
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Thus arc ECD = arc ARB  (arcs of equal chords are equal; Thm.22) 
but arc CLD = arc ARB  (that is given) 
so arc CLD = arc ECD, 
which is to say that the part is equal to the whole, which is impossible.  So AB is not 
greater than CD.  Likewise we can prove that neither is it less.  Therefore 
 AB = CD. 
 
 
2. Theorem 22 and its converse are also true about chords and arcs in equal circles: 
*  If arc A in one circle equals arc B in an equal circle, then their chords are equal. 
*  If chord A in one circle equals chord B in an equal circle, then their arcs are equal. 
 
 
 
 
THEOREM 23:  How to bisect any circular arc. 
 

 
Suppose you have any arc of a circle, ARB.  How 
do you cut it into two equal parts?  Like this: 
 
 

 
[1] Join AB. 
 
[2] Bisect AB at C. 
 
[3] Draw CD at right angles to AB. 
 
[4] Join AD; join DB. 
 
[5] Now, ∠ACD = ∠BCD (since each is a right angle) 
 and AC = CB  (since we bisected AB at C) 
 and CD is common to ΔACD and ΔBCD 
so the corresponding sides of ΔACD and ΔBCD are equal (Side-Angle-Side) 
 
[6] Thus AD = BD  (being corresponding sides of ΔACD & ΔBCD) 
 
[7] So arc AD = arc BD (Thm.22) 
 
 
Q.E.F. 
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THEOREM 23 Remarks 
 
 
Have we done enough geometry now to cut any circular arc into 3 equal parts?  No – that 
is a problem for more advanced geometry, and its simplest solution involves the use of 
conic sections.  It is impossible to cut an arc of 60° into three equal parts, for example, 
using nothing but circles and straight lines, which are the only tools we are allowing 
ourselves in this book. 
 How about 4 equal parts?  Of course.  We simply bisect the arc once, and then 
bisect each of its halves. 
 How about 5 equal parts?  No.  That is even more difficult than 3. 
 Neither can we cut any given arc into 6 or 7 equal parts.  But we can cut any 
given arc into 8 equal parts simply by repeated bisection (likewise with 16, 32, etc.). 
 
 
 
 
THEOREM 24:  Any angle inside a semicircle is right. 
 
 

 
Take any circle with diameter AB cutting it into two 
semicircles, pick any point R along the circumference, 
and then join AR and RB.  Angle ARB is a right angle. 
 To see it for yourself, start by picking any point T 
on the other semi-circumference, and then join AT and 
TB. 
 
 

 
[1] Now ∠ARB = ∠ATB, 
since they stand at the circumference and cut off equal arcs, namely half the whole 
circumference (Thm.20, Remarks) 
 
[2] But ∠ARB + ∠ATB = two right angles, 
 since they are opposite angles in a quadrilateral inscribed in a circle (Thm.21). 
 
[3] So ∠ARB = half of two rights, 
 i.e. ∠ARB = one right angle. 
 
 
Q.E.D. 
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THEOREM 24 Remarks 
 

 
 
The converse of this Theorem is also 
true, namely The circle whose 
diameter is the hypotenuse of a right 
triangle must pass through the vertex 
of the right angle.  If EGF is a right 
triangle, and ∠EGF is the right angle, 
then the circle having EF as its 

diameter passes through point G.  If possible, assume it doesn't, but instead G winds up 
inside the circle.  Then FG and the circle will intersect at some other point, X; join XE. 
 
Thus ∠1 = one right angle  (since it is an angle in a semi-circle; Thm.24) 
but ∠2 = one right angle  (since it is adjacent to ∠3, which is given as right) 
so ΔEXG has two right angles in it, and thus its angle-sum is greater than two right 
angles, which is impossible.  So it is impossible for G to fall inside the circle.  Likewise it 
is impossible for it to fall outside it.  Therefore G lies right on the circumference. 
 
 
 
 
THEOREM 24 Questions 
 
 
 
1. If M is the center of a circle, and MP is 
perpendicular to the diameter, prove that ∠APB is a 
right angle (independently of Theorem 24).  Now use 
Theorem 20 to prove that all the angles at the 
circumference standing on diameter AB are right. 
 
 
 
 
2. Let L be any point on the circumference of a 
circle and CD its diamter, K its center.  To prove 
Theorem 24 in yet another way, start by establishing 
that 
 1 + 2 + 3 + 4 = 180° 
and use the fact that ΔCKL and ΔLKD are both 
isosceles. 
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3. Prove that the angle in a segment of a circle 
that is greater than a semicircle is acute, and that the 
angle in a segment that is less than a semicircle is 
obtuse.  Let ST divide a circle into two unequal 
segments, i.e. one greater than a semicircle, and one 
less.  Find the center Z.  Pick W and X at random on 
each of the two arcs.  Draw SW, WT, SX, and XT.  
Draw the diameter TZY, and join WY.  Start the 
proof by showing that ∠SWT is obtuse; then show 
that ∠SXT is acute by using Theorem 21. 

 
 
 
 
THEOREM 25:  The angles between a tangent to a circle and any straight line 
drawn through the circle from the point of tangency are equal to the angles in the 
alternate segments of the circle. 
 

 
Conceive of a circle with a straight line TPN 
tangent to it at point P, and any straight line 
PS drawn through the circle and cutting it into 
two segments.  Choose any point X on the arc 
of one segment, and any point R on the arc of 
the other.  Then 
 ∠SPN = ∠SXP 
and ∠SPT = ∠SRP. 
 

 
[1] Start the proof by joining center C to P and extending PC to D to complete 
diameter PD. 
 
[2] Thus PD is at right angles to TPN, since TPN is tangent at P and C is the center of 
the circle  (Thm.18). 
 
[3] Now ∠DSP = a right angle  (since it is an angle in a semicircle) 
 
[4] So ∠SDP + ∠DPS = a right angle, 
that is, the remaining two angles in ΔDSP must add up to a right angle, so that all three of 
its angles together will equal two right angles. 
 
[5] But ∠SPN + ∠DPS = a right angle, 
since these two angles make up ∠DPN, and DP is at right angles to PN (Step 2). 
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[6] So ∠SDP = ∠SPN, 
because according to Steps 4 and 5, these two angles are complementary to the same 
angle, namely ∠DPS. 
 
[7] But ∠SDP = ∠SXP, 
since they both stand at the circumference and on the same arc SRP (Thm.20). 
 
[8] So ∠SPN = ∠SXP  (putting together Steps 6 & 7) 
 And this is the first part of what we wanted to prove. 
 
[9] Now ∠SXP + ∠SRP = two rights, 
since they are opposite angles of a quadrilateral inscribed in a circle (Thm.21) 
 So ∠SPN + ∠SRP = two rights (∠SPN = ∠SXP; Step 8) 
 
[10] But ∠SPN + ∠SPT = two rights (they are adjacent angles) 
 
[11] So ∠SPT = ∠SRP, 
since each is the supplement of angle SPN  (Steps 9 & 10) 
 
Q.E.D. 
 
 
 
THEOREM 26:  If from a point on a circle's tangent a straight line is drawn 
cutting through the circle, then the rectangle contained by the whole cutting line and the 
part outside the circle is equal to the square on the tangent. 
 

 
 
Let PT be a straight line touching a circle with 
center M at point T, and take any point P on the 
tangent line.  Draw any line PSA through the 
circle.  Then   £TP  =  AP · PS. 
 To prove it, start by bisecting AS at B, 
then join the following lines:  MA, MB, MS, 
MP, MT. 
 
 

 
[1] Now, MB is at right angles to AS, since MB is drawn from the center and it 
bisects AS (Thm.3).  So MBS and MBP are right triangles. 
 
[2] Also, MT is at right angles to TP, since MT is a radius and TP is tangent 
(Thm.18).  So MTP is a right triangle. 
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[3] Now, £TP = £MP  –  £MT  (ΔMTP; Pythagorean Theorem) 
 
[4] But £MP = £MB + £BP  (ΔMBP; Pythagorean Theorem) 
 
[5] So £TP = (£MB + £BP)  –  £MT (putting together Steps 3 & 4) 
 
[6] But £MB = £MS  –  £BS  (ΔMBS; Pythagorean Theorem) 
 
[7] So £TP = (£MS  –  £BS) + £BP  –  £MT (Steps 5 & 6). 
 Reordering the terms, we can say 
  £TP = £BP  –  £BS + £MS  –  £MT 
 
[8] But £MS = £MT    (since MS = MT, being radii), 
 
[9] So £TP = £BP  –  £BS   (putting together Steps 7 & 8) 
 
[10] Thus £TP  =  (BP + BS) (BP – BS), 

because of Ch.2, Thm.4:  the "difference between two squares" Theorem. 
 
 
[11] Now AB = BS    (since we bisected AS at B) 
 so AB + BP = BP + BS   (adding equals to the same thing) 
 i.e. AP = BP + BS 
 
[12] Thus £TP = AP (BP – BS)   (putting together Steps 10 & 
11) 
 i.e. £TP  =  AP · PS   (BP – PS is PS) 
 
 
Q.E.D. 
 
 
 
 
THEOREM 26 Remarks 
 
1. A straight line drawn from outside a circle that cuts 
the circle is called a "secant" (from the Latin secare, to cut 
or divide).  There is an interesting corollary to Theorem 26 
about secants, namely that If two secants are drawn to a 
circle from the same point, then the rectangles contained by 
the wholes of each and by their parts outside the circle are 
equal.  Consider secant PSA and secant PDE, and also 
draw in tangent PT.  Then 
 AP · PS  =  £PT  (Thm.26) 
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and EP · PD  =  £PT  (Thm.26) 
so EP · PD  =  AP · PS 
 
 
2. The converse of Theorem 26 is also true.  That is, if PSA is drawn through a 
circle, and PT is drawn to the circle such that  £PT  =  AP · PS,  then PT is tangent to 
the circle at T. 
 Proof:  Two tangents from P can be drawn to the circle.  
And the square on each of them must equal rectangle AP · PS  
(Thm.26).  Thus the square on each tangent equals the square 
on PT, and so each tangent from P equals PT.  Since it is 
impossible for three equal lines to be drawn to a circle from 
one point outside it (Thm.8, Remark 2), therefore PT must be 
one of the tangents from P.  Q.E.D. 
 
 
 
 
 
THEOREM 26 Question 
 

 
 
 
What if PSA goes through the center M?  How will that 
change the proof? 
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“HOOK”:  THE MIQUEL POINT. 
 
If ABC is any triangle, and E, D are any two points along AC, AB, and we join BE, CD, 
we get a “dented triangle,” or a “Menelaos Figure.”  There are four triangles in this 
figure—two small ones and two larger, overlapping ones.  If we circumscribe a circle 
around each of these four triangles, the four circles will all cut each other at one point, p. 
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“HOOK”:  CENTER OF WEIGHT OF A TRIANGLE. 
 
 
If you take any triangle ABC, bisect its sides, and join each vertex to the midpoint of the 
opposite side, these three lines intersect at one point inside the triangle, Y.  This point is 
the center of weight of the triangle.  If you were to make such a triangle out of some 
rather uniformly dense material, and drill a hole through Y, then hang it on a small nail 
through Y, you could rotate the triangle into any orientation and it would always be 
balanced. 
 
 
 
 
 
 
 
 
 
 
 
 
“HOOK”:  COTANGENTS TO THREE CIRCLES. 
 
 
Take any three circles in one plane, so long as no one of them is completely inside 
another one.  Then it will be possible to take them in three pairs, and for each pair there 
will be a pair of straight lines tangent to both circles and which intersect—as DPG, DNK 
are each tangent to the two circles PN, GK.  The three resulting points of intersection, 
namely D, E, F,  all lie in a straight line. 
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THEOREM 1:  How to inscribe in a circle a triangle that is equiangular with a 
given triangle. 
 
Take any triangle you like, and call its angles 1, 2, 3.  Take any circle you like – call it K.  
Can we put inside circle K a triangle whose angles are equal to 1, 2, and 3?  Of course. 
 

 
 
[1] Draw a tangent TPN through any 
point P along circle K’s circumference. 
 
[2] Draw ∠TPA = ∠2. 
 Draw ∠NPB = ∠1 
 
 
 

[3] Now ∠1 + ∠2 + ∠3 = two right angles, 
 so ∠NPB + ∠TPA + ∠3 = two right angles. 
 
[4] But ∠NPB + ∠TPA + ∠APB = two right angles 
 
[5] So ∠APB = ∠3    (putting together Steps 3 & 4) 
 
[6] Join AB. 
 
[7] Now ∠TPA = ∠ABP   (Ch.3, Thm.25) 
 But ∠TPA = ∠2    (Step 2) 
 So ∠ABP = ∠2 
 
[8] Since ∠APB = ∠3    (Step 5) 
 and ∠ABP = ∠2    (Step 7) 
 thus ∠BAP = ∠1, 
because whenever two angles in one triangle are equal to two angles in another, the third 
angle equals the third angle. 
 Therefore ΔAPB, the triangle inscribed in circle K, is equiangular with the given 
triangle. 
 
 
Q.E.F. 
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THEOREM 1 Questions 
 
 
1. We can now inscribe a triangle of any shape inside a given circle.  Obviously we 
cannot inscribe a triangle of any size inside a given circle – some triangles are too big or 
too small to be inscribed in a given circle.  In fact, once we are given the three angles 
which the inscribed triangle is to have, and once we are given the circle to inscribe it in, 
the size of the inscribed triangle is already determined. 
 
2. Try to prove that  If two triangles are inscribed in the same circle and they are 
equiangular, then they will be congruent, i.e. all their corresponding sides will also be 
equal and they will have the same area.  Consider using the converses of Theorems 20 
and 22 in Chapter 3. 
 
3. Is it possible to inscribe a quadrilateral inside a given circle?  If we are given a 
quadrilateral and a circle, will we always be able to draw a quadrilateral inside the circle, 
whose corners are all on the circumference, and whose angles are the same as the given 
quadrilateral?  What must be true about the quadrilateral for it to be possible? 
 
 
 
 
THEOREM 2:  How to circumscribe about a circle a triangle that is equiangular 
with a given triangle. 
 

Say I give you a circle with 
center M and a random 
triangle ABC having angles 
1, 2, 3.  How can you 
circumscribe another triangle 
around circle M having 
angles equal to 1, 2, and 3?  
You can, as follows: 
 
 

[1]  Extend any side of ΔABC both ways, say BC (to D and E), forming the exterior 
angles 4 and 5. 
 
[2]  Choose point R at random on the circumference of circle M.  Join MR. 
 Draw ∠RMF = ∠4 
 Draw ∠RMG = ∠5   (Ch.1, Thm.20) 
 
[3] Draw lines at right  angles to MF at F, to MR at R, and to MG at G. 
 Call the points where these three lines meet P, K, L. 
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[4] Since PFK is drawn at right angles to the end of radius MF, it is tangent to the 
circle at F (Ch.3, Thm.15).  Likewise KRL is tangent at R, and PGL is tangent at G.  
Thus the triangle PKL is circumscribed about circle M  (Ch.3, Def. 11). 
 
 [5] Now the angles of quadrilateral FMRK add up to a total of four right angles (since 
it is composed of two triangles, each of whose angles add up to two right angles). 
 But ∠KFM + ∠KRM = two rights, since each of these is a right angle. 
 Thus the remaining two angles in quadrilateral FMRK must add up to two rights, 
 i.e. ∠4 + ∠FKR = two rights, 
 
[6] But ∠4 + ∠1 = two rights  (since they are adjacent) 
 
[7] So ∠FKR = ∠1   (putting together Steps 5 & 6) 
 
Likewise ∠RLG = ∠2 
 
[8] Since ∠FKR = ∠1   (Step 7) 
 and ∠RLG = ∠2   (Step 7) 
 thus ∠GPF = ∠3, 
since whenever two angles in one triangle equal two angles in another triangle, the 
remaining angles are equal. 
 So triangle PKL, which has been circumscribed around circle M, is equiangular 
with the given triangle ABC. 
 
Q.E.F. 
 
 
 
 
 
THEOREM 2 Questions 
 
 
1. How do we know the lines drawn at right angles to MF, MR, and MG at F, R, and 
G will meet, as is asserted in Step 3? 
 
 
2. What about a quadrilateral?  If I give you a random quadrilateral and a circle, will 
you be able to circumscribe around the circle a quadrilateral whose angles are equal to 
the given quadrilateral?  What must be true about the quadrilateral for it to be possible? 
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THEOREM 3:  How to inscribe a circle in any triangle. 
 

 
Now suppose I give you a triangle.  Can you draw 
inside it a circle to which all three sides are tangent?  
You can, like this: 
 
[1] Take your triangle ABC and bisect ∠ABC and 
∠ACB (any two angles will do). 
 Let the bisectors meet at D. 
 
 

[2] Drop DE perpendicular to AB. 
 Drop DF perpendicular to BC. 
 Drop DG perpendicular to AC. 
 
[3] Now ∠BED = ∠BFD (both are right angles) 
 and ∠EBD = ∠FBD (BD bisects ∠EBF; Step 1) 
 and BD is common to ΔDEB and ΔDFB 
so the corresponding sides of ΔDEB and ΔDFB are equal (Angle-Angle-Side) 
 
[4] So DE = DF  (being corresponding sides of ΔDEB & ΔDFB) 
 
[5] In the same way, we can prove that 
  ΔDFC ≅ ΔDGC, 
 so DF = DG 
 
[6] Thus DE = DF = DG (Steps 4 & 5), 

so draw a circle with D as the center and DE as the radius, and its circumference 
will pass through E, F, and G. 

 
[7] Since AEB is at right angles to the endpoint of radius DE,  
  AB is tangent to circle D at E  (Ch.3, Thm.15) 
Likewise BC is tangent to circle D at F, 
and  AC is tangent to circle D at G. 
 
So circle D has been inscribed in triangle ABC  (Ch.3, Def.11). 
 
 
Q.E.F. 
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THEOREM 3 Remarks 
 
There is another important theorem lurking within Theorem 3, namely that The bisectors 
of the three angles of any triangle all meet at one point.  BD and CD bisect angles ABC 
and ACB, and they meet at D.  Join DA; if we can prove that it bisects angle BAC, then 
all three angle-bisectors meet at one point. 
First, DE  =  DG    (proved in Step 6 of Theorem 3) 
so £DE  =  £DG 
so £AD  –  £DE  =  £AD  –  £DG (subtracting equals from the same thing) 
but £AD  –  £DE  =  £AE  (ΔADE; Pythagorean Theorem) 
and £AD  –  £DG  =  £AG  (ΔAGD; Pythagorean Theorem) 
so £AE  =  £AG 
i.e. AE  =  AG 
thus ΔADE ≅ ΔAGD  by the Side-Side-Side 
Theorem, since AE = AG, DE = DG, and AD is 
common to both triangles.  Therefore their 
corresponding angles are equal, so 
 ∠EAD = ∠GAD, 
which means that AD is in fact the bisector of angle 
BAC. 
 
 So the 3 angular bisectors of a triangle all meet in one point.  You can illustrate 
this fact by carefully cutting out any triangle from a piece of paper and folding each of its 
angles in half.  Do the three creases all pass through one point? 
 
 
 
THEOREM 3 Question 
 
 
Prove that the bisectors of angles ABC and ACB must in fact meet, as is asserted in Step 
1, and that they must meet inside the triangle, not outside it.  To prove these bisectors 
must meet, use the fact that any two angles of a triangle (such as rABC) add up to less 
than 180°.  To prove they must meet inside the triangle, assume for a moment that they 
meet outside, and see whether they can really bisect the angles of the original triangle 
anymore. 
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THEOREM 4:  How to circumscribe a circle about any triangle. 
 
 
If I give you a triangle ABC, how can you draw 
a circle that goes through A, B, and C?  You 
can, as follows. 
 
[1] Bisect AB at D, and bisect AC at E (any 
two sides will do). 
 
[2] Draw perpendiculars to AB and AC at D 
and E, and let them meet at M. 
 
[3] Draw AM, BM, CM. 
 
[4] Now,  ∠BDM = ∠ADM (both are right angles) 
 and BD = DA  (we bisected AB at D) 
 and DM is common to ΔBDM and ΔADM 
so the corresponding sides of ΔBDM and ΔADM are equal (Side-Angle-Side) 
 
[5] Thus BM = AM  (being corresponding sides of ΔBDM & ΔADM) 
 
[6] Likewise we can prove that 
  ΔCEM ≅ ΔAEM, 
 so AM = CM 
 
[7] Thus BM = AM = CM (Steps 5 & 6), 
 so draw a circle with M as center and AM as radius, and its circumference will 
pass through A, B, and C. 
 So a circle has been circumscribed about triangle ABC (Ch.3, Def. 10) 
 
Q.E.F. 
 
 
 
 
THEOREM 4 Remarks 
 
 
1. Notice that, unlike quadrilaterals, all triangles are “cyclic”; all triangles can have 
a circle drawn through their three points. 
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2. There is an important theorem 
lurking within Theorem 4, namely this:  
The three perpendicular bisectors of the 
sides of any triangle all meet at one point.  
DM and EM meet at M, and these are the 
perpendicular bisectors of AB and AC.  
Drop MX perpendicular to BC, and if we 
can show that it bisects BC then we will 
have proved that the perpendicular 
bisectors of all three sides meet at M. 
 
First BM  =  CM    (proved in Step 7 of Theorem 4) 
so £BM  =  £CM 
so £BM  –  £MX  =  £CM  –  £MX (taking the same square from both sides) 
but £BM  –  £MX  =  £BX  (ΔBMX; Pythagorean Theorem) 
and £CM  –  £MX  =  £XC  (ΔCMX; Pythagorean Theorem) 
so £BX  =  £XC 
thus BX  =  XC 
Therefore MX is not only perpendicular to BC, but bisects it at X, and so indeed the three 
perpendicular bisectors of the sides of ΔABC all meet at one point, M.  This point M is 
called the circumcenter of a triangle. 
 
 
THEOREM 4 Questions 
 
 
1. What happens if ∠BAC is a right angle?  What does BC become in relation to the 
circumscribed circle?  Where will center M fall?  What happens if ∠BAC is obtuse?  
Where will M fall then? 
 
2. Prove that the two lines drawn perpendicular to AB and AC at D and E must in 
fact meet, as is asserted in Step 2.  Start by joining DE, and you should see immediately 
that the perpendiculars at D and E must make angles less than two right angles on one 
side of DE. 
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THEOREM 5:  How to inscribe a square in any circle. 
 

 
 
 
 
Given a circle, how do we inscribe a square in it? 
 
 
 
 
 
 

[1] Begin by finding its center, M. (Ch.3, Thm.1) 
 Draw any line through M, AMC; thus AC is a diameter. 
 Draw BMD at right angles to AMC; thus BD is another diameter. 
 
[2] Draw AB, BC, CD, and DA, forming quadrilateral ABCD inscribed in circle M. 
 
[3] Now, ∠BMA = ∠BMC  (both are right angles) 
 and AM = MC   (both are radii) 
 and BM is common to ΔABM and ΔBCM 
so  rABM ≅ rBCM  (Side-Angle-Side) 
 
[4] Thus AB = BC   (rABM ≅ rBCM) 
 
[5] We can prove in the same way that 
  rBCM ≅ rCDM, 
 so BC = CD, 

and again we can prove in the same way that 
 rCDM ≅ rDAM, 
so  CD = DA 

 
[6] So AB = BC = CD = DA  (Steps 4 & 5), 
 and so quadrilateral ABCD is equilateral. 
 
[7] Since BMD is a diameter, therefore ∠BAD is a right angle (Ch.3, Thm.24).  For 
the same reason every other angle of quadrilateral ABCD is a right angle. 
 
[8] Since ABCD is both equilateral (Step 6), and also right angled (Step 7), 
 ABCD is a square. 
 
Q.E.F. 
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THEOREM 5 Questions 
 
 
1. Can you see how to circumscribe a square around a given circle? 
2. Can you see how to inscribe a circle in a given square? 
3. Can you see how to circumscribe a circle around a given square? 
 
 
 
 
 
 
THEOREM 6:  How to make an isosceles triangle whose base angles are each 
double its peak angle. 
 

 
Recall that in every isosceles triangle the base angles are equal to each 
other.  But, for the sake of the upcoming Theorem 7, we want to make a 
particular kind of isosceles triangle in which each base angle is double the 
peak angle X.  Here’s how: 
 

 
[1] Set out any straight line AS.  Extend it to P so 
that  £AS  =  AP · PS  (Ch.2, Thm.12).  Draw a circle 
with center A and radius AP.  Mark off  PT  =  AS  by 
drawing a circle around P with a radius equal to AS 
(not shown).  Join AT.  Now AT  =  AP, being radii of 
circle A.  Thus ATP is an isosceles triangle, and I say 
that ∠TPA is double ∠TAP. 
 
 
[2] Circumscribe a circle about rAST. (Thm.4) 
 Since £AS  =  AP · PS  (Step 1) 
 thus £PT  =  AP · PS  (PT  =  AS; Step 1) 
thus PT is tangent to the circumscribed circle (see Ch.3, Thm.26, Remark 2). 
 
[3] Extend PT to N.  Because PTN is tangent, therefore it makes angles with AT 
equal to the angles in the alternate segments of the circle  (Ch.3, Thm.25). 
 Hence ∠ATN  =  ∠AST 
 
[4] Hence the supplements of these angles are also equal to each other, 
 i.e. ∠ATP  =  ∠TSP 
 
[5] But ∠TPA  =  ∠TPS  (they are actually the same angle) 
 thus rAPT is equiangular with rTSP  (Ch.1, Thm.29) 
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[6] Hence rTSP is also isosceles, so 
  PT  =  ST 
 but PT  =  AS   (Step 1) 
 so AS  =  ST 
so rAST is also isosceles. 
 
[7] Now ∠TSP  =  ∠STA  +  ∠TAS (∠TSP is exterior to rAST) 
 or ∠TSP  =  2 ∠TAS  (∠STA = ∠TAS, since rAST is isosceles) 
 so ∠TPS  =  2 ∠TAS 
 i.e. ∠TPA  =  2 ∠TAP 
 
Q.E.F. 
 
 
 
 
THEOREM 6 Remarks 
 
 
1. The triangle we have constructed is called The Golden Triangle, for reasons we 
will understand later.  Can you find another golden triangle in the construction diagram 
other than rATP?  Prove it. 
 
2. What are the angles of a golden triangle in degrees?  How many degrees is the 
peak angle?  How many degrees is one of the base angles?  If we call the peak angle X, 
each base angle is 2X, thus the sum of the angles in the whole triangle is 5X.  But this 
must be 180°.  Therefore  X  =  180°  ÷  5,  which is 36°.  So the peak angle is 36°, and 
each base angle is 72°. 
 
 
 
 
 
THEOREM 7:  How to inscribe a regular pentagon inside any circle. 
 
 
Imagine you have a circle A, and you want 
to draw a regular pentagon inside it (that is, 
a five-sided polygon that is equilateral and 
equiangular).  Follow these steps: 
 
 
[1] Start by making an isosceles triangle 

T whose base angles are each double 
its peak angle (Thm.6). 
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[2] In the circle inscribe rACD whose angles equal those of triangle T  (Thm.1). 
 Thus ½∠ADC = ∠1 
 and ½∠ACD = ∠1 
 
[3] Bisect ∠ACD with CE. 
 Bisect ∠ADC with DB. 
 Draw AB, BC, DE, EA, yielding pentagon ABCDE. 
 
[4] Now, ½∠ADC  =  ∠ADB  (we bisected ∠ADC with DB; Step 3) 
 but ½∠ADC  =  ∠1  (Step 2) 
 so ∠ADB = ∠1 
 
[5] In the same way, we can prove that 
  ∠BDC = ∠1 
  ∠DCE = ∠1 

∠ECA = ∠1 
 
[6] And all these equal angles are at the circumference.  Therefore the arcs on which 
they stand are all equal to each other (Ch.3, Thm.20, Converse proved in Remarks), 
 
 i.e. arc AB = arc BC = arc CD = arc DE = arc EA 
 
[7] Since all these arcs are equal, the chords joining their endpoints are all equal, too 
(Ch.3, Thm. 22, Converse proved in Remarks).  That is 
 
  AB = BC = CD = DE = EA. 
 
Therefore the pentagon ABCDE is equilateral. 
 
[8] Now ∠ABC stands on three of the five equal arcs, namely on 
  arc CD + arc DE + arc EA. 
Likewise ∠BCD, ∠CDE, ∠DEA, ∠EAB each stand on three of the five equal arcs.  
Therefore these five angles stand on equal arcs. 
 
[9] And all five of these angles standing on equal arcs are at the circumference.  
Therefore they are equal (Ch.3, Thm.20, proof in Remarks). 
 That is,  ∠ABC = ∠BCD = ∠CDE = ∠DEA = ∠EAB. 
 
[10] Thus the pentagon ABCDE, inscribed in the circle, is both equilateral (Step 7) and 
equiangular (Step 9).  Therefore it is a regular pentagon. 
 
Q.E.F. 
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THEOREM 7 Remarks 
 
The base angle of a golden isosceles triangle is 72°  
(Thm.6, Remark 2).  Now make an isosceles triangle 
whose peak angle is 72°.  Make the equal sides CG and 
GD of whatever length you like.  Since  72° × 5  =  360°,  
thus we can place the peak angles of  5  identical 
isosceles triangle of this kind around point G.  Since the 5 
triangles are identical isosceles triangles, their bases are 
equal, and therefore the pentagon ABCDE is equilateral.  
Again, since every angle of the pentagon, such as ∠ABC, consists of two of the identical 
base angles, pentagon ABCDE is equiangular.  Therefore a regular pentagon consists of 5 
identical isosceles triangles whose peak angles are each 72°. 
 

 Clearly GA = GB = GC = GD = GE.  The circle 
with center G and radius GA therefore circumscribes the 
pentagon.  Given a regular pentagon OPKLN, then, it will 
be easy to circumscribe a circle about it.  Choose any side 
KL, and draw angles 1 and 2 each equal to ∠GCD above.  
Therefore the lines drawn must meet inside the pentagon 
at a point, M, such that ∠KML = ∠CGD  or 72°.  Thus M 
is the point common to the 5 identical isosceles triangles 
composing pentagon OPKLN, and therefore M is the 
center of the circumscribing circle. 

 
 
THEOREM 7 Questions 
 

 
 
1. How many degrees is each angle of the regular pentagon?  
Start by recalling that ∠HGK is 72° in isosceles triangle HGK. 
 
 
 

 
2.  How would you circumscribe a regular pentagon around a 
circle? Start by inscribing one as we did in Theorem 7. 
Describe the construction and prove that the result is a regular 
pentagon. 
 
3. Find a way to construct a regular pentagon on a given 
straight line as its side. 
 
 
THEOREM 8:  How to inscribe a regular hexagon inside any circle. 
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Take any circle; call its center M.  We want to make 
a regular hexagon inside it, that is, we want to 
inscribe in it a six-sided polygon all of whose sides 
and angles are equal. 
 
[1] Start by choosing any point A on the 
circumference, and join MA. 
 
[2] Make an equilateral triangle on MA; thus its vertex F will lie on the 
circumference of the circle  (Ch.1, Thm.1). 
 
[3] Extend AM to D. 
 Make an equilateral triangle on MD; thus its vertex E will also lie on the 
circumference of the circle. 
 
[4] Extend FM to C, EM to B.  Draw AB, BC, CD, EF. 
 
[5] Since all three angles of an equilateral triangle are equal, any one of its angles is 
one third of two right angles. 
 so ∠FMA =  one third of two rights 
 and ∠EMD =  one third of two rights. 
 and ∠EMF must equal one third of two rights also, since these three angles 
add up to a straight line or 180°. 
 
[6] Hence ∠EMF is also the angle of an equilateral triangle 
 But EM = MF    (they are radii of the circle) 
And therefore triangle EMF is also equilateral, and its side is the radius of the circle. 
 
[7] Now ∠DMC = ∠FMA   (being vertical angles) 
 and MC = MF    (they are radii of the circle) 
 and MD = MA    (again, they are radii) 
 so ΔDMC ≅ ΔAMF   (by Side-Angle-Side) 
And therefore triangle DMC is also equilateral, and its side is the radius of the circle. 
 
[8] In the same way, we can prove that ΔCMB and ΔMBA are equilateral triangles, 
too, whose side is the radius of the circle. 
 
[9] Therefore the sides of hexagon ABCDEF are the sides of six identical equilateral 
triangles, and so all of its sides are equal.  And each of the angles of hexagon ABCDEF is 
composed of two angles of an equilateral triangle, and so all of its angles are equal. 

Therefore hexagon ABCDEF, inscribed in the circle, is a regular hexagon. 
 
Q.E.F. 
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THEOREM 8 Remarks 
 
 
It is amazing that the radius of a circle fits inside its circumference exactly six times. 
 
 
THEOREM 8 Questions 
 
 
1. How many degrees are in one angle of an equilateral triangle?  How many 
degrees are in one angle of a regular hexagon? 
 
 
 
2. Prove that it is possible to cover a surface with identical regular 
hexagons, without leaving any gaps and without any overlap of the 
hexagons.  Begin by looking at angles 1, 2, and 3. 
 We might put this little theorem this way:  it is possible to use 
regular hexagons as floor tiles. 
 
 
 
3. With the same sort of reasoning, show that it is not possible to 
cover a whole surface with identical regular pentagons – you will 
necessarily have gaps.  Consider angles 4, 5, and 6 in your reasoning. 
 We might say it is impossible to use regular pentagons as floor 
tiles, since we leave gaps.  Incidentally, can you identify the shape of 
the gaps left out by the pentagons? 
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THEOREM 9:  How to inscribe a regular decagon in any circle. 
 
 
Take any circle M, and you can make a regular 
decagon (a regular 10-sided polygon) inside it as 
follows. 
 
 
[1] Inscribe a regular pentagon inside the 
circle, ACEGK (Thm.7). 
 
[2] Bisect each of the five equal arcs cut off 
by its sides, namely arc AC at B, arc CE at D, arc 
EG at F, arc GK at H, and arc KA at L. 
 
[3]   Draw AB, BC, CD, DE, EF, FG, GH, HK, KL, LA. 
 
[4] Since the five arcs cut off by the sides of the pentagon are equal, their halves are 
equal.  And since those ten arcs are equal, the chords joining their endpoints are equal 
(Ch.3, Thm.22 Converse), i.e. 
 AB = BC = CD = DE = EF = FG = GH = HK = KL = LA 
Thus the decagon ABCDEFGHKL is equilateral. 
 
[5] Draw MA, MB, MC, thus forming isosceles triangles AMB and BMC. 
 
 
[6] Now, AB = BC  (Step 4) 
 and MA = MC  (being radii of the circle) 
 and MB is common to ΔMBA and ΔMBC 

so ΔMBA ≅ ΔMBC (Side-Side-Side) 
 
 
[7] Similarly we can prove that all ten of the isosceles triangles having a side of the 
decagon as base and having center M as vertex are identical.  And therefore they all have 
the same base angle.  But every angle of the decagon is equal to two of these identical 
base angles (e.g. ∠ABC = ∠MBA + ∠MBC), and so all of the angles of the decagon are 
equal. 
 
[8] Since decagon ABCDEFGHKL, inscribed in the circle, is both equilateral (Step 
4) and equiangular (Step 7), it is regular. 
 
 
Q.E.F. 
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THEOREM 9 Remarks 
 
 
 
1. Now we have succeeded in making regular rectilineal figures of 3 sides, 4 sides, 5 
sides, 6 sides, and 10 sides.  What about 7, 8, and 9 sides?  The 7 and 9-sided regular 
polygons require more sophisticated tools than straight lines and circles, but the regular 
octagon is easy – just bisect the four arcs of a circle around the four sides of the inscribed 
square.  In fact, given any regular polygon that we can inscribe in a circle, we can always 
make another with twice as many sides just by bisecting the arcs of the circle.  We cannot 
make the 11-sided regular polygon using only straight lines and circles.  But the 12-sided 
regular polygon we can do.  Just bisect the six arcs of a circle around the six sides of the 
inscribed regular hexagon.  The 13 and 14-sided regular polygons transcend the powers 
of our elementary geometry. 

 
 But we can do the 15-sided regular polygon!  
If AB were the side of the regular 15-sided figure 
inscribed in a circle with center C, then ∠ACB 
would be one fifteenth of 360°, namely 24°.  So if 
we can make a 24° angle, we can cut the circle into 
15 equal parts and have the figure we seek.  How?  
Well, the angle drawn from the center of a circle 
and standing on one side of the inscribed decagon is 
one tenth of 360°, i.e. 36°, so we can make that 

angle.  And we can also make the 60° angle, since that is the angle of an equilateral 
triangle.  So if we draw these two angles together with a common side, the difference 
between them will be an angle of 24°.  Voilà. 
 

Obviously, we can also do the 16-sided, by starting with the regular octagon (the 
“stop sign”) and bisecting. 

Now what about the regular 17-sided figure?  (This figure is called a regular 
“heptadecagon.”)  Believe it or not, we actually can make it using nothing but circles and 
straight lines!  This was not known until the great German mathematician Carl Friedrich 
Gauss (1777 – 1855) discovered it.  He also found the general formula for determining 
when it is possible to make a regular polygon of a given prime number of sides using 
nothing but circles and straight lines, and when not. 
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2. Having mentioned the 12-sided regular polygon or 
dodecagon, it is worth adding here an interesting little 
theorem about it:  Its area is exactly 3 times that of the square 
on the radius of the circle in which it is inscribed. 
 
Given: Regular dodecagon ABC etc. in circle with center M. 
Prove:  The dodecagon’s area  =  3 £BM. 
 
 
 

Join AC, and where it cuts radius BM call D. 
 To begin, note that the dodecagon consists of 12 identical isosceles triangles such 
as MAB.  Thus 
 
 Area Dodecagon  =  12 rMAB 
 
Now by the regularity of the figure, AB = BC, and ∠ABD = ∠CBD, but BD is common 
to triangles ABD and CBD.  Hence they are congruent, and so the adjacent angles ADB 
and CDB are right angles.  Therefore AD is the height of rMAB, taking BM as base.  
Since rMAB is half the rectangle of that height and on that base, i.e. it is half rectangle 
MB · AD, therefore 12 triangles such as MAB equal 6 such rectangles.  Therefore 
 
 Area Dodecagon  =  6 MB · AD 
 
But AC is double AD, and therefore  MB · AC  is double  MB · AD, since if one 
rectangle has the same height as another, but double its base, it will be twice as big.  And 
accordingly  6  rectangles such as  MB · AD  will equal only  3  rectangles such as  MB 
· AC.  Therefore 
 
 Area Dodecagon  =  3 MB · AC 
 
And since AC cuts off one sixth of the circumference of the circle, it is the side of the 
regular hexagon, which is equal to the radius of the circle.  Therefore AC = MB, so that 
the rectangle MB · AC is the same as the square on MB, or the square on the radius.  
Hence 
 
 Area Dodecagon  =  3 £MB. 
  
 
 
THEOREM 9 Questions 
 
 
1. How many degrees are in one angle of the regular decagon? 
2. In the diagram for Theorem 9, what kind of triangle is triangle AMB?  Compare it 
to golden triangle AGC, and apply the theorem that says ∠AMC is double ∠AGC. 
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“HOOK”:  THE 3-4-5 TRIANGLE AND THE CIRCLE. 
 
 
If  EP  is 3 units of length, and PB is 4, and BE 
is 5, then EPB is a “3-4-5 right triangle.”  If we 
inscribe the circle in it, center C, its radius will 
have a length of 1 unit. 
 
 
 
 
 
 
 
 
Also, if LMN is a 3-4-5 right triangle in which 
LM = 4 and LN = 5, and if we draw a circle 
whose diameter lies along LM and which is tangent to MN at M and also to LN at T, this 
will be the equivalent of inscribing a circle in the isosceles triangle which is made up of 
two triangles like LMN, symmetrical about LM.  Let O be the center of this circle, and 
join NO, cutting the circle at P & Q.  Then PQN is cut in “mean and extreme ratio,” also 
called “the golden ratio,” about which we will learn more in Chapters 5 and 6. 
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“HOOK”:  BRIANCHON’S THEOREM. 
 
Take any circle and draw a tangent to it, RS, of whatever length you please.  From S, 
draw another tangent, ST.  Continue doing this so that you end up with a hexagonal 
figure circumscribed about the circle, RSTVWZ.  Join the “opposite” vertices of this 
figure:  RV, SW, TZ.  These three straight lines will intersect in a single point. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
“HOOK”:  CHORD PRODUCTS OF REGULAR POLYGONS. 
 
In a circle with center O and a unit-long radius OR, draw a regular polygon of any 
number of sides you like, N, using R itself as the starting vertex.  If we now join R to all 
the other vertices, we 
get chords (such as 
RA, RB, RC, etc.).  
Since we are calling 
the radius “1,” it is 
decided for us what 
we have to call each 
of the other chords.  If 
we then multiply all 
the lengths of these 
chords together, what 
will the result be?  It 
will always be N.  For 
instance, if our 
polygon is a hexagon, 
the chord-product will 
be 6.  If an octagon, 8.  
And so on. 
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Chapter Five 
 
 
 

Proportion in General 
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DEFINITIONS 
 
 
 
 
1.  A lesser quantity is said TO MEASURE a greater one if it goes into it exactly a whole 
number of times. 
 For example, a foot measures a yard, since it goes into it exactly three times; but 
it does not measure a meter, since three feet is less than a meter, but four feet is more 
than a meter. 
 
 
2.  When a lesser quantity measures a greater one, the lesser is called A MEASURE of 
the greater, and the greater is called A MULTIPLE of the lesser. 
 For example, a foot is a measure of a yard, and a yard is a multiple of a foot.  If  
B is a multiple of A, say 3 times A, then the shorthand notation for this is  B = 3A, which 
reads " B is three A", or " B is three times A". 
 
 
3.  We form EQUIMULTIPLES of two quantities whenever we multiply each of them 
the same number of times. 
 For example, 12 and 15 are not only multiples of 4 and 5 respectively, but 
equimultiples of 4 and 5, since 12 and 15 are three times 4 and 5 respectively. 
 
 
4.  Whenever two quantities are capable of exceeding each other by being multiplied 
enough times, the relative size of one to the other is called a RATIO. 
 For example, a foot, when multiplied four times, exceeds a yard, and a yard, when 
multiplied two times, exceeds four feet.  So the relation of a foot to a yard is a "ratio", 
namely the ratio of  1 to 3, and the yard also has a ratio to the foot, namely that of  3 to 
1. 
 But a line does NOT have a ratio to an area, such as a rectangle.  Even though 
each is a kind of quantity, the line has no area at all, and so no multiple of it can ever 
exceed the area of the rectangle.  There is, then, no comparison of these two quantities 
with respect to size. 
 If a quantity A has a ratio to another quantity B, the shorthand notation for their 
ratio is  A : B,  which reads "A to B".  The order of the terms in a ratio makes a 
difference.  For example, if A has to B the ratio of 1 : 2 , then A is HALF of B.  On the 
other hand, if A has to B the ratio of  2 : 1 , then A is the DOUBLE of B. 
 
 
5.  The first term in a ratio is called its ANTECEDENT, and the second term in a ratio is 
called its CONSEQUENT. 
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6.  Given four quantities in two ratios, taking CORRESPONDING MULTIPLES of them 
means taking equimultiples of the antecedents, and again taking equimultiples of the 
consequents. 
 For example, given quantities  A, B, C, D  in the ratios  A : B  and  C : D,  if we 
take multiples of  A  and  B  such as  3A  and  5B,  then the corresponding multiples of  C  
and  D  are  3C  and  5D. 
 
 
7.  One pair of quantities in a ratio is said to COMPARE THE SAME WAY as another 
pair when each pair is the ratio of a greater to a lesser, or when each is the ratio of a lesser 
to a greater, or when both pairs are equalities. 
 For example, the numbers in the ratio  5 : 3  and those in the ratio  7 : 4  compare 
the same way, since  5  >  3  and  7  >  4. 
 Again, the numbers in the ratio  5 : 5  and those in the ratio  7 : 7  compare the 
same way, since  5  =  5  and  7  =  7. 
 But the numbers in the ratios  6 : 4  and  9 : 12  do not compare the same way,  
since  6  >  4  but  9  <  12. 
 
 
8.  If the multiples of two quantities always compare the same way as the corresponding 
multiples of two other quantities, then the first two quantities have the SAME RATIO as 
the other two. 
 For example, suppose you have two ratios  A : B  and  C : D.  And suppose their 
corresponding multiples compare the same way, e.g. 
   5A  >  3B  and  5C  >  3D 
   2A  <  4B  and  2C  <  4D 
and so on.  If this is true for all their corresponding multiples, then  A  has to  B  the 
same ratio that  C  has to  D. 
 
 
9.  If one quantity has to a second the same ratio that a third has to a fourth, then the four 
quantities are said to be PROPORTIONAL. 
 If quantity A has to B the same ratio that C has to D, the shorthand notation for 
that proportion is   A : B  =  C : D ,  which reads "A is to B as C is to D", or, if you 
prefer, "the ratio of A to B is the same as the ratio of C to D". 
 The four terms in a proportion need not all be different.  For example, three terms  
X, Y, Z  can be in proportion like this:    X : Y  =  Y : Z. 
 
 
10.  By contrast, when it is possible to find a multiple of a 1st quantity greater than some 
multiple of a 2nd, but the corresponding multiple of a 3rd quantity is not greater than the 
corresponding multiple of a 4th, then the 1st has to the 2nd a GREATER RATIO than the 
3rd has to the 4th. 
 For example, take  3, 5, 6, and 17 in that order.  Let's multiply 3 and 5 by 4 and 2 
respectively, and likewise multiply 6 and 17 by 4 and 2 respectively. 
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 Notice that  4(3) > 2(5),  whereas  4(6) < 2(17).  We took multiples of 3 and 5, and 
then corresponding multiples of 6 and 17, but the two pairs of multiples do not compare 
the same way.  Since the multiple of 3 exceeded the multiple of 5, whereas the 
corresponding multiple of 6 fell short of the corresponding multiple of 17, therefore 3 has 
to 5 a greater ratio than 6 has to 17.  The way to write this is  3 : 5  >  6 : 17. 
 Again, take  5, 2, 3  and  4  in that order.  Multiply  5  and  2  by  8  and  6,  and 
also  3  and  4  by  8  and  6. 
Now 8(5)  >  6(2) but 8(3)  =  6(4) 
hence 5 : 2  >  3 : 4. 
 
 
11.  If one term in a ratio is not greater than the other, then it is either less than or equal to 
it.  The symbol for this is ≤.  Again, if one term in a ratio is not less than the other, then it 
is either greater than or equal to it.  The symbol for this is ≥ . 
 Using these symbols, we can define “greater ratio” as follows. 
 If  A : B  >  C : D, 
 then for some pair of numbers  n  and  m  it will happen that 
   nA  >  mB but nC ≤  mD. 
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THEOREMS 
 
 
THEOREM 1:  Given any number of quantities, the sum of their equimultiples is 
that same multiple of their sum.  Again, given any number of quantities, the difference of 
their equimultiples is that same multiple of their difference.  
 
This is clear enough in examples. 
 
Suppose you have two quantities which are able to be added 
together, namely A and B.  Take the same multiple of each one, 
say 3 times, giving us equimultiples 3A and 3B. 
 Then the sum of these equimultiples is also 3 times the 
sum of the original quantities.  That is: 
 
 3A + 3B =  3(A + B) 
 
This is because we can subtract A + B from 3A + 3B exactly 
three times. 

And, for the same reason, no matter how many original 
quantities we have, and no matter what multiple we choose to 
take of them all, the sum of the multiples will always be that 
same multiple of the sum of the original quantities.  So, for 
example, 
 
 5A + 5B + 5C  =  5(A + B + C) 
 
and so on. 
 
 
 

The same goes for the differences between unequal 
quantities.  Suppose G is greater than K, and you take any 
equimultiples of G and K, say 3G and 3K.  Then 
 
 3G – 3K = 3(G – K). 
 
If we set out three G's, as in the diagram, and subtract one 
K from each, there will be three remainders of G – K. 

 
 
 
Q.E.D. 
 

A B
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THEOREM 1 Remarks 
 
 
1. Confirm this Theorem with some numerical examples: 
 
 3×6 + 3×5 + 3×4  =  3(6 + 5 + 4) 
 
 7×36 – 7×19 – 7×11  =  7(36 – 19 – 11) 
 
2. Another very basic truth about multiples is this:  If we multiply a quantity by one 
number, and then the result by another number, it makes no difference which multiplier is 
used first.  For example, if we double A and then triple its double, we get 6 times A, and 
again if we triple A and then double its triple, we still get 6 times A.  In other words, 
3(2A) = 2(3A). 
 
 
 
THEOREM 2:  Proportional quantities are proportional inversely. 

 
 
Take any four quantities in proportion, say  A : B  =  C : D. 
I say they are also proportional inversely, that is B : A  =  D : C. 
 
Here's why. 
 
 
 

[1] Take any multiples of A and B, say 5A and 3B. 
 Take the corresponding multiples of C and D, namely 5C and 3D. 
 
[2] Since A : B = C : D, therefore 
 if 5A > 3B,  then  5C > 3D 
 but if 5A < 3B,  then  5C < 3D  (Def. 8), 
and that is true for any multiples of A and B and the corresponding multiples of C and D. 
 
[3] Restating the information in Step 2, but putting B & D first in each case, we have 
 if 3B < 5A,  then 3D < 5C 
 but if 3B > 5A,  then 3D > 5C, 
and that will be true for any multiples of B and A, and the corresponding multiples of D 
and C. 
 
[4] So taking any multiples of B and A, the corresponding multiples of D and C must 
compare the same way.  Therefore 
 B : A  =  D : C  (Def. 8). 
 
Q.E.D. 

A B C D
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THEOREM 2 Remarks 
 
Here is a numerical example of the Theorem: 
since  3 : 4 = 6 : 8, 
so too  4 : 3 = 8 : 6. 
 
 
 
 
THEOREM 3:  Two ratios that are the same with a third ratio are the same as 
each other. 
 

 
Take any three pairs of quantities   A and B,   C and D,   
X and Y,  which are such that 
 A : B  =  X : Y 
and C : D  =  X : Y. 
Then A : B  =  C : D   as well. 
 
Here's the proof. 

 
[1] Take any multiples of A and B, say 5A and 3B. 
 Take the corresponding multiples of X and Y, namely 5X and 3Y. 
 Take the corresponding multiples of C and D, namely 5C and 3D. 
 
[2] Suppose 5A  >  3B. 
 Then, since A : B  =  X : Y,  (given) 

therefore 5X > 3Y.   (Def. 8) 
 
[3] Now  C : D  =  X : Y   (given) 
 But  5X  >  3Y, 
 therefore 5C  >  3D.   (Def. 8) 
 
[4] So if 5A  >  3B, then  5C  >  3D (Steps 2 & 3) 
 Likewise we can prove that 
 if 5A  <  3B, then 5C  <  3D. 
 
[5] So, taking any multiples of A and B, it turns out that they must compare the same 
way as the corresponding multiples of C and D. 

Therefore  A : B  =  C : D.   (Def. 8) 
 
Q.E.D. 
 
 
 
 

A B C D X Y



 155 

THEOREM 3 Remarks 
 
1. That two quantities equal to the same thing are equal to each other is a self-
evident axiom.  But the fact that two ratios the same as a third ratio are also the same as 
each other needs to be proved, because “same ratio” has a rather involved definition. 
 
2. Notice that it is not necessary for all 4 quantities to have a ratio in order for the 
Theorem to be true.  For example, two lines may have the same ratio as two numbers (for 
example, the ratio of being double), and two areas may also have that same ratio.  Then it 
will follow that the two lines and the two areas have the same ratios, even though neither 
line has any ratio to either area. 
 
 
 
 
THEOREM 4:  No ratio can be greater than another ratio, and at the same time 
less than it. 
 
If possible, suppose that A : B  >  C : D 
and yet at the same time A : B  <  C : D. 
Watch what follows from each supposition. 
 
 
For some pair of numbers, say 7 and 3, 
 
 7A  >  3B but 7C  ≤  3D  (since A : B > C : D; Def. 11) 
 
Again, for some pair of numbers, call them N and M, 
 
 NA  ≤  MB but NC  >  MD  (since A : B < C : D; Def.11) 
 
Now, multiply both sides of the top two inequalities by N, and multiply both sides of the 
bottom two inequalities by 7, and we get four new inequalities: 
 
 7NA  >  3NB  7NC  ≤  3ND 
and 7NA  ≤  7MB  7NC  >  7MD 
so 7MB  >  3NB and 3ND  >  7MD, 
in each case taking the first and last terms among three unequal things. 
 
Hence 7M  >  3N and 3N  >  7M, 
because in each case the greater multiple (whether of B or of D) must have a greater 
multiplier.  But the number 7M cannot be both greater than and less than the number 3N.  
So it is also impossible that one ratio should be both greater than and less than another 
ratio. 
 
Q.E.D. 
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THEOREM 4 Remarks 
 
 
We can now see that just as any two comparable quantities must either be equal, or one 
greater than the other, likewise any two ratios must either be the same or one must be 
greater than the other.  Consider any two ratios,  A : B  and  C : D.  Either all multiples of  
C  and  D  corresponding to multiples of  A  and  B  compare in the same way, or some 
don’t.  If all do, then the two ratios are the same (Def. 8).  If some do not, then one ratio 
will be greater, and by the present Theorem, the other must be less. 
 
 
 
THEOREM 5:  If the multiples of two quantities are equal, and the 
corresponding multiples of two other quantities are also equal, then the four original 
quantites are proportional. 
 
Given:  Quantities  A, B, C, D. 
  Numbers  n  and  m  such that 
  nA  =  mB and nC  =  mD 
 
Prove:  A : B  =  C : D 
 
[1]  Take any random multiples of  A  and  B,  say  xA  and  yB, where  x  and  y  are any 
numbers you please.  Suppose first that  xm  >  ny. 
 
[2] Then  xmB  >  nyB and xmD  >  nyD 
since the greater multiplier yields a greater multiple of the same thing. 
 
[3] But  xmB  =  xnA and xmD  = xnC 
since we are given that  mB = nA  and  mD = nC, and we have multiplied them all by  x. 
 
[4] Hence  xnA  >  nyB and xnC  >  nyD 
putting together Steps 2 and 3. 
 
[5] Dividing all by n,  we have 
   xA  >  yB and xC  >  yD 
Likewise if we assume instead that  xm  <  ny, then 
   xA  <  yB and xC  <  yD 
and if we assume instead that  xm  =  ny, then 
   xA  =  yB and xC  =  yD 
 
So, taking random multiples of  A  and  B,  the corresponding multiples of  C  and  D  
must compare in the same way.  Hence 
   A : B  =  C : D  (Def. 8) 
 
Q.E.D. 
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THEOREM 5 Remarks: 
 
Verify the theorem concretely by finding a numerical example. 
 
 
 
THEOREM 6:  Equal quantities have the same ratio to any one quantity. 
 
 
Take any two equal quantities A and B, and 
any third quantity C to which they have a 
ratio.  I say that  A : C  =  B : C. 
 
 
[1] Take any multiples of A and C, say 2A and 3C. 
 Take the corresponding multiple of B, namely 2B. 
 
[2] Since A  =  B  (given) 
 thus 2A  =  2B (equimultiples of equal things are equal) 
 
[3] So if  2A  >  3C,  then also  2B  >  3C (since 2A = 2B) 
 but if  2A  <  3C, then also  2B  <  3C (since 2A = 2B) 
 and if  2A  =  3C, then also  2B  =  3C (since 2A = 2B) 
 
[4] Thus any multiples of A and C must compare the same way as the corresponding 
multiples of B and C.  Therefore 
  A : C  =  B : C  (Def. 8). 
 
Q.E.D. 
 
 
 
THEOREM 6 Remarks 
 
1. We used the numbers 2 and 3 in this Theorem, but there is nothing special about 
them – if you look at the proof carefully, you will see that no Step depends on those 
specific numbers.  We could have used general symbols for any two numbers (such as  n  
and  m) just as easily. 
 
2. With numbers, this Theorem is an especially trivial piece of obviousness, i.e. 
equal numbers have the same ratio to the same number: 
 5 : 7 = 5 : 7. 
 
3. It should also be clear that the same quantity has the same ratio to equal 
quantities:  If  A = B,  then  C : A  =  C : B.  For, by the present Theorem,  A : C  = B : C, 
but by Theorem 2, these are proportional inversely, i.e.  C : A  =  C : B. 
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THEOREM 7:  How to find equimultiples of two unequal quantities such that the 
multiple of the greater will be greater than some multiple of a third quantity, while the 
multiple of the lesser will be less. 
 
Suppose A > B, and C is any third quantity 
comparable to them. 
 Is it possible to multiply both A and B by the 
same number N, and C by some number R, such that
 NA  >  RC 
but NB  <  RC  ? 
 
Believe it or not, no matter how close A and B are to being equal, no matter how small 
the difference between them is, we can always do it.  Here's how: 
 
[1] There must be a first multiple of  (A – B)  that is greater than C. 
 Let it be  9(A – B).  
 So 9(A – B)  >  C. 
 
[2] There must also be a first multiple of  C  that is greater than  9B. 
 Let it be  4C. 
 Since  4C  is the first multiple of C that exceeds 9B, 
 hence 9B is greater than or equal to 3C 
 so C + 9B is greater than or equal to 4C  (adding C to each) 
 
[3] Now 9(A – B)  >  C     (Step 1) 
 so 9A – 9B  >  C     (Thm.1) 
 so 9A  >  C + 9B     (adding 9B to each) 
 but            C + 9B  ≥  4C     (Step 2) 
 so 9A  >  4C 
 
[4] So 9A  >  4C     (Step 3) 
 but 9B  <  4C     (Step 2) 
 
We did it! 
 
Q.E.F. 
 
 
THEOREM 7  Remarks: 
 
1. As with Theorem 6, there is nothing special about the numbers 9 and 4 occurring 
in this Theorem.  Use  n  and  m, or some other pair of numbers, if you prefer. 
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2. Let's try a numerical example.  Let 
 A = 20 
 B = 19 
 C = 23 
We want to multiply 20 and also 19 by the same number, so that the multiple of 20 is 
greater than some multiple of 23, while the multiple of 19 is less. 
 Following what we did in the Theorem, (A – B) = 1.  And the first multiple of this 
that is greater than 23 is 24.  That is Step [1].  Following Step [2], we next find the first 
multiple of 23 that is greater than 19 × 24.  Well, 
 19 × 24 = 456 
and 20 × 23 = 460,  so that is the first multiple of 23 that is greater than  19 × 24. 
According to the Theorem, the multiples satisfying the requirements are: 
 24 × A = 480 
 24 × B = 456 
 20 × C = 460 
 
3. Find a way to multiply 36 and 35 by the same number so that the multiple of 36 
exceeds some multiple of 57, but the multiple of 35 does not. 
 
 
 
THEOREM 8:  Of two unequal quantities, the greater one has a greater ratio to 
any other quantity than the lesser one has to it. 
 
Let A and B be unequal quantities, A the greater one, 
and C any other quantity comparable with them.  Then 
 A : C  >  B : C. 
 
The proof is as follows. 
 
[1] Since A  >  B, therefore we can find a multiple of A that is greater than some 
multiple of C, while the same multiple of B is less (Thm.7).  Suppose then that 
 5A  >  3C 
but 5B  <  3C. 
 
[2] Therefore it is possible to take a multiple of A that exceeds a multiple of C (i.e. 
5A  >  3C), while the corresponding multiple of B does not exceed that same multiple of 
C (i.e. 5B  <  3C).  Therefore 
 A : C  >  B : C  (Def. 9) 
 
Q.E.D. 
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THEOREM 8 Remarks 
 
 
1. Here is a numerical example.  Since 7 > 3, then if we take any third number, such 
as 5, it follows that 7 : 5  >  3 : 5. 
 
2. Also, of two unequal quantities, any other quantity has to the lesser one a greater 
ratio.  Say A and B are unequal, A the greater, and C is any third quantity comparable to 
them.  Then C : B  >  C : A.  Why? 
 Since A > B, we can find a multiple of A that is greater than some multiple of C, 
while the same multiple of B is less (Thm.7).  Say 
 3C  >  5B 
but 3C  <  5A. 
Therefore it is possible to take multiples of C and B (namely 3C and 5B), such that the 
multiple of C is greater than that of B, while the same multiple of C is less than the 
corresponding multiple of A.  Therefore 
 C : B  >  C : A  (Def. 10). 
 
 
 
 
 
THEOREM 9:  A first quantity has to a second quantity a greater ratio than a 
quantity less than the first has to a quantity greater than the second. 
 
 
Suppose A and B are any two quantities having a ratio,  
and C  <  A 
and D  >  B. 
Then A : B  >  C : D. 
 
Here's why: 
 
 
[1] Since  A  >  C,  (given) 
therefore it is possible to find some multiple of A that exceeds a certain multiple of B, 
while the same multiple of C falls short of it (Thm.7).  Suppose, then, that 

 5A  >  2B 
while  5C  <  2B 

 
[2] Since  D  >  B,  (given) 
 
 thus  2D  >  2B  (doubling each) 
 but  5C  <  2B  (Step 2) 
 so  2D  >  5C 
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[3] So  5A  >  2B  (Step 1) 
 but  5C  <  2D  (Step 2) 
And therefore it is possible to take a multiple of A that is greater than some multiple of B 
whereas the corresponding multiple of C is less than the corresponding multiple of D. 
 Therefore A : B  >  C : D  (Def.10) 
 
Q.E.D. 
 
 
 
THEOREM 9 Remarks 
 
 
1. Here is a numerical example. 
 4  <  9 
and 12  >  3, 
so 9 : 3  >  4 : 12. 
 
2. Also, if  A > B  and  C is not greater than D, then  
A : B  >  C : D.  For if C is not greater than D, it is either 
equal to it, or less than it. 
 First suppose that  C = D.  Then  3A > 3B,  but  
3C = 3D; and thus a multiple of A is greater than a 
multiple of B, while the corresponding multiple of C is 
not greater than the corresponding multiple of D.  
Therefore  A : B  >  C : D  (Def. 10). 
 Now suppose that  C < D.  Then  3A > 3B,  but  
3C < 3D,  and so again  A : B > C : D (Def. 10). 
 
 
 
 
 
THEOREM 10:  Quantities having the same ratio to the same quantity are equal. 
 
 
Suppose two quantities A and B have the same ratio to C, that 
is   A : C = B : C. 
Then A = B. 
 
Proof: 
 
[1] If A were greater than B, then A : C  >  B : C  (Thm.8) 
 But in fact    A : C  =  B : C  (given) 
 Therefore A is not greater than B. 
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[2] If A were less than B, then  A : C  <  B : C  (Thm.8) 
 But in fact    A : C  =  B : C  (given) 
 Therefore A is not less than B. 
 
[3] Since A is not greater than B, nor is it less than B, therefore it is equal to B. 
 
Q.E.D. 
 
 
 
THEOREM 10 Remarks 
 
1. This Theorem is the converse of Theorem 6. 
 
2. This Theorem is an important tool for proving the equality of all kinds of 
quantities.  Whenever we can derive a proportion such as this:  X : Z :: Q : Z, we can 
conclude from this Theorem that  X = Q. 
 
 
 
 
THEOREM 11:  Of two quantities, the one having a greater ratio to any third 
quantity is greater. 
 
Suppose you have three quantities A, B, C, and  A : C  >  B : C. 
Then A  >  B. 
 
 
Proof: 
 
 
[1] If A were equal to B, then  A : C  =  B : C  (Thm.6) 
 But in fact    A : C  >  B : C  (given) 
 Therefore A is not equal to B. 
 
[2] If A were less than B, then  A : C  <  B : C  (Thm.6) 
 But in fact    A : C  >  B : C  (given) 
which is impossible, since two ratios cannot be greater than each other (Thm. 4). 

Therefore A is not less than B. 
 
[3] Since A is not equal to B, nor is it less than B, therefore it is greater than B. 
 
 
Q.E.D. 
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THEOREM 11 Remarks 
 
 
Also, of two quantities, the one to which any third quantity has a lesser ratio is greater.  
Suppose that  C : B  >  C : A.  Then it has to be that  A > B.  Why? 
  (1) If  A  =  B, then C : B  =  C : A  (Thm.6, Remark 3) 

  but C : B  >  C : A  (given) 
  Therefore A is not equal to B. 

  (2) If  A  <  B, then C : A  >  C : B  (Thm.8, Remark 2) 
   but C : B  >  C : A  (given) 
 and two ratios cannot be greater than each other (Thm.4). 
   Therefore A is not less than B. 
  (3)  Since A is not equal to B (Step 1), and A is not less than B (Step 2), 

therefore A is greater than B. 
 

 
 
 
 
THEOREM 12:  If the first term in a proportion is greater than the third, then the 
second will be greater than the fourth (but if less, less, and if equal, equal). 
 
 
 
Suppose A : B  =  C : D 
and  A  >  C. 
Then also B  >  D. 
 
Proof: 
 
 
[1] First try to assume that  B  =  D. 
 So B  =  D    (assumed) 
 But A  >  C    (given) 
 so A : B  >  C : B   (Thm.8) 
 or A : B  >  C : D   (assuming B = D) 
 But A : B  =  C : D   (given) 
 So B is not equal to D. 
 
[2] Next try to assume that  B  <  D. 
 So B  <  D    (assumed) 
 But A  >  C    (given) 
 so A : B  >  C : D   (Thm.9) 
 But A : B  =  C : D   (given) 
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 So B is not less than D. 
 
[3] Since B is not equal to D  (Step 1) 
 and B is not less than D  (Step 2) 

thus B  >  D. 
 
[4] Similarly, we can prove that 
  if  A  <  C,  then also  B  <  D, 
 and if  A  =  C,  then also  B  =  D. 
 

Q.E.D. 
 
 
 
THEOREM 13:  Any two quantities have the same ratio as their equimultiples, 
taken in corresponding order. 
 
Let A and B be any two quantities in a ratio, and take any 
equimultiples of them, say 3A and 3B. 
I say that A : B  =  3A : 3B. 
 
 
[1] Take any multiples of A and B, such as 2A and 5B. 
 Take the corresponding multiples of 3A and 3B, 
namely 2(3A) and 5(3B). 
 
[2] Now, if 2A  >  5B 
 then  3(2A)  >  3(5B) 
since equimultiples of unequals are unequal in the same order. 
 Thus  2(3A)  >  5(3B) 
since the order of multiplication makes no difference (as we noted in the Remarks to 
Theorem 1).  In sum, 
 if  2A  >  5B then    2(3A)  >  5(3B). 
 
[3] Likewise, if 2A  <  5B then    2(3A)  <  5(3B), 
 and if  2A  =  5B then    2(3A)  =  5(3B). 
 
[4] So, taking any multiples of A and B, it turns out that the corresponding multiples 
of 3A and 3B must compare the same way.  Therefore  A : B  =  3A : 3B  (Def. 8). 
 
Q.E.D. 
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THEOREM 13 Remarks 
 
 
1. It follows also that two quantities have the same ratio as their corresponding 
measures.  For example: A : B  =  ⅓A : ⅓B. 
 The reason is that  A  and  B  are equimultiples of  ⅓A  and  ⅓B, and so, by the 
present Theorem, the four of them are proportional. 
 
2. Clearly, too, if  A : B  =  C : D, then any equimultiples of A and B will be 
proportional to any multiples of C and D.  For example,  5A : 5B  =  3C : 3D. 
 For 5A : 5B  =  C : D (Thm.13) 
 but 3C : 3D  =  C : D (Thm.13) 
 hence 5A : 5B  =  3C : 3D (Thm.3) 
 
3. Also,  Corresponding multiples of proportional quantities are proportional. 
 i.e. if  A : B  =  C : D 
 then  3A : 2B  =  3C : 2D 
(I chose 3 and 2 for my multiples, here, but any numbers would do). 
 To prove this, simply take any multiples of  3A  and  2B, say  5(3A)  and  6(2B). 
 Take also the corresponding multiples of  3C  and  2D, i.e.  5(3C)  and  6(2D). 
 

Now if  5(3A)  >  6(2B) 
 then  15A  >  12B  (simply by multiplying) 
 thus  15C  >  12D  (since A : B  =  C : D) 
 so  5(3C)  >  6(2D) 
 
 So if  5(3A)  >  6(2B) then 5(3C)  >  6(2D). 
In short, any random multiples being taken of 3A and 2B, the corresponding multiples of 
3C and 2D must compare the same way.  Therefore 
   3A : 2B  =  3C : 2D. 
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THEOREM 14:  Alternating the terms in a proportion makes a new proportion. 
 
 
 
Suppose that A : B  =  C : D. 
Then also A : C  =  B : D. 
 
Here's why: 
 
 
[1] Take any multiples of A and C, say  7A  and  2C. 
 Take the corresponding multiples of B and D, namely  7B  and  2D. 
 
[2] Now, since A : B  =  C : D,   (given) 

then  7A : 7B  =  2C : 2D   (Thm.13, Remark 2) 
 
[3] So  if  7A  >  2C,  then  7B  >  2D (Thm.12) 
 but  if  7A  <  2C, then  7B  <  2D (Thm.12) 
 and  if  7A  =  2C, then  7B  =  2D (Thm.12) 
 
[4] So, taking any multiples of A and C, it turns out that the corresponding multiples 
of B and D must compare in the same way.  Therefore 
   A : C  =  B : D    (Def. 8) 
 
 
Q.E.D. 
 
 
 
THEOREM 14 Remarks 
 
1. Of course, the proportion will not alternate unless all four quantities are 
comparable.  For example, if two lines have the same ratio as two areas, we cannot 
alternate the proportion, since then we would be saying that a line has to an area the same 
ratio that another line has to another area, whereas, in fact, a line does not have any ratio 
to an area at all. 
 
2. The new ratios resulting from alternating the terms in the original proportion do 
not have to be the same as the ratios in the original proportion.  For example, given 
 2 : 4  =  3 : 6, 
if we alternate that proportion, we get a new proportion: 
 2 : 3  =  4 : 6. 
But these two new ratios are not the same as the two original ratios. 
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THEOREM 15:  If any two ratios are the same as a third, then the sums of their 
corresponding terms also have that same ratio. 
 

 
 
 
Suppose that  A : B  =  C : D 
and also that  A : B  =  E : F 
Then   A : B  =  C + E : D + F 
 
 
 

[1] Take any multiples of A and B, say 2A and 3B. 
 Take the corresponding multiples of C, D, E, F, namely 2C, 3D, 2E, 3F. 
 
[2] If  2A  >  3B, 
 then  2C  >  3D   (since A : B  =  C : D) 
 and  2E  >  3F   (since A : B  =  E : F). 
 
 But then 2C + 2E  >  3D + 3F,  (adding) 
 that is  2(C + E)  >  3(D + F)  (Thm.1) 
 
[3] So if  2A  >  3B,    then   2(C + E)  >  3(D + F). 
  Likewise if  2A  <  3B,    then   2(C + E)  <  3(D + F). 
 and if  2A  =  3B,    then   2(C + E)  =  3(D + F). 
 
[4] Therefore, taking any multiples of A and B, we find that whenever they are 
unequal, the corresponding multiples of (C + E) and (D + F) are also unequal and in the 
same order.  Therefore   A : B  =  C + E : D + F. 

Q.E.D. 
 
 
THEOREM 15 Remarks 
 
 
1. Obviously  C D E F  must be the same kinds of quantities so we can add them 
together.  As an example, let's use numbers: 
 1 : 2  =  3 : 6 
and 1 : 2  =  5 : 10 
so 1 : 2  =  3 + 5  :  6 + 10. 
 
2. Another similar and important Theorem is this: 
 Given:  A : B  =  C : D 
 Prove:  A + B : B  =  C + D : D 
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Take any multiples of A + B and B, e.g.  2(A + B)  and  3B. 
Take the corresponding multiples of  C + D and D, i.e.  2(C + D)  and 3D. 
 
 Now, if 2(A + B)  >  3B 
 then  2A + 2B  >  3B (Thm.1) 
 so  2A  >  B  (subtracting 2B from each side) 
 thus  2C  > D  (since A : B  =  C : D) 
 so  2C + 2D  >  3D (adding 2D to each side) 
 i.e.  2(C + D)  >  3D (Thm.1) 
 
 So  if    2(A + B)  >  3B then    2(C + D)  >  3D. 
 Likewise if    2(A + B)  <  3B then    2(C + D)  <  3D. 
 and  if    2(A + B)  =  3B then    2(C + D)  =  3D. 
 
That is, taking any random multiples of (A + B) and B, they must compare the same way 
as the corresponding multiples of (C + D) and D.  Therefore    A + B : B  =  C + D : D. 
 
Q.E.D. 
 
Notice that this Theorem does not depend on A, B, C, and D being all comparable 
quantities.  A and B must be comparable, and C and D also, but A and B might be 
volumes, and C and D might be areas. 
 
 
 
 
 
THEOREM 16:  If any two ratios are the same as a third, then the differences of 
their corresponding terms also have that same ratio. 
 
 
 
Suppose that A : B  =  C : D 
and also that A : B  =  E : F 
then  A : B  =  (C – E) : (D – F) 
 
 
 
We will start by proving that (C – E) and (D – F) have the same ratio as E and F, and 
from there it will be easy to show they have the same ratio as A and B.  Accordingly, 
 
 
 
[1] Take any multiples of  (C – E)  and  E, say  3(C – E)  and  5E. 
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[2] Now, C : D  =  E : F, 
as is clear from what is given.  Therefore, alternately 
 C : E  =  D : F      (Thm.14) 
So if 3C  >  (5 + 3)E then 3D  >  (5 + 3)F (Def. 8) 
i.e if 3C  >  5E + 3E then 3D  >  5F + 3F  (Thm.1) 
so if 3C – 3E  >  5E  then 3D – 3F  >  5F  (subtracting 3E and 3F) 
so if 3(C – E)  >  5E then 3(D – F)  >  5F (Thm.1) 
 
[3] By the same kind of argument, 
if 3(C – E)  <  5E then 3(D – F)  <  5F 
and if 3(C – E)  =  5E then 3(D – F)  =  5F 
 
[4] So, taking random multiples of  (C – E)  and  E, they must compare the same way 
as the corresponding multiples of  (D – F)  and  F.  Therefore 
 (C – E) : E  =  (D – F) : F    (Def. 8) 
 
[5] Alternating this proportion, we have 
 (C – E) : (D – F)  =  E : F    (Thm.14) 
 
[6] But since E : F  =  A : B (given), it follows that 
 A : B  =  (C – E) : (D – F)    (Thm.3) 
 
Q.E.D. 
 
THEOREM 16 Remarks 
 
 
1. Here is a numerical example: 
 1 : 2  =  7 : 14 
and 1 : 2  =  3 : 6 
so 1 : 2  =  7 – 3 : 14 – 6 
 
 
2. In Step 5 we alternated a proportion.  How do we know that C, D, E, and F are all 
comparable quantities, such that we can alternate the proportion?  We must presume this 
in what we are given:  if they were not all comparable, then we could not even subtract E 
from C, for example. 
 
3. A similar and important Theorem is this: 
 Given:  A : B  =  C : D. 
 Prove:  A – B : B  =  C – D : D. 
 
Take any multiples of  A – B  and  B,  e.g.  2(A – B)  and  3B. 
Take the corresponding multiples of  C – D  and D,  i.e.  2(C – D)  and  3D. 
 
 Now, if 2(A – B)  >  3B 
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 then  2A – 2B  >  3B (Thm.1) 
 so  2A  >  5B  (adding 2B to each side) 
 thus  2C  >  5D  (since A : B  =  C : D) 
 so  2C – 2D  >  3D (subtracting 2D from each side) 
 i.e.  2(C – D)  >  3D. (Thm.1) 
 
 so if  2(A – B)  >  3B then  2(C – D)  >  3D. 
 Likewise if 2(A – B)  <  3B then  2(C – D)  <  3D 
 and if  2(A – B)  =  3B then  2(C – D)  =  3D 
 
That is, taking any random multiples of  (A – B) and B, we find they must compare the 
same way as the corresponding multiples of (C – D) and D. 
Therefore  A – B : B  =  C – D : D (Def. 8) 
 
Q.E.D. 
 
 
 
 
 
 
 

FORMING A PROPORTION "EX AEQUALI" 
 
THEOREM 17:  If the antecedents in one proportion are also the antecedents in 
a second proportion, then a new proportion arises by taking the consequents of the first 
proportion as antecedents, and the consequents of the second proportion as consequents. 
 

 
 
 
Suppose A : B  =  C : D 
and also A : E  =  C : F 
then  B : E  =  D : F 
 
 
 
 

Take any multiples of B and E, say  2B  and  3E. 
Take the corresponding multiples of D and F,  i.e.  2D  and  3F. 
 
[1] Now, if 2B  >  3E 
 then  A : 2B  <  A : 3E (Thm.8, Remark 2) 
 but  A : 2B  =  C : 2D (since A : B  =  C : D; & Thm.13 Remark 3) 
 thus  C : 2D  <  A : 3E 
 

A
B

E C
D
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[2] So  C : 2D  <  A : 3E (Step 1) 
 but  A : 3E  =  C : 3F (since A : E  =  C : F; & Thm.13 Remark 3) 
 thus  C : 2D  <  C : 3F 

therefore 2D  >  3F  (Thm.11 Remarks) 
 
 
[3] Thus if  2B  >  3E then 2D  >  3F  (Steps 1-2) 
 Likewise if 2B  <  3E then 2D  <  3F 
 and if  2B  =  3E then 2D  =  3F 
 
[4] That is, taking any random multiples of  B  and  E, they must compare the same 
way as the corresponding multiples of  D  and  F. 
Therefore  B : E  =  D : F.  (Def. 8) 
 
Q.E.D. 
 
 
 
 
 
 
THEOREM 17 Remarks 
 
 
1. Here is a numerical example: 
 3 : 6  =  4 : 8 
and 3 : 9  =  4 : 12 
so 6 : 9  =  8 : 12 
 
2. According to the Theorem, whenever two proportions have equal antecedents, 
their consequents form a proportion (taken in proper order).  We are actually forming a 
proportion just by “dropping out” the 2 pairs of identical antecedents in the original two 
proportions, leaving us with just the consequents.  Ancient mathematicians called this 
procedure “forming a proportion ex aequali.” 
 
3. It is not necessary for the antecedents of the two proportions to be the same in 
order for the Theorem to work; they need only be proportional.  Thus 
if A : B = C : D 
and E : F = G : H 
and A : E = C : G (i.e. the antecedents of the first two proportions are proportional) 
then B : F = D : H (i.e. the consequents of the first two proportions are proportional). 
If you don't believe it, here is the proof: 
 A : B = C : D (given) 
 A : E = C : G (given) 
so B : E = D : G (Thm.17) 
so E : B = G : D (Thm.2) 
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but E : F = G : H (given) 
so B : F = D : H (Thm.17).   Q.E.D. 
 
4. If B and D happen to be comparable quantities (as opposed to being a line and an 
area, for example), the proof for Theorem 17 is much simpler: 
 A : C  =  B : D  (Alternate of the first given proportion) 
 A : C  =  E : F  (Alternate of the second given proportion) 
so B : D  =  E : F  (Thm.3) 
thus B : E  =  D : F  (Alternating) 
 
 
 
 
 
 
 
 
 
 
 

FORMING A PROPORTION BY TRACING THE LETTER "U" 
 
THEOREM 18:  If the extreme terms in one proportion are also the extreme 
terms in a second proportion, a new proportion arises by taking the middle terms of the 
first proportion as extremes, and the middle terms of the second proportion as middles. 
 

 
Suppose that A : B  =  C : D 
and also that A : E  =  F : D 
then  B : E  =  F : C 
 
Let's adopt the usual method, and try to show that  B : E  =  F : C  
by proving that random multiples of B and E must compare the 
same way as the corresponding multiples of F and C. 
 
Take any multiples of  B  and  E,  say  3B  and  5E. 
Take the corresponding multiples of  F  and  C,  namely  3F  and  
5C. 
 

 
[1] Now if  3B  >  5E 
 then  A : 5E  >  A : 3B  (Thm.8, Remark 2) 
 but  A : 3B  =  C : 3D  (A : B = C : D; Thm.13 Remark 3) 
 so  A : 5E  >  C : 3D 
 but  A : 5E  =  F : 5D  (A : E = F : D; Thm.13 Remark 3) 
 thus  F : 5D  >  C : 3D 

A B C D

A E F D
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[2] So  C : 3D  <  F : 5D  (Step 1) 
 but  F : 5D  =  3F : 15D  (Thm.13; multiplying by 3) 
 thus  C : 3D  <  3F : 15D 
 
[3] So  C : 3D  <  3F : 15D  (Step 2) 
 but  C : 3D  =  5C : 15D  (Thm.13; multiplying by 5) 
 thus  5C : 15D  <  3F : 15D 
 therefore 3F  >  5C   (Thm.11) 
 
[4] Thus if  3B  >  5E then 3F  >  5C (Steps 1 – 3) 
 Likewise if 3B  <  5E then 3F  <  5C 
 And if  3B  =  5E then 3F  =  5C 
 
[5] That is, taking any random multiples of B and E, they must compare to each other 
the same way as the corresponding multiples of F and C compare to each other. 
 Therefore B : E  =  F : C   (Def. 8) 
 
Q.E.D. 
 
THEOREM 18 Remarks 
 
 
 
1. Here is a numerical example: 
 4 : 3  =  16 : 12 
and 4 : 2  =  24 : 12 
so 3 : 2  =  24 : 16 
 
 
2. As a mnemonic device for remembering the proportion that arises out of the 
original two proportions, think of it as forming a “letter U”:  if you look at B, E, F, and C, 
in the original two given proportions, you are tracing out a letter “U”.  And that is the 
order in which they form a proportion:  B : E = F : C.  So we might call this “The U-
Theorem”, and we might call the procedure of forming a proportion in this way “Tracing 
the U”.  Ancient geometers called this a “perturbed proportion.” 
 
 
3. For the Theorem to work, the extremes need not be the same, but only 
proportional in the order of the letter U.  Thus 
if A : B  =  C : D 
and E : F  =  G : H 
and A : E  =  H : D  (i.e. extremes of the 1st two proportions are proportional) 
then B : F  =  G : C  (i.e. the middles of the 1st two proportions are proportional) 
 
The proof for it is as follows. 
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First A : B  =  C : D  (given) 
and A : E  =  H : D  (given) 
so B : E  =  H : C  (Thm.18) 
so E : B  =  C : H  (inverting) 
but E : F  =  G : H  (given) 
so B : F  =  G : C  (Thm.18) 
 
Q.E.D. 
 
 
 
 “HOOK”:  THREE MEANS. 
 
There are many different kinds of “means” or “middles” between any two comparable 
magnitudes, e.g. between two line-lengths.  Three of the most interesting are the 
arithmetic mean (or average), the geometric mean (or mean proportional), and the 
harmonic mean: 

 
 
 

ARITHMETIC MEAN 
 
Definition:  ma – a = b – ma  
 
Formula:  ma = (a + b)/2 
 
 
 
 

GEOMETRIC MEAN 
 
Definition:  a : mg = mg : b 
 
Formula:  mg = √ab 
 
 
 
 

HARMONIC MEAN 
 
Definition:  (mh – a) : a  =  (b – mh) : b 
 
Formula:  mh = (2ab)/(a+ b) 
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There are many interesting theorems relating these means.  Here is one of them: 
 
 
 
THEOREM:  The product of two extremes is equal to the product of their arithmetic and 
harmonic means. 
 
 
Given: extremes  a  and  b, 
  their arithmetic mean:  (a + b)/2 
  their harmonic mean:  (2ab)/(a + b) 
 
Proof: 
 
Multiply the two formulas as given, and the (a + b) terms cancel out, and so do the 2s, 
leaving just (ab), the product of the extremes. 
 
Q.E.D. 
 
 
 
PORISM  1:  The geometric mean  mg  is the geometric mean not only between the 
original extremes  a  and  b,  but also between the arithmetic and harmonic means 
between  a  and  b. 
 
For  ab = mamh   (Theorem above) 
 
so  (√a·b)(√a·b)  =  mamh  
 
so  ma : mg  =  mg : mh 
 
Q.E.D.   
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PORISM 2: 
 
 
In the accompanying figure, if  a  and  b  are our extremes, 
then CD is their arithmetic mean, 
 DE is their geometric mean, 
 DK is their harmonic mean. 
 
Since CD = CA = (a + b)/2, the radius is the arithmetic mean. 
 
And DE = √a·b = the geometric mean between  a  and  b. 
 
And DK is the 3rd proportional such that 
 
 CD : DE = DE : DK 
 
i.e. it is the 3rd proportional from the arithmetic and geometric means between  a  and  b.  
But only the harmonic mean between  a  and  b  can be that (according to Porism 1 
above).  Hence DK is the harmonic mean between  a  and  b. 
 
Q.E.D. 
 
 
 
Again, it is plain that the following figure exhibits the three means between  a  and  b: 
 
 
 
 
 
 
 
 
 
 
 
 
 a b



 
 
 
 
 
 

Chapter Six 
 
 

Proportions 
in Plane Geometry 
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DEFINITIONS 
 
 

1.  SIMILAR RECTILINEAL FIGURES are 
those with corresponding angles equal and the 
sides about the equal angles proportional. 

For example, quadrilateral ABCD is 
similar to quadrilateral EFGH, because all their 
corresponding angles are equal (e.g. ∠1 = ∠2) 
AND the sides about the equal angles are 
proportional when taken in corresponding 
order, i.e.  AB : BC = EF : FG. 

On the other hand, quadrilateral WXYZ, although equiangular with ABCD, is 
NOT similar to it, because the sides about its angles have ratios different from the ratios 
of the sides about the angles in ABCD.  For example, ∠3 = ∠1, but  AB : BC is not the 
same as WX : XY. 

Also, the sides of a rhombus are proportional to the sides of a square, since they 
are all equal, but a rhombus is not similar to a square, since its angles differ from those 
of a square. 

From these examples, it should be clear that similar figures are the same shape, 
but can have different sizes. 
 
 
2. If ΔLMN is similar to ΔPQR, we can use the 
symbol ~ to designate that relationship.  So “ΔLMN ~ 
ΔPQR” means “Triangle LMN is similar to triangle 
PQR”. 
 
 
3. Quantities are CONTINUOUSLY PROPORTIONAL when they form a 
proportion in which the consequent of the first ratio is the antecedent of the next ratio. 
 For example,  1, 2, 4  are continuously proportional, because  1 : 2  =  2 : 4. 
Also,  3, 6, 12, 24  are continuously proportional, because   3 : 6   =   6 : 12   =   12 : 24. 
 
 
4. To DUPLICATE a ratio means to find a third term in continuous proportion with 
the two terms in the original ratio, and to form a new ratio of the first term to the third 
term. 
 For example, to duplicate the ratio of  1 : 2,  we find a third term in continuous 
proportion with them, namely  4,  since  1 : 2  =  2 : 4,  and so  1 : 4  is the duplicate ratio 
of  1 : 2. 
 Similarly, if we find two ratios in continuous proportion with the original ratio, as 
in   1 : 2   =   2 : 4   =   4 : 8,  then the extreme terms are said to have the triplicate ratio 
of the original terms, i.e.  1 : 8  is the triplicate ratio of   1 : 2. 
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5. Two figures have RECIPROCALLY PROPORTIONAL 
SIDES if a side in the first figure is to a side in the second figure as 
another side in the second figure is to another side in the first figure. 
For example, the sides of rectangles C · D and E · K are 
reciprocally proportional if  C : E  =  K : D. 
 
 
6. A straight line is CUT IN MEAN AND EXTREME RATIO if the whole of it has 
to the greater part of it the same ratio that the greater part of it has to the remaining part 
of it. 
 For example, AB is cut in mean and extreme ratio at G if  BA : AG  =  AG : GB. 

 
 
 

 AG is called the GREATER SEGMENT of AB, and GB is called the LESSER 
SEGMENT. 
 Because of the beauty of this ratio (which is used in art and architecture and is 
approximated by some parts of the human body and other things in nature), it is called the 
GOLDEN RATIO.  So a GOLDEN RECTANGLE is one whose sides are to each other 
in the golden ratio. 
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THEOREMS 
 
THEOREM 1:  Triangles having the same height are to each other as their bases.  
Parallelograms having the same height are to each other as their bases. 
 
Triangles DHE and EHG 
have the same height, HT. 
I say that   rDHE : rEHG  
=  DE : EG,  that is, their 
areas have the same ratio that 
their bases do. 
 
[1] Extend the bases both ways. 
 Cut off any number of parts equal to DE, say DC, CB, BA. 
 Cut off any number of parts equal to EG, say GK, KL. 
 
[2] Since AB = DE, therefore rAHB = rDHE  (Ch.1, Thm.33) 
 Likewise rBHC and rCHD also equal rDHE. 
 
[3] Since GK = EG, therefore rGHK = rEHG  (Ch.1, Thm.33) 
 Likewise rKHL = rEHG. 
 
[4] So rEHA = 4 rDHE,  and  EA = 4DE 
 and rEHL = 3 rEHG,  and  EL = 3EG 
and, in general, when we multiply the base of either of the original triangles, the triangle 
on that multiple base, and having height HT, also multiplies the area of the original 
triangle the same number of times. 
 
[5] Suppose rEHA > rEHL (i.e. 4 rDHE > 3 rEHG), 
 then also EA > EL  (i.e. 4 DE > 3 EG), 
since the base of the greater triangle will be greater, just as the bases of equal triangles 
are equal, for triangles under the same height. 
 So if  4 rDHE  >  3 rEHG, then 4 DE  >  3 EG. 
 Likewise, if 4 rDHE  <  3 rEHG, then 4 DE  <  3 EG 
 and if  4 rDHE  =  3 rEHG, then 4 DE  =  3 EG 
 
[6] And so whatever multiples of rDHE and rEHG we take, however they 
compare, the corresponding multiples of their bases must compare the same way. 
Therefore  rDHE : rEHG  =  DE : EG (Ch.5, Def. 8) 
 
[7] And since these triangles have the same ratio as their doubles (Ch.5, Thm.13), it 
follows that the parallelograms DMHE and EHNG, being the doubles of these triangles 
(Ch.1, Thm.33), also have the same ratio as the bases DE and EG. 
 
Q.E.D. 

M H N
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THEOREM 2:  If a straight line is drawn inside a triangle parallel to one of the 
sides, it will cut the remaining sides proportionally; and if a straight line cut two sides of 
a triangle proportionally, it will be parallel to the remaining side. 
 
 
Take any triangle ABC.  Draw PL parallel to BC.  
I say that  AP : PB = AL : LC. 
 
Draw PC and BL. 
 
 
[1] AP : PB = rAPL : rPBL (Thm.1) 
 
[2] rPBL = rLCP  (same base, same height) 
 
[3] AP : PB = rAPL : rLCP (putting together Steps 1 and 2) 
 
[4] rAPL : rLCP = AL : LC (Thm.1) 
 
[5] So AP : PB = AL : LC, 
since each of these ratios is the same as rAPL : rLCP (by Steps 3 and 4), and since 
two ratios the same with a third ratio are the same as each other (Ch.5, Thm.3). 
 And so the sides of the triangle have been cut proportionally.  Q.E.D. 
 
Again, suppose that in some triangle ABC the sides have been cut proportionally, such 
that  AP : PB  =  AL : LC.  I say that PL is parallel to BC. 
 
Draw PC and BL. 
 
[1] AP : PB  =  AL : LC   (given) 
 AP : PB  =  rAPL : rPBL  (Thm.1) 
so AL : LC  =  rAPL : rPBL  (Ch.5, Thm.3) 
but AL : LC  =  rAPL : rLCP  (Thm.1) 
so  rAPL : rPBL  =  rAPL : rLCP 
 
 
[2] Thus rPBL and rLCP have the same ratio to the same thing (namely to 
rAPL). 
 Thus  rPBL = rLCP  (Ch.5, Thm.10) 
 
[3] But rPBL and rLCP are on the same base LP.  Since they are equal, therefore 
they must also be under the same height (Ch.1, Thm.33 converse).  Therefore P and L 
must each be the same height above BC, i.e. PL is parallel to BC.   Q.E.D. 
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THEOREM 2 Remarks 
 
 
1. Notice we have just proven a theorem and its converse together. 
 
2. Using the second part of this Theorem, you 
can now easily prove the following interesting 
theorem:  If you bisect the sides of ANY quadrilateral 
WXYZ at the points Q, R, S, T, then QRST is a 
parallelogram.  Draw QR, RS, ST, TQ, WY, and XZ.  
Since WQ = QX and WT = TZ, therefore  WQ : QX  
=  WT : TZ.  Thus  QT  is parallel to  XZ  in rWXZ.  
Finish the proof. 
 
 
 
 
 
THEOREM 3:   The line bisecting an angle of a triangle cuts the base into two 
parts having the same ratio as the two sides. 
 Conversely, if the base of a triangle is cut into two parts having the same ratio as 
the two sides, then the line joining the point of section to the opposite angle bisects the 
angle. 
 
 
Take any triangle ABC.  Bisect ∠BAC with line 
AK.  I say   BK : KC  =  BA : AC. 
Draw CP‖AK, cutting BA extended at P. 
 
 
[1] Now ∠2  = ∠4  (CP‖AK) 
 and ∠2  = ∠1  (given) 
 so ∠1  = ∠4 
 but ∠1  = ∠3  (CP ‖AK) 
 so ∠3  = ∠4 
 
[2] Thus AP = AC  (since ∠3  = ∠4 in Step 1) 
 
[3] But BK : KC  =  BA : AP (since CP‖AK; Thm.2) 
 
[4] So BK : KC  =  BA : AC (putting together Steps 2 and 3) 
 
 
Q.E.D. 
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Conversely, take any triangle ABC, and suppose that  BK : KC  =  BA : AC. 
I say that AK bisects ∠BAC, i.e. ∠1  = ∠2. 
Draw CP‖AK, cutting BA extended at P. 
 
[1] Now BK : KC  =  BA : AC (given) 
 but BK : KC  =  BA : AP (since CP‖AK, Thm.2) 
 so BA : AC  =  BA : AP (Ch.5:  2 ratios the same as a 3rd are the same) 
 so AC  =  AP  (Ch 5:  2 quantities with the same ratio to the same 
quantity must be equal to each other). 
 
[2] Thus ∠3  = ∠4  (angles opposite equal sides in a triangle are equal) 
 But ∠3  = ∠1  (since CP‖AK) 
 so ∠1  = ∠4 
 but ∠2  = ∠4  (since CP‖AK) 
 so ∠1  = ∠2 
 
Q.E.D. 
 
 
 
 
THEOREM 4:  Equiangular triangles are similar. 
 
 
Suppose ΔABC and ΔDCE are equiangular, i.e. 
 ∠1 = ∠2 
 ∠3 = ∠4 
 ∠5 = ∠6 
Then I say that the sides about their equal angles 
are proportional when taken in corresponding 
order, and thus  rABC ~ rDCE. 
 
 
[1] Place BC and CE in a straight line. 
 
[2] Extend BA and ED till they meet at X. 
 
[3] Since ∠5 = ∠6   (given) 
 thus CA‖EX.   (Ch.1, Thm.24 Remark 1) 
 
[4] Since ∠1 = ∠2   (given) 
 thus CD‖BX   (Ch.1, Thm.24 Remark 1) 
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[5] So ACDX is a parallelogram. 
 
[6] And BA : AX  =  BC : CE  (CA‖EX; Thm.2) 
 But AX = CD   (opposite sides of a parallelogram) 
 so BA : CD  =  BC : CE 
 thus AB : BC  =  CD : CE  (alternating the proportion) 
 
[7] Now BC : CE  =  XD : DE  (CD‖BX; Thm.2) 
 But XD  =  AC   (opposite sides of a parallelogram) 
 so BC : CE  =  AC : DE 
 thus BC : AC  =  CE : DE  (alternating the proportion) 
 
[8] So AB : BC  =  CD : CE  (Step 6) 

and BC : AC  =  CE : DE  (Step 7) 
so AB : AC  =  CD : DE  (Ch.5, Thm.17, ex aequali) 

 
[9] So AB : BC  =  DC : CE  (Step 6) 
 and BC : CA  =  CE : ED  (Step 7) 
 and BA : AC  =  CD : DE  (Step 8) 
Therefore the sides about the equal angles in the two triangles are proportional.  
Therefore rABC ~ rDCE. 
 
Q.E.D. 
 
 
 
 
THEOREM 4 Remarks 
 
 
1. All we need is two angles, of course, because if two angles in a triangle are equal 
to two angles in another triangle, they must be equiangular. 
 
2. Can you prove the assumption in Step 2 that BA and ED must meet at some 
point? 
 
3. Notice that similar triangles need not be 
oriented the same way; for example, one can be 
“flipped” compared to the other, as rGHK and 
rLMN. 
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THEOREM 5:  Triangles with proportional sides are similar. 
 
Suppose rABC and rDEG have proportional sides, i.e. 
 
AB : BC  =  DE : EG 
BC : CA  =  EG : GD 
CA : AB  =  GD : DE 
 
Then I say the angles contained by the 
proportional sides are equal, i.e. 
 
1 = 2 
3 = 4 
5 = 6 
 
and thus rABC ~ rDEG.  Here's an easy proof: 
 
[1] Make rEGK on EG, such that it is equiangular with rABC. 
 Since rEGK is equiangular with rABC, therefore its sides are proportional to 
the sides about the equal angles in rABC. 
e.g. AB : BC  =  KE : EG 
but AB : BC  =  DE : EG   (given) 
so KE : EG  =  DE : EG 
thus KE = DE,  since we learned in Ch.5 that quantities having the same ratio to the 
same quantity must be equal to each other. 
 
[2] Similarly, we can prove that 
 KG = DG. 
 And EG is common to both triangles. 
 
[3] Thus  rEGK ≅ rDEG  (Side-Side-Side) 
But rEGK is equiangular with rABC, by the construction in Step 1. 
Thus rDEG is also equiangular with rABC. 
But these two triangles are given as having the sides about those equal angles 
proportional.  Therefore they are also similar. 
 
Q.E.D. 
 
 
THEOREM 5 Remarks 
 
 
There are 3 proportions given for this Theorem.  Even if there were only two given, the 
Theorem will still hold, because the third one would follow automatically from the other 
two ex aequali, as illustrated in Theorem 4, Step 8. 
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THEOREM 6:  Triangles with one angle of one equal to one angle of the other, 
and with the sides about the equal angles proportional, are similar. 
 
 
Suppose you have two triangles, 
rABC and rDEG, in which 
 ∠1  = ∠2 
and AB : BC  =  DE : EG. 
Then rABC ~ rDEG. 
 
The proof is nice and easy: 
 
[1] Draw ∠7  = ∠1 
 Draw ∠8  = ∠3 
 Thus rKEG is equiangular with rABC. 
 Thus rKEG is similar to rABC (Thm.4), and so the sides about the equal 
angles are proportional. 
 
 
[2] So AB : BC  =  KE : EG 
 but AB : BC  =  DE : EG  (given) 
 so KE : EG  =  DE : EG  (these ratios are both the same as AB : BC) 
 so KE = DE   (each has the same ratio to EG) 
 
[3] But ∠7  = ∠2   (each being equal to ∠1) 
 and GE is common to rDEG and rKEG 
 so rDEG ≅ rKEG  (Side-Angle-Side) 
 
[4] But rKEG ~ rABC  (Step 1) 
 Thus rDEG ~ rABC 
 
Q.E.D. 
 
 
 
 
 
THEOREM 6 Remarks 
 
1. Notice that in Step 4 we take it as obvious that if a first triangle is similar to a 
second one, then any triangle congruent to the first one is also similar to the second one.  
It is also evident that if two triangles are similar to a third, then they are similar to each 
other, since if they are both equiangular with the same triangle, they must be equiangular 
with each other, and thus they must be similar to each other. 
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2. Here is a related Theorem:  If two triangles 
have one angle in one equal to one angle in the other, 
and another pair of corresponding angles both acute, 
and a pair of sides in one proportional to a 
corresponding pair in the other, then the triangles are 
similar. 
 Given: rABC and rGBH sharing ∠1, with 
∠2 and ∠3 both acute, and 
  BA : AC  =  BG : GH 
 Prove: rABC is similar to rGBH 
 
If possible, assume GH is not parallel to AC.  Draw GP parallel to GH. 
Thus rABC and rGBP are equiangular, and hence similar.  Thus 
  BA : AC  =  BG : GP  (rABC and rGBP are similar) 
 but BA : AC  =  BG : GH  (given) 
 so BG : GP  =  BG : GH 
 so GP = GH   (each having the same ratio to BG) 
 thus ∠3 = ∠5   (rGPH being isosceles) 
 now ∠4 = ∠2   (since rABC and rGBP are similar) 
 and ∠2 is acute   (given) 
 thus ∠ 4 is acute 
 hence ∠5 is obtuse   (being the supplement of ∠4) 
but ∠3 = ∠5, and therefore rGPH has two obtuse angles, which is impossible.  
Therefore our initial assumption is impossible, and it is necessary that GH be parallel to 
AC.  But then it follows that rABC is similar to rGBH.    Q.E.D. 
 
 
 
 
THEOREM 7:  The perpendicular dropped from the right angle to the hypotenuse 
in a right triangle divides it into two right triangles similar to each other and to the 
whole. 
 
 
Let ABC be a right triangle, AC its hypotenuse, 
and drop BP perpendicular to AC. 
Then rAPB ~ rBPC ~ rABC. 
Is that just my opinion?  No, it's a fact.  Here's 
why: 
 
 
[1]  ∠APB  = ∠ABC   (they are both right angles) 
 and ∠1 is common to rAPB and rABC 
 so rAPB and rABC are equiangular 
 so rAPB ~ rABC   (Thm.4) 
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[2] Now ∠BPC  = ∠ABC   (they are both right angles) 
 and ∠2 is common to rBPC and rABC 
 so rBPC and rABC are equiangular (Thm.4) 
 so rBPC ~ rABC 
 
[3] So rAPB and rBPC are equiangular, 
 each being equiangular with rABC (Steps 1 and 2). 
 Thus rAPB ~ rBPC   (Thm.4) 
 
Q.E.D. 
 
 
THEOREM 7 Remarks 
 
Prove in particular that ∠ABP = ∠2, and that ∠CBP = ∠1. 
 
 
 
THEOREM 8:  How to cut a given straight line similarly to a given cut straight 
line; also, how to cut off any fraction of a straight line. 
 
 
Suppose you have a straight line AB, and also another straight 
line DE cut at some point K.  How can you cut AB at a point C 
so that   AC : CB = DK : KE  ? 
 Like this: 
 
[1] Draw AH at any angle to AB, and make  AH = DE. 
 
[2] Cut off  AG = DK. 
 
[3] Join  HB. 
 Draw  GC‖HB. 
 Then C is the point we are looking for! 
 
Proof: 
 
[4] Since GC‖HB  in triangle ABH, 
 thus AC : CB  =  AG : GH  (Thm.2) 
 but AG : GH  =  DK : KE  (since AG = DK and GH = KE) 
 so AC : CB  =  DK : KE 
 
Q.E.F. 
 
 

B

C

A G H

D K E



 186 

 
Suppose now you want to cut off some particular 
fraction of AB, say two thirds of AB.  How do 

you do it?  Lay out any straight line X, and lay it out three times in a straight line.  Thus 
LN is two thirds of LP. 
 Using the construction above, cut AB at a point C so that 
 AC : AB = LN : LP. 
Since 2 : 3 = LN : NP 
thus AC : CB = 2 : 3 
i.e. AC is two thirds of  AB, and so we have cut AB in the required fraction. 
 Similarly we can cut off any other fraction of straight line AB. 
 
Q.E.F. 
 
 
 
 
THEOREM 9:  How to find a fourth proportional to three straight lines. 
 
Suppose you have three lines  A, B, C. 
How can we find a fourth line  D  such that  A : B = C : D  ? 
Like this: 
 
[1] Place A and B in a straight line such as PEG, in which 
 PE = A 
 EG = B 
 
[2] Draw  PK = C  at any angle to  PEG. 
 
[3] Join EK. 
 Draw  GH‖EK,  cutting  PK  (extended) at  
H. 
 Then  KH  is the line  D  we are looking for; 
 i.e. A : B  =  C : KH. 
 
If you are skeptical, here's the irrefutable proof: 
 
[4] Since EK‖GH  in triangle PGH, 
 thus PE : EG  =  PK : KH  (Thm.2) 
 but PE = A,  EG = B,  PK = C (Steps 1 and 2) 
 so A : B  =  C : KH 
 
Q.E.F. 
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THEOREM 9 Remarks 
 
We can now also find a third proportional to two given straight lines.  For example, if we 
are given  A  and  B, we can find a third line D such that  A : B  =  B : D.  All we have to 
do is use the same construction we just used, letting  C = B, or PK = EG.  For by the 
construction 
 A : B  =  C : D. 
But since C = B, then we have 
 A : B  =  B : D. 
 
 
 
 
 
 
THEOREM 10:  How to find the mean proportional between two straight lines. 
 
 
 
If you have two straight lines A and B, how do 
you find a straight line M such that 
 A : M  =  M : B  ? 
Like this: 
 
 
[1] Place A and B in a straight line such as DEF, in which DE = A and EF = B. 
 
[2] Draw a semicircle on DF as diameter, and draw EP perpendicular to DF, cutting 
the circumference at P.  Call EP “M”. 
 
[3] Join DP.  Join PF. 
 
[4] Now, ∠DPF is a right angle  (since it is in a semicircle). 
 And PE is perpendicular to DF (Step 2) 

So rDEP ~ rPEF  (Thm.7) 
Thus the sides about the equal angles in these triangles are proportional 
when taken in corresponding order. 

 
[5] But ∠DEP and ∠PEF are equal angles (both being right) in these two 
triangles.  Therefore the sides about them are proportional, i.e. 
  DE : EP  =  EP : EF. 
 
[6] But DE = A,  EP = M,  EF = B (Steps 1 and 2) 
 So A : M  =  M : B  (substituting these terms in Step 5) 
 
Q.E.F. 
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THEOREM 10 Remarks 
 
 
1. How do we know in Step 5 that we have 
taken the sides about the equal angles in 
corresponding order?  As follows.  If we complete 
the circle and extend PE down to G, clearly PE = 
EG, since PEG is perpendicular to a diameter. 
Thus rPEF ≅ rGEF (Side Angle Side) 
so PF = GF 
and so the arcs cut off by these chords are also equal, 
i.e. arc PF = arc GF. 
Therefore the angles standing on these arcs from the circumference are also equal, 
i.e. ∠PDF = ∠GFP, 
or ∠PDE = ∠EPF. 
Thus these are corresponding angles in rDEP and rPEF, and so the opposite 
sides PE and EF are corresponding sides.  We already know hypotenuses DP and 
PF correspond.  Hence DE and EP, the remainding sides, correspond. 
 
 
2. We have a nice corollary with this Theorem:  The perpendicular dropped 
from the circumference to the diameter of a circle is a mean proportional between 
the segments into which it cuts the diameter.  Likewise the perpendicular dropped 
from the right angle of a right triangle to its hypotenuse is a mean proportional 
between the segments into which it cuts the hypotenuse. 
 
 
3. We already know that the square on EP is equal to the rectangle contained 
by DE · EF (from Ch.2).  Now we see that the side of a square equal to any 
rectangle is a mean proportional between the two sides of that rectangle. 
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THEOREM 11:  Equal and equiangular parallelograms have 
reciprocally proportional sides; conversely, equiangular parallelograms with 
reciprocally proportional sides are equal. 
 
 
Let CBDK and EBAH be equiangular 
parallelograms (i.e. ∠EBA = ∠CBD, ∠BEH = 
∠BCK, etc.).  And let them also have equal 
areas.  I say that their sides are reciprocally 
proportional, that is  AB : BC  =  DB : BE. 
The proof is very simple: 
 
 
[1] Place EB and BD in a straight line. 
 Thus ∠EBC + ∠CBD  =  two rights 
 But ∠EBA  =  ∠CBD   (given) 
 so ∠EBC + ∠EBA  =  two rights 
 and thus AB and BC are also in a straight line. 
 
[2] Extend HE and KC till they meet at L, completing parallelogram ELCB, having 
the same angles as the two other parallelograms. 
 
[3] Looking at the areas of the parallelograms, 
  Z : Y  =  DB : BE   (Thm.1) 
 But Z  =  X     (given) 
 so X : Y  =  DB : BE 
 But X : Y  =  AB : BC   (Thm.1) 
 So AB : BC  =  DB : BE 
 
Q.E.D. 
 
Conversely, let CBDK and EBAH be equiangular parallelograms in which  AB : BC  =  
DB : BE.  Then I say that  EBAH  =  CBDK, i.e. they have the same area. 
 
[1] Let them be placed as before. 
 
[2] Now AB : BC  =  DB : BE   (given) 
 but AB : BC  =  X : Y   (Thm.1) 
 so X : Y  =  DB : BE 
 but Z : Y  =  DB : BE   (Thm.1) 
 so X : Y  =  Z : Y 
 so X  =  Z 
 i.e. EBAH  =  CBDK 
 
Q.E.D. 
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THEOREM 11 Remarks: 
 
 
1. Complete the parallelogram in ∠HLK by 
extending HA and KD to G.  Look familiar?  The 
diagonal LG passes through B and parallelograms 
EBAH and CBDK are none other than the equal 
“complements” about the diagonal.  To prove it is easy 
enough. 
 
Since AB : BC  =  DB : BE, 
thus AB : BD  =  CB : BE    (alternating the proportion) 
so BA : AG  =  LE : EB    (since BD = AG and CB = LE) 
but ∠BAG = ∠LEB    (by the parallels) 
hence rBAG is similar to rLEB   (Thm.6) 
so ∠ABG = ∠ELB 
and ∠EBA = ∠BEL    (by the parallels) 
so ∠ABG + ∠EBA  =  ∠ELB + ∠BEL  (adding equals to equals) 
Now if we add ∠EBL to both sides, we get 
 ∠ABG + ∠EBA + ∠EBL  =  ∠ELB + ∠BEL + ∠EBL 
But the right side of this equation is all the angles in rEBL, and so they add up to 180°. 
So ∠ABG + ∠EBA + ∠EBL  =  180° 
from which it follows that LBG is a straight line. 
 You should be able to prove now that parallelograms EBAH and CBDK are 
similar to each other and to HLKG. 
 
 
2. This Theorem is about equal and equiangular parallelograms.  
Obviously it is possible for parallelograms to be equiangular without 
having equal areas, as A and B. 
 

 
Or again, they can have equal areas without being equiangular, 
as C and D. 
 

 
Or again, parallelograms can be equiangular without having 
proportional (or reciprocally proportional) sides, as a square S and a 
rectangle R that has a different area. 
 
 

Also, nothing prevents parallelograms from having 
reciprocally proportional sides without being equiangular, 
as in the case of a rectangle of sides A and D and a tilted-
over parallelogram in sides B and C, where  A : B  =  C : D. 
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3. It is also true, conversely, that if two 
parallelograms are equal in area and have 
reciprocally proportional sides, then they are 
equiangular.  Suppose ABNK and CBDF are equal 
in area, but not equiangular, so that ABC is one 
straight line, but NBD is not.  Extend DB to E, and 
complete parallelograms ABDG and ABEH. 
Clearly  ABEH  =  ABNK 
so also  ABEH  =  CBDF. 
And since these last two are also equiangular, therefore, by the Theorem above, 
  AB : BC  =  DB : BE 
Now since CBDF is equiangular with ABEH, but not with ABNK, thus ABEH and 
ABNK are not equiangular. 
So  ∠AHE ≠ ∠BNK ( ≠ means “is not equal to”) 
or  ∠BEN ≠ ∠BNE. 
Hence  BE ≠ BN  in  rBEN. 
Now since AB : BC  =  DB : BE 
It follows that  AB : BC  ≠  DB : BN,  since BE ≠ BN. 
That is, the sides of ABNK and CBDF are not reciprocally proportional.  Therefore, 
equal but not equiangular parallelograms do not have reciprocally proportional sides, and 
so equal parallelograms that do have reciprocally proportional sides must also be 
equiangular.  Q.E.D. 
 
 
 
 
THEOREM 12:  If four straight lines are proportional, then the rectangle 
contained by the means is equal to the rectangle contained by the extremes. 
 Conversely, if two rectangles are equal, then their sides are reciprocally 
proportional. 
 
 
Let  A, B, C, D  be proportional straight lines,  i.e.  A : B  =  C : D. 
I say that  A · D  =  B · C, i.e. that these rectangles are equal in area. 
 
[1] Make rectangle  A · D  and rectangle  B · C. 
 
[2] Since both are rectangles, they are equiangular parallelograms. 
 
[3] And also their sides are reciprocally proportional, since we are 
given that 
  A : B  =  C : D. 
 
[4] Therefore they have equal areas (Thm.11), that is  A · D = B · C.    Q.E.D. 
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Conversely, let  A · D = B · C,  i.e. suppose these are any two rectangles having equal 
areas.  Then I say that  A : B  =  C : D. 
 
[1] Since both are rectangles, they are equiangular parallelograms. 
[2] Also, they are equal (we are given that). 
[3] Therefore their sides are reciprocally proportional (Thm.11), i.e. 
  A : B  =  C : D. 
 
Q.E.D. 
 
 
 
THEOREM 12 Remarks 
 
 
If it happens that  B = C, then  B · C is actually a square.  And since 
  A : B  =  C : D, 
we can also say (since B = C in this case) that 
  A : B  =  B : D. 
So, when a square is equal to a rectangle in area, its side is a mean proportional between 
the sides of the rectangle.  And, conversely, when three straight lines are in continuous 
proportion, the square on the mean is equal in area to the rectangle contained by the 
extreme terms in the proportion. 
 
 
 
 
THEOREM 13:  If two lines inside a circle cut each other, then their segments 
contain equal rectangles. 

 
 
 
Let AB and CD cut each other inside a circle at X. 
I say that AX · XB  =  CX · XD,  i.e. these 
rectangles have the same area. 
 
 
 
 

[1] Join AD.  Join CB. 
 
[2] Now, ∠CXB = ∠AXD (these are vertical angles) 
 and ∠XCB = ∠XAD (both stand on arc BRD from the circumference) 
 so rCXB  and  rAXD  are equiangular 
 
[3] Thus rCXB ~ rAXD (Thm.4) 
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 So the sides about their equal angles are proportional (when taken in 
corresponding order). 
 
[4] Since ∠XCB = ∠XAD, therefore the sides opposite these angles are 
corresponding sides, i.e. XB and XD are corresponding sides. 
 Likewise  ∠CBX = ∠ADX, therefore the sides opposite these angles are 
corresponding sides, i.e. CX and AX are corresponding sides. 
 
[5] Thus CX : XB = AX : XD,  these being corresponding sides about the equal 
angles CXB and AXD  (Steps 3 and 4). 
 
[6] So AX · XB  =  CX · XD (Thm.12). 
 
Q.E.D. 
 
 
 
 
 
 
THEOREM 13 Remarks 
 

 
 
If AB and CD meet outside the circle, i.e. if X is outside the 
circle, is the theorem still true?  Is it still true that the 
rectangles AX · XB and CX · XD have the same area?  
Start by trying to prove that the triangles CXB and AXD are 
still similar. 
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THEOREM 14:  How to make, on a given straight line, a rectilineal figure 
similar and similarly situated to a given rectilineal figure. 
 
 
Take any rectilineal figure ABCD, and 
any straight line EH.  How can we make 
a figure on EH similar to ABCD, in 
which EH is the side corresponding to 
AB?  As follows. 
 
 
[1] Divide ABCD into triangles (in this case two) ABD and DBC. 
 
[2] Draw ∠HEK = ∠BAD. 
 Draw ∠EHK = ∠ABD. 
 So rEHK is equiangular with rABD. 
 So rEHK is similar to rABD   (Thm.4) 
 
[3] Draw ∠HKL = ∠BDC. 
 Draw ∠KHL = ∠DBC. 
 So rKHL is equiangular with rDBC. 
 So rKHL is similar to rDBC   (Thm.4) 
 
[4] Thus figure EHLK is equiangular with figure ABCD, each being composed of an 
equal number of correspondingly arranged equiangular triangles. 
 
[5] In order for EHLK and ABCD to be similar, though, the sides about their equal 
angles must be proportional.  Is that the case? 

Obviously DA : AB  =  KE : EH   (rEHK ~ rABD; Step 2) 
 And  BC : CD  =  HL : LK   (rKHL ~ rDBC; Step 3) 
 
But can we say AB : BC  =  EH : HL ? 
 
[6] Yes, since AB : BD  =  EH : HK   (rEHK ~ rABD; Step 2) 
 And also BD : BC  =  HK : HL   (rKHL ~ rDBC; Step 3) 
 Thus  AB : BC  =  EH : HL   (Ex Aequali, Ch.5, Thm.17) 
 
 Likewise CD : DA  =  LK : KE. 
 
 [7] Since EHLK and ABCD are equiangular (Step 4), and since the sides about their 
equal angles are proportional (Steps 5 and 6), therefore they are similar to each other, and 
AB corresponds to EH. 
 
Q.E.F. 
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THEOREM 14 Remarks 
 
 
Since we made a rectilineal figure similar to a given one by putting together triangles that 
are similar to those into which the given figure was divided (and by arranging them 
similarly), it is an obvious corollary to this Theorem that Any two similar rectilineal 
figures can be divided into an equal number of similar triangles, similarly arranged. 
 
 
 
 
 
 
 
THEOREM 15:  If a third proportional is found to the sides of two squares, then 
the first square is to the second square as the side of the first square is to the third 
proportional. 
 
 
Take any square ABDE, and place any other square 
KBCG on it so that two sides are in line, as DB and 
BC.  Join AC, and draw CT at right angles to AC, 
meeting AB (extended) at T.  Complete the rectangle 
DBTF. 
 Now, since ACT is a right triangle, and CB is 
dropped from the right angle to the hypotenuse, 
therefore  AB : BC  =  BC : BT  (Thm.10, Remark 2).  
Thus BT is a third proportional to the sides of the two 
squares.  I say that 
  £AB : £BC  =  AB : BT. 
 
[1] For, the square ABDE and the rectangle DBTF are parallelograms under the same 
height, and so they are as their bases (Thm.1), 
 i.e. £AB : DB · BT  =  AB : BT 
 or £AB : AB · BT  =  AB : BT  (AB = DB) 
 
[2] But AB : BC  =  BC : BT   (by construction) 
 so AB · BT  = £BC   (Thm.12 Remarks) 
 
[3] Thus, if substituting  £BC  for  AB · BT  in Step 1, we have 
  £AB : £BC  =  AB : BT 
And so the first square is to the second square as the side of the first square is to the third 
proportional line. 
 
Q.E.D. 
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THEOREM 15 Remarks 
 
 
1. Here is a numerical example: 
 Square A has a side that is 2 feet long. 
 Square B has a side that is 4 feet long. 
According to the Theorem, Square A is not to Square B as 2 to 4, but rather if we find X 
such that    2 : 4  =  4 : X,    then Square A is to Square B as 2 is to X.  Of course, in this 
case X = 8.  So the square A is to square B as 2 is to 8, or more simply as 1 is to 4. 
 
2. Unequal squares are never in the same ratio as their 
sides.  Suppose square ABGH is greater than square 
BCDK.  Line up sides AB and BC.  If we extend HG and 
CD till they meet at E, BCEG will be a rectangle of the 
same height as the square on AB. 
Hence  £AB : BCEG  =  AB : BC 
Accordingly, since  £BC  is less than  BCEG, 
  £AB : £BC  >  AB : BC. 
So the greater square always has to the lesser a ratio greater than the corresponding ratio 
between the sides. 
 
3. Looking back to Definition 4, we can also now say that Squares are to each other 
in the duplicate ratio of their sides. 
 
 
 
 
 
 
THEOREM 16:  Similar triangles have the same ratio as the squares on their 
corresponding sides. 
 
Take any two similar triangles, ABC and 
DEF, and build squares ACKH and DFPO 
on corresponding sides AC and DF.  I say  
rABC : rDEF  =  £AC : £DF. 
 
 
[1] Drop BR perpendicular to AC.  Drop 
ET perpendicular to DF. 
 Since ∠BAR = ∠EDT  
 (since rBAC is similar to rEDF) 
 thus rBAR is equiangular with rEDT, 
 so BR : RA  =  ET : ED 
 but BA : AC  =  ED : DF   (since rBAC is similar to rEDF) 
 hence BR : AC  =  ET : DF   (ex aequali, Ch.5, Thm.17) 
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[2] Complete the rectangle of height BR, base AC, namely ACLG. 
 Complete the rectangle of height ET, base DF, namely DFQN. 
 Now ACLG : £AG  =  LC : CK  (Thm.1) 
 
 Or ACLG : £AC  =  BR : AC  (LC = BR, CK = AC) 
 and DFQN : £DF  =  ET : DF  (for similar reasons) 
 but BR : AC  =  ET : DF   (Step 1) 
 so ACLG : £AC  =  DFQN : £DF 
 
[3] So ACLG : DFQN  =  £AC : £DF (alternating) 
 but ACLG : DFQN  =  rABC : rDEF (wholes are as their halves) 
 so rABC : rDEF  =  £AC : £DF  
 
Q.E.D. 
 
 
 
THEOREM 17:  Similar rectilineal 
figures have the same ratio as the squares on their 
corresponding sides. 
 
Take any two similar rectilineal figures ABCDE 
and GHKLM. 
I say that  ABCDE : GHKLM  =  £AB : £GH. 
 
[1] By the corollary to Theorem 14, we know we can divide ABCDE and GHKLM 
into similarly arranged similar triangles, equal in number.  For brevity, let the triangles in 
ABCDE be called R, S, T, and let those in GHKLM be called X, Y, Z. 
 
[2] Since S and Y are similar triangles, 
 thus S : Y  =  £AC : £GK  (Thm.16) 
 But T : Z  =  £AC : £GK   (Thm.16) 
 So T : Z  =  S : Y 
 But T : Z  =  £AB : £GH   (Thm.16) 
 So S : Y  =  £AB : £GH 
And likewise we can prove that every pair of corresponding triangles in the two figures 
has the ratio of  £AB : £GH. 
 
[3] That is to say, 
  T : Z  =  £AB : £GH 

and S : Y  =  £AB : £GH 
and R : X  =  £AB : £GH 

 Thus R + S + T  :  X + Y + Z   =   £AB : £GH (Ch.5, Thm.15) 
 i.e. ABCDE : GHKLM  =  £AB : £GH 
 
Q.E.D. 
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THEOREM 17 Remarks: 
 
Looking back at Theorem 15, Remark 2, we can now see that similar rectilineal figures 
are to each other in the duplicate ratio of their corresponding sides. 
 
 
 
 
 
THEOREM 18:  Figures similar to the same rectilineal figure are similar to each 
other. 
 

 
 
 
Suppose A is similar to X,  and B is also similar to X.  
Then  A is similar to B.  Why?  Because … 
 
 

 
 
[1] The angles in A equal the angles in X (Since A is similar to X) 
 The angles in B equal the angles in X  (Since B is similar to X) 
 So the angles in A equal the angles in B  (since things equal to the same thing are 
themselves equal). 
 So  A and B are equiangular. 
 
[2] The sides about the angles in A have the same ratios as the sides about the equal 
angles in X. 
 The sides about the angles in B also have the same ratios as the sides about the 
equal angles in X 
 So the sides about the angles in A have the same ratios as the sides about the 
equal angles in B  (since two ratios that are both the same with another ratio are the same 
as each other). 
 
[3] So A and B are equiangular and the sides about the equal angles are proportional.  
Therefore A is similar to B  (Def. 1). 
 
Q.E.D. 
 
 
 
 

A

B
X
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THEOREM 19:  If four straight lines are proportional, the similar figures 
similarly situated on them will be proportional. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Suppose you have 4 straight lines  A, B, D, E  and  A : B  =  D : E. 
Then place any similar figures  W and X  on  A and B, similarly situated.  Place any two 
other similar figures  Y and Z  on  D and E, similarly situated. 
 I say that  W : X  =  Y : Z. 
 
 
[1] Find a third proportional line to the straight lines A and B, namely C, so that 
  A : B  =  B : C   (Thm.9) 
 Find a third proportional line to the straight lines D and E, namely F, so that 
  D : E  =  E : F   (Thm.9) 
 
[2] So A : C  =  £A : £B  (Step 1 and Thm.15) 
 And D : F  =  £D : £E  (Step 1 and Thm.15) 
 
[3] But the similar figures are also in the ratios of these squares on their 
corresponding sides (Thm.15), 
 so W : X  =  A : C 
 and Y : Z  =  D : F 
 
[4] Now A : B  =  D : E   (given) 
 and B : C  =  E : F   (A : B = B : C, and  D : E = E : F,  Step 1) 
 so A : C  =  D : F   (ex aequali, Ch.5, Thm.17) 
 
[5] But each of the ratios in this last proportion is the same as one of the ratios of 
similar figures (see Step 3). 
 So W : X  =  Y : Z 
 
Q.E.D. 
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THEOREM 20:  If two parallelograms share an angle and are about the same 
diagonal, then they will be similar. 
 
 

 
Take any parallelogram  ABCD, and choose any 
point P along its diagonal, completing 
parallelogram  AEPK.  I say that  AEPK is similar 
to ABCD. 
 
 
 

 
[1] Now ∠AEP = ∠ABC   (since EP║BC) 
 
[2] And ∠KAE is common to both parallelograms. 
 
[3] Since the opposite angles in any parallelogram are equal, it follows that the 
remaining angles in AEPK and ABCD are correspondingly equal.  So they are 
equiangular. 
 
[4] Now since ∠AEP = ∠ABC  (Step 1), and ∠EAP is common to rEAP and 
rBAC, hence these triangles are equiangular and therefore similar. 
 So AE : EP  =  AB : BC 
 
[5] Since the opposite sides in any parallelogram are equal, it follows that the 
remaining sides in AEPK and ABCD about their equal angles (and taken in 
corresponding order) are proportional. 
 Thus AEPK is similar to ABCD.  So all parallelograms about the diagonal and 
sharing an angle with the whole parallelogram ABCD will be similar to the whole and 
therefore to each other. 
 
Q.E.D. 
 
 
 
THEOREM 20 Remarks: 
 
Conversely, if two similar parallelograms share an angle they will also share a diagonal.  
Using the same diagram as in the Theorem, suppose that AEPK and ABCD are similar 
parallelograms sharing the angle at A.  I say that P lies on diagonal AC.  From the 
similarlity of the parallelograms, AE : EP  =  AB : BC.  Since EP is parallel to BC, it 
must cut AC at some point, say Q.  And since EPQ is parallel to BC in triangle ABC, 
therefore  AE : EQ  =  AB : BC.  From the two proportions, it is clear that  EQ = EP, and 
therefore Q and P are the same point.  So P lies on AC. 
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THEOREM 21:  How to cut a line in mean and extreme ratio. 
 
 
Take any straight line AB. 
How can we cut it at a point K so that  BA : AK  =  AK : KB ?  
Thus: 
 
 
[1] Draw square ABCD. 
 
[2] Bisect  AD at  M  and join  MB. 
 
[3] Draw a circle with center M and radius MB (thus passing 
through C, and cutting AD extended at F and L). 
 
[4] Draw square AFGK.  Extend GK to R. 
 
K is the point we sought.  How do we know?  As follows: 
 
[5] Now £AB  =  FA · AL  (AB is ⊥ to diameter FAL; Ch.2, Thm.6) 
 But FA = GF   (being sides of £AFGK) 
 and AL = FD   (each is a radius plus half of AD) 
 so £AB  =  GF · FD 
 
[6] Or ABCD  =  FGRD  (renaming them) 
 Now subtract AKRD from each and we have 
  KBCR  =  FGKA 
 or CB · BK  =  £AK  (renaming them) 
 
[7] Thus CB : AK  =  AK : KB  (Thm.12) 
 or BA : AK  =  AK : KB  (CB = BA) 
 
Q.E.F. 
 
 
 
 
THEOREM 21 Remarks: 
 
1. Do you recognize the diagram?  Compare it to Ch.2, Theorem 12.  There we 
extended a straight line AS to B so that  £AS  =  AB · BS.  By the present Theorem, we 
see that ASB was cut in mean and extreme ratio  ( BA : AS  =  AS : SB). 
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2. We used Ch.2, Theorem 12 to make a “Golden Triangle” in 
Ch.4, Theorem 6.  This was the isosceles triangle TAP, whose base 
angles were each double its peak angle.  Recall that in the course 
of making it, we made line ASP such that  £AS  =  AP · PS ;  
thus  PA : AS  =  AS : SP,  so that AP was divided at S in mean 
and extreme ratio or the “Golden” ratio.  But we had also made  PT 
= AS, so that AP : PT was also the Golden ratio.  For this reason, 
rTAP is called a “Golden Triangle.” 
 
 
3. We used a Golden Triangle to construct a regular pentagon in Ch.4, Theorem 7.  
So the Golden ratio is the key to producing that figure as well. 
 
 
 
 
 
 
4. Can we cut AB at another point besides K, say P, such that  BA : AP  =  AP : PB?  
No.  It is impossible.  K is unique.  If possible, suppose P is on AK, 
and BA : AP  = AP : PB. 
Thus AB · BP  =  £AP  (Thm.12) 
Now AB · BP  >  AB · BK  (since BP > BK) 
so £AP  >  AB · BK 
but AB · BK  =  £AK  (since AB : AK  =  AK : KB) 
so £AP  >  £AK 
Thus AP  >  AK,   which is impossible. 
 It is true, of course, that if we cut off AP = BK, then  AB : BP  =  BP : PA, 
because P is simply the mirror image of K on the other side of AB’s midpoint.  Thus it 
does not divide AB in an essentially new way. 
 
 
5. It should be clear, too, that any two lines cut in mean and extreme ratio are cut in 
the same ratio.  To cut any other line besides AB in mean and extreme ratio, we would 
use the same construction again, and the similarity of all the figures in both constructions 
would make it obvious that the lines are cut similarly. 
 
 

6. Looking back at the diagram for this Theorem, complete 
the rectangle FDCT.  Notice that square FK and rectangle KC are 
equal (Step 6), and they are parallelograms drawn in opposite 
corners of FDCT and they are both equiangular with rectangle 
FDCT.  They also have a common corner K.  Therefore K lies on 
the diagonal of rectangle FDCT (Ch.1, Thm.34 Questions).  
Accordingly rectangles AKRD and GTBK are similar to the whole 
rectangle FDCT and to each other (Thm.20). 
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7. Since AK : KB  is the golden ratio, 
 and GK : KB  =  AK : KB, 
 hence GK · KB is called a “Golden Rectangle.” 
Since, by the preceding remark, GK · KB is similar to AD · DR and FD · DC, these 
are also golden rectangles. 
 
8. Note that if we draw a square inside a Golden Rectangle on its lesser side, the 
remaining rectangle is another Golden Rectangle.  e.g. FDCT is a Golden Rectangle, and 
when we take away square ABCD, what remains is BA · AF. 
But BA : AF  =  BA : AK  (since AF = AK), 
and BA : AK  is the Golden ratio. 
Hence BA : AF  is also the Golden ratio, and thus BA · AF is a Golden Rectangle.  And 
when we subtract square FGKA from it, we are left with Golden Rectangle GK · KB. 
 
 
 
THEOREM 22:  In right triangles the rectilineal 
figure on the hypotenuse is equal to the sum of the similar 
(and similarly situated) figures on the other two sides. 
 
Imagine a right triangle ABC, whose hypotenuse is BC.  
Imagine further some rectilineal figure Z on hypotenuse 
BC.  If X and Y are similar to Z, and similarly situated on 
AB and AC, then   X + Y  =  Z. 
 Here's the proof: 
 
 
[1] First, £AB : £AC  =  X : Y,  since similar figures are as the squares on their 
corresponding sides (Thm.17). 
 
[2] Thus £AB : X  =  £AC : Y   (alternating the proportion) 
 so £AB + £AC  :  X + Y  =  £AC : Y  (Ch.5, Thm.15) 
 
[3] Now £BC : £AC  =  Z : Y,  since similar figures are as the squares on their 
corresponding sides (Thm.17). 
 Thus £BC : Z  =  £AC : Y    (alternating the proportion) 
 
[4] So            £BC  :  Z   =  £AC  :  Y (Step 3) 
 and £AB + £AC  :  X + Y   =   £AC  :  Y (Step 2) 
 thus £AB + £AC  :  X + Y    =    £BC  :  Z 
 
[5] So £AB + £AC : £BC  =  X + Y : Z  (alternating Step 4) 
 but £AB  +  £AC  =  £BC   (Pythagorean Theorem) 
 thus X  +  Y  =  Z. 
 
Q.E.D. 
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THEOREM 22 Remarks: 
 
 
1. The diagram depicts rectangles, but they could just as well be irregular (but 
similar) pentagons, or any other kind of rectilineal figure. 
 
 
2. Do you think that the Theorem would hold for similar curvilineal figures, such as 
semicircles? 
 
 
3. This Theorem is in some ways a generalized version of the Pythagorean Theorem.  
The Pythagorean Theorem proved a relationship between squares on the sides of a right 
triangle, whereas this Theorem proves that the same relationship exists between any 
similar rectilineal figures similarly situated on the sides of a right triangle. 
 
 
“HOOK”:  CEVA’S THEOREM. 
 
If in any triangle XYZ lines drawn from the three vertices to the opposite sides (XR, YS, 
ZQ) are concurrent at P, cutting the sides  XY, YZ, ZX  into  a & b,  c & d,  e & f 
(labeling all these clockwise from X), 
 
then 
 
 
and conversely. 
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“HOOK”:  THE EQUILATERAL TRIANGLE AND THE GOLDEN RATIO. 
 
 
If the midpoints of two sides of an equilateral triangle inscribed in a circle be joined and 
extended to meet the circle, this line is cut in mean and extreme ratio. 
 

A B C



 
 
 
 
 

Chapter Seven 
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DEFINITIONS 
 
 
 
 
1.  When the same kind of thing is taken repeatedly, the result is a MULTITUDE. 
 For example, if you take a chair, and another chair, you have a multitude of 
chairs.  Again, if you have a pear, a banana, and an orange, although you do not have a 
multitude of pears, you do have a multitude of fruits. 
 
 
 
2.  The UNIT is what is indivisible, constituting a multitude by repetition of itself. 
 For example, if you have a multitude of chairs, the unit constituting this multitude 
is one chair.  Suppose you have 24 chairs:  then the repetition of a dozen chairs also 
constitutes it, but a dozen is not the unit of this multitude, since the dozen is itself a 
multitude constituted by repetition of something – a dozen is still itself a multitude of 
chairs.  The unit, on the other hand, is the elementary beginning of multitude; it is not 
itself a multitude, and hence it is indivisible.  The unit is like the atom of a multitude. 
 If we consider concrete multitudes such as our 24 chairs, we see that being a unit 
can sometimes happen to a divisible thing:  one chair can be sawn in half.  But does this 
belong to the chair because it is a unit in a multitude, or because it is a chair?  If a chair 
were divisible precisely because it is a unit, then every unit in every multitude would be 
divisible.  And that is false.  What is the unit in a multitude of geometric points?  One 
geometric point.  Is that divisible?  No.  Consequently, it does not belong to a unit as 
such to be divisible, but rather one apple is divisible because it is an apple, and one line 
is divisible because it is a line, and so on.  So no unit is as such divisible. 
 Mathematics ignores what the quantities it studies are made of.  For example, it 
studies circles without considering what they might be made of, and so the circle studied 
by the geometer is neither heavy nor light, neither hot nor cold, neither hard nor soft.  
Circularity as such does not have such properties, although it might be found in things 
having such properties.  Similarly, mathematics studies multitudes without considering 
what they might be multitudes of, and so the units it studies cannot be divisible:  unity 
itself does not have divisibility, although it might belong to something that is divisible. 
 Multitude might also be found in things that have position, orientation, and 
location, such as apples.  But differences in position, orientation, and location make no 
difference with respect to multitude; 10 apples remain 10 apples regardless of changes in 
their relative position or arrangement.  Hence the mathematical unit in itself has no 
position, location, or orientation. 
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 Nothing prevents us from choosing something divisible or something having 
position or orientation as a kind of conventional unit to measure other things of like kind, 
such as a unit length or a unit weight or a unit time.  For example, we might lay out 

straight lines X and Y at right angles to each other at point 
O, to use as references for designating any point in the plane.  
Choose any point on X to the right of O and label it 1.  Thus 
the line length between O and 1 (call it “U”) is our chosen 
unit length.  To distinguish the same length in the opposite 
direction, we call it  – 1  (“negative one”).  Notice that U is 
something divisible, having position, and also direction (it is 
to the right of O).  All this proves to be very useful elsewhere 
in mathematics, of course, but note that U is not a pure unit.  
It is not “the unit,” the “one” by which we count all things, 

but a unit length, having an arbitrary length and orientation (none of which belong to 
“one” as such).  It is no more identical with “one” than “two apples” is identical with 
“two.” 
 
 
 
3.  A NUMBER is a multitude measured by the unit. 
 Some multitudes might be infinite, but a number is a measured multitude, and 
hence finite.  It is a multitude that can be comprehended by counting. 
 Such things as “three and a half”, and other things such as “negative six”, and 
still other things such as “the square root of two”, have come to be called “real 
numbers” with reference to a conventional unit that is divisible and has position (such as 
U in the discussion of the last definition).  And yet – 6  and  + 6  do not differ in 
multitude, but only in direction (or some other extraneous thing).  And  3 ½  divides its 
own unit, which must therefore be a divisible thing, and not simply the unit considered 
entirely apart from certain divisible things out of which a multitude might be made.  
Prior to all such compound notions, applying the concept of number to various things 
and combining it with such things as direction and length, there is the pure concept of 
number as a kind of multitude.  6  is simply and purely a kind of multitude, but  – 6  or  + 
6  is a multitude plus an additional idea of direction (or something similar).  3  is simply 
and purely a multitude, but  3 ½  is a multitude of divisible things.  This chapter is about 
pure numbers. 
 Is  1  a number?  If you ask me to hand you “a number of nails”, and I hand you 
one nail, you might not be satisfied.  One is not a multitude or a plurality, and therefore it 
is not a number in the same sense that 5 or 6 are numbers.  Still, since  1  is the beginning 
and measure of all the numbers, and since it has a ratio to every number, it is also called 
a “number.” 
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4.  An EVEN NUMBER is a number divisible into two equal numbers. 
 For example, 2, 4, 6 are even numbers. 
 
 
 
5.  An ODD NUMBER is a number not divisible into two equal numbers. 
 For example, 3, 5, 7 are odd numbers. 
 
 
 
6.  A FACTOR of a number is any number that measures it, i.e. goes into it exactly some 
number of times. 
 For example, the factors of 12 are 1, 2, 3, 4, 6, 12 (but not 5, 7, 8, 9, 10, 11).  A 
factor of a number is also called a “divisor” of it, since it divides it exactly, and it is also 
called a “measure” of it since it fits into it exactly. 
 
 
 
7.  A PRIME NUMBER is a number with no factors other than 1 and itself. 
 For example, 2 and 3 are prime numbers, since neither has any factors other than 
the number 1 and itself. 
 
 
 
8.  Two different numbers are PRIME TO EACH OTHER if they have no factor in 
common except 1. 
 For example, 8 and 15 are prime to each other, having no factor in common other 
than 1.  But 12 and 15 are not prime to each other, since they share a factor besides 1 
(namely 3). 
 
 
 
9.  A COMPOSITE NUMBER is a number with factors other than 1. 
 For example, 14 is a composite number, since it has factors besides 1, namely 2 
and 7.  Obviously no prime number is composite, and no composite number is prime, 
since their definitions are opposed. 
 
 
 
10.  TO MULTIPLY one number N by another number M means to find the sum of as 
many N's as there are units in M.  The resulting number is called the PRODUCT of M 
times N. 
 For example, to multiply 3 by 5 means to add together as many threes as there 
are units in 5, i.e.  3 + 3 + 3 + 3 + 3  =  15.   So 15 is the product of 5 times 3. 
 The symbolic notation for multiplying 5 times 3 is this:  5 × 3 = 15.  We can also 
write it  this way:  5 · 3  =  15. 
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11.  TO DIVIDE one number N by another number M means to count the number of 
times M can be subtracted from N.  The resulting number is called the QUOTIENT of N 
divided by M. 
 For example, to divide 12 by 4 means to count the number of times 4 can be 
subtracted from 12: 
 (1) 12 – 4  =  8 
 (2) 8 – 4  =  4 
 (3) 4 – 4  =  0 
It can be subtracted 3 times.   So 3 is the quotient of 12 divided by 4. 
 The symbolic notation for dividing 12 by 4 is this:  12 ÷ 4 = 3. 
 Obviously a greater number is not always exactly divisible by a lesser one, for 
example  16 ÷ 3.  3  can be subracted from 16  five times, but one unit of 16 is left over. 
 Note that multiplication and division are opposite operations, and they undo each 
other.  If 
  (a) M × N  =  P 
then by definition  N  fits into  P  exactly  M  times.  But that means we can subtract  N  
from  P  exactly  M  times,  i.e. 
  (b) P ÷ N  =  M 
Now by equation (a) we know that  P  =  M × N, so let us substitute  M × N  for P  in 
equation (b): 
   ( M × N ) ÷ N  =  M 
which is to say that any number M multiplied by any number N, and then again divided 
by N, leaves us with M once more.  Or, by equation (b), M  =  P ÷ N, so let us substitute  
P ÷ N  for  M  in equation (a): 
   ( P ÷ N ) × N  =  P 
so any number P divided by a number N, and then again multiplied by that number N, 
leaves us with P once more (at least, so long as we suppose N goes into P some exact 
number of times; it is also true more generally, but that goes beyond the point made 
here). 
 
 
 
12.  A TRIANGULAR NUMBER is the sum of any number of consecutive numbers 
beginning with 1; the last number added is called the BASE of the triangular number. 
For example, 3 is the first triangular number, since 3 = 1 + 2, and 2 is its base.  And 6 is 
the second triangular number, since 6 = 1 + 2 + 3, and 3 is its base.  Such numbers are 
called “triangular” because the numbers which add up to them can be stacked on top of 
each other, and the result is a triangular form. 
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13.  A SQUARE NUMBER is the product of two equal numbers.  The number which, 
thus multiplied by itself, yields a square number, is the SQUARE ROOT of the square 
number. 
For example, 4 is a square number, since 4 = 2 × 2, and 2 is the square root of 4.  And 9 
is the next square number, since 9 = 3 × 3, and 3 is the square root of 9.  The symbolic 
notation  52 = 25  reads “five squared equals twenty five”, and the notation  5 = 25  
reads “five equals the square root of twenty five”.  Square numbers are called “square” 
because their units can be arranged in a square pattern.  Accordingly, the square root is 
also called the “side” of the square, as in “3 is the side of the square number 9”. 
 

 
 
 
 
 
 

 
 
14.  A CUBE NUMBER is the product of three equal numbers.  The number which, thus 
multiplied by itself, yields a cube number, is the CUBE ROOT of the cube number. 
For example, 8 is the first cube number, since 8 = 2 × 2 × 2, and 2 is the cube root of 8.  
The symbolic notation  23 = 8  reads “two cubed equals eight”, and the notation  2 = 3 8   
reads “two equals the cube root of eight”. 
 
 
 
15.  A POWER of a number is the product of that number times itself any number of 
times. 

For example, the fourth power of 5 is 5 × 5 × 5 × 5, and the notation  54 = 625  
reads “five to the fourth power equals six hundred and twenty five”. 
 
 
 
16.  A FACTORIAL NUMBER is the product of any number of consecutive numbers 
beginning with 1. 
 For example, 24 is a factorial number, since 24 = 1 × 2 × 3 × 4.  The notation  4! 
= 24  reads “four factorial equals twenty four”. 
 
 
 
17.  A PERFECT NUMBER is a number equal to the sum of all its factors less than itself. 
 For example, 6 is the first perfect number, since, other than 6 itself, all its factors 
are 1, 2, 3, and it also happens that  6 = 1 + 2 + 3.  With most numbers the sum of all 
their factors (other than themselves) falls short or exceeds the number itself.  For 
example, the factors of 8 less than itself are 1, 2, 4 which add up to 7.  The factors of 12 
less than itself are 1, 2, 3, 4, 6 which add up to 16. 
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PRINCIPLES OF NUMBER THEORY 
 
 
 
1. No number is both even and odd. 
 
 
2. If one is added to or subtracted from an even, the result is odd. 
 
 
3. If one is added to or subtracted from an odd, the result is even. 
A possible exception occurs if the odd number you start with is 1.  Is 1 – 1 “even”?  
Perhaps, but it is not an even “number” insofar as a “number” means “a multitude of 
units.”  No units at all, or zero, is not a multitude of units.  Still, 1 + 1  is even. 
 
 
4. Any two numbers can be added together, and the result is a number. 
Any number can have numbers added to it without limit. 
 
 
5. Any two numbers can be multiplied together, and the result is a number. 
Any number can be multiplied without limit. 
 
 
6. Any lesser number can be subtracted from a greater number, and the result is a 
number. 
 
 
7. Any number can be divided by any one of its factors, and the result is a number. 
 
 
8. A number that measures two numbers also measures their sum. 
For example, if 2 goes into 6, and it also goes into 10, then 2 also goes into 6 + 10. 
 
 
9. A number that measures two unequal numbers also measures their difference. 
For example, if 3 goes evenly into 15, and also into 9, then 3 also goes evenly into 15 – 9. 
 
 
10. A number that measures a number also measures any of its products. 
For example, if 5 goes into 35, then 5 also goes into 26 × 35, and also into 327 × 35, and 
in general 5 must go into N × 35, no matter what number N is. 
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THEOREMS 

 
 
 
THEOREM 1:  The unit has to any number the same ratio that any second 
number has to the product of the two numbers. 
 
Take any two numbers, say N and M.  Then I say that the following proportion holds: 
 1 : M  =  N :  N × M 
Start off with the ratio of 1 to M.  Any equimultiples of these two have the same ratio that 
they have to each other (Ch.5, Thm.13).  So let's take each of them N times, giving us N 
× 1 and N × M.  Thus we have 
 1 : M  =  N × 1 :  N × M. 
But N × 1 is taking N once, which is just N.  So we have, in fact, 
 1 : M  =  N :  N × M. 
 
Q.E.D. 
 
 
 
 
THEOREM 1 Remarks 
 
1. Let's just confirm this with a few concrete examples, for the sake of clarity. 
 2 × 3  =  6, and lo and behold, it is also true that  1 : 2  =  3 : 6. 
 Also, 4 × 5  =  20, but also it is true that  1 : 4  =  5 : 20. 
 
2. Can you see how this Theorem is actually just a different way of stating 
Definition 10? 
 
3. We can formulate a similar Theorem for the division of numbers, namely that The 
unit has to any number the same ratio which its quotient with a second number has to the 
second number.  That is, for any two numbes M and N, it will be true that 
 1 : M  =  N ÷ M : N. 
Start by noting that  M × ( N ÷ M ) = N  (see Def.11).  Thus, by Theorem 1, the above 
proportion follows.  Here is an example: 
 12 ÷ 4  =  3,  and it is also true that  1 : 4  =  3 : 12. 
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THEOREM 2:  The order of multiplication makes no difference. 
 
 
Given: Numbers A and B 
Prove: A × B  =  B × A 
 
This is no big surprise.  But it is still worth noting that “three fives” equals “five threes”; 
although the result is the same, the process of adding together three fives is not identical 
to the process of adding together five threes.  So why must the result be the same? 
 
[1] Well, 1 : A  =  B : B × A  (Thm.1) 
 so 1 : B  =  A : B × A  (alternating) 
 but 1 : B  =  A : A × B  (Thm.1) 
 so A : B × A  =  A : A × B 
 
[2] Since  B × A  and  A × B  have the same ratio to A, therefore they must be equal. 
 
Q.E.D. 
 
 
 
 
THEOREM 2 Remarks: 
 
 
1.  The truth of this Theorem can be manifested visually:  5 rows of 3 is 
necessarily at the same time 3 columns of 5,  i.e. 5  threes must equal  3  
fives, since they are just two different ways of looking at the same 
number. 
 
 
 
2.  The Theorem proves the case for two numbers, but it is just as true for any number of 
numbers we multiply together.  The final product is the same regardless of the order in 
which we multiply them.  For example,  3 × 4 × 5  =  5 × 4 × 3.  For, by the Theorem 
 4 × 5  =  5 × 4  (each is equal to 20) 
but again, by the Theorem 
 3 × 20  =  20 × 3 
and so 
 3 × 4 × 5  =  5 × 4 × 3. 
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THEOREM 3:  For any three numbers A, B, C, as long as B is exactly divisible 
by C, then  (A × B) ÷ C   =   A × (B ÷ C). 
 
Whether we multiply  A × B  first, and then divide the product by C, or instead divide B 
by C first, and then multiply the result by A, we get the same number.  For example, 
 (4 × 6) ÷ 3  =  4 × (6  ÷ 3). 
or 24  ÷  3  =  4  ×  2 
Must it always work out, regardless of the numbers we choose?  Naturally.  And here’s 
proof: 
 
[1] Let (A × B) ÷ C  =  K 
 thus A × B  =  K × C   (multiplying both sides by C) 
 
[2] Let B ÷ C  =  N 
 thus B  =  C × N    (multiplying both sides by C) 
 
[3] Now A × B  =  K × C   (Step 1) 
 or A × (C × N)  =  K × C   ( B = C × N;  Step 2) 
 so A × N  =  K    (dividing both sides by C) 
 or A × N  =  (A × B) ÷ C   (K = (A × B) ÷ C;  Step 1) 
 hence A × (B ÷ C)  =  (A × B) ÷ C  (N = (B ÷ C);  Step 2) 
 
Q.E.D. 
 
 
 
THEOREM 3 Remarks: 
 
 1.  Such a Theorem is not extremely surprising, but it is extremely useful to know 
when we can change the order of operations without affecting the final result.  Verify the 
Theorem yourself with other numerical examples. 
 
 2.  Here is another similar rule:  suppose you have four numbers  A, B, C, D  and 
A is exactly divisible by C and B is exactly divisible by D.  Then I say that 
  (A × B) ÷ (C × D)  =  (A ÷ C) × (B ÷ D) 
For example (6 × 4)  ÷  (3 × 2)   =   (6 ÷ 3)  ×  (4 ÷ 2). 
Why must this always work out? 
 
[1] Let A ÷ C  =  M 
 and B ÷ D  =  N 
 
[2] Since multiplication is the reverse of division, hence it is also true that 
  M × C  =  A 
 and N × D  =  B 
 
[3] So (A ÷ C) × (B ÷ D)  =  M × N   (see Step 1) 
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[4] But (A × B)  =  [M × C] × [N × D]  (see Step 2) 
 Hence, dividing both sides by  (C × D), we have 
  (A × B) ÷ (C × D)  =  ([M × C] × [N × D]) ÷ (C × D) 
 and since the order of multiplication makes no difference, we can write 
  (A × B) ÷ (C × D)  =  (M × N) × (C × D) ÷ (C × D) 
 But since on the right we first multiply and then divide by (C × D), this leaves us 
with the number  (M × N), and so 
  (A × B) ÷ (C × D)  =  M × N 
 
[5] Comparing Steps 3 and 4, we see that 
  (A ÷ C) × (B ÷ D)  =  (A × B) ÷ (C × D). 
 
 
 
THEOREM 4:  If four numbers are proportional, the product of the means equals 
the product of the extremes.  Conversely, if among four numbers the product of the means 
equals the product of the extremes, then they are proportional. 
 
Given: A : B  =  C : D 
Prove: A × D  =  B × C 
 
We know that  A : B  =  C : D    (given) 
and so   A : C  =  B : D    (alternating) 
Now if we multiply the first two terms by B, we maintain the proportion, and again if we 
multiply the last two terms by A, we maintain the proportion (Ch.5, Thm.13). 
Hence   B × A  :  B × C  =  A × B  :  A × D 
so   B × A  :  A × B  =  B × C  :  A × D (alternating) 
but   B × A  =  A × B   (Thm.2) 
hence   B × C  =  A × D 
 
Q.E.D. 
 
Now, conversely, 
 
Given: A × D  =  B × C 
Prove: A : B  =  C : D 
 
We know that  A × D  =  B × C   (given) 
But since it is also true that  B × A  =  A × B, we can say that 
   B × A  :  A × B  =  B × C  :  A × D 
so   B × A  :  B × C  =  A × B  :  A × D (alternating) 
But equimultiples have the same ratio has the terms they multiply (Ch.5, Thm.13), 
and so   A : C  =  B : D 
or   A : B  =  C : D    (alternating) 
 
Q.E.D. 
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THEOREM 5:  Beginning with any two unequal numbers, the last number 
produced by reciprocal subtraction is a common factor of them both. 
 
Of course you are wondering what “reciprocal subtraction” means.  It’s not hard.  Take 
unequal numbers, say 9 and 7, and take the lesser from the greater: 
 9 – 7  =  2 
Now compare the subrtracted number to the difference, and take the lesser from the 
greater: 
       7 – 2  =  5 
Now compare the subtracted number to the difference, and take the lesser from the 
greater: 
  5 – 2  =  3 
You get the idea.  This process cannot go on forever, since numbers are finite and the 
number from which we are subtracting is smaller every time.  So we must eventually end 
up with nothing.  But the only subtraction that leaves us with nothing is when something 
is subtracted from itself.  Hence the last subtraction in such a process must be 
 
 [1]   X – X = 0 
 
Now the Theorem states that X is a factor of both original numbers, whatever they may 
be.  Why?  Note that after the first step, the two numbers in the subtraction for any step 
are (a) the number that was subtracted in the previous step, and (b) the difference in the 
previous step.  So, given our last step, the second to last step must be 
 
 [2]   Z – X  =  X 
 
and so  Z  =  2X;  so X is a factor of Z.  Again, the third to last step must be 
 
 [3]   Q – X  =  Z 
 
(or else  Q – X  =  Z;  it doesn’t matter which).  Thus  Q  =  X + Z,  or  Q  =  3X  (since Z 
= 2X  by Step 2).  So X is now a factor of Q as well.  Accordingly, X must be a factor of 
every number in the whole process, right back to our original numbers A and B. 
 
Q.E.D. 
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THEOREM 5 Remarks: 
 
1.  Here is a numerical example.  Start with 27 and 12: 
 
 27 – 12 = 15 
         15 – 12 = 3 
      12 – 3 = 9 
   9 – 3 = 6 
         6 – 3 = 3 
    3 – 3 = 0 
 
So the last number produced was 3, and indeed it is a factor of both 27 and 12.  Notice, 
too, that the last step is of the form  X – X = 0, and the second to last step is of the form  
Z – X = X, as asserted in the proof. 
 
2.  What happens if we choose numbers that are prime to each other, which have no 
common factor except the unit?  Then the process must end by producing the unit, since 
we proved that the process ends with a common factor of the two original numbers.  Try 
an example.  Start with 9 and 4, which are prime to each other: 
 
 9 – 4 = 5 
       5 – 4 = 1 
  4 – 1 = 3 
         3 – 1 = 2 
     2 – 1 = 1 
            1 – 1 = 0 
 
Notice that 1 showed up before the process finished – the Theorem does not forbid that, 
but demands that if 1 is the only common factor of the two original numbers, the last 
number in the process must be 1. 
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THEOREM 6:  Given any pair of numbers that are prime to each other, to find 
multiples of them that differ by a unit. 
 
Suppose you have a pair of numbers A and B which are prime to each other.  Can you 
multiply each of them so that the multiples differ by 1?  Consider 12 and 5, which are 
prime to each other.  By Theorem 5, we know that their reciprocal subtraction must 
produce the number 1, at least at the end of the process if not sooner.  Let’s go through 
the steps, then: 
 
[1]  12 – 5 = 7 
[2]          7 – 5 = 2 
[3]     5 – 2 = 3 
[4]           3 – 2 = 1 
 
Since we hit 1 (as we must), let’s stop on this last Step [4]: 
 
  3  –  2  =  1 
 
Now, by Step [3] we see that  3  =  5 – 2.  So replace: 
 
  (5 – 2)  –  2  =  1 
 
And by Step [2] we see that  2  =  7 – 5.  So replace: 
 
  [5  –  (7 – 5) ]  –  (7 – 5)  =  1 
And by Step [1] we see that  7  =  12 – 5.  So replace: 
 
  [5  – {  (12 – 5) – 5  } ]  –  [ (12 – 5)  – 5 ]   =  1 
 
Now the expression is exclusively in terms of the original numbers 12 and 5.  
Simplifying, we have 
 
  (5 + 5 + 5 + 5 + 5)  –  (12 + 12)  =  1 
 
That is, we have a multiple of 5 and a multiple of 12 which differ by 1.  Since this 
process does not depend on 5 and 12 in particular, but presumes only that the original 
pair of numbers are prime to each other, we have found a way to multiply any pair of 
numbers that are prime to each other so that their multiples differ by 1. 
 
Q.E.F. 
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THEOREM 6 Remarks: 
 
1.  Using the process described in the Theorem, find a pair of multiples of 16 and 7 that 
differ by 1. 
 
2.  Sometimes, of course, a pair of numbers that are prime to each other themselves differ 
by 1.  In fact, any two consecutive numbers are prime to each other, such as N and  N + 
1.  Why?  Because any number that measures them both must also measure their 
difference, namely 1.  But the only thing that measures 1 is 1.  Therefore the only thing 
that measures both is 1,  i.e.  N  and  N + 1  are prime to each other. 
 
3.  The Theorem stipulates that the original pair of numbers must be prime to each other.  
Must we use numbers that are prime to each other, or can we use any pair of numbers?  
We must use numbers that are prime to each other.  If instead we start with a pair of 
numers that have a common factor greater than 1, then it will be impossible to find 
multiples of them that differ by 1.  Proof: 
 Take any two numbers, A and B, and any unequal multiples of them, NA and 
MB.  Now any number that measures both A and B must also measure both their 
multiples NA and MB.  And whatever measures both NA and MB must also measure 
their difference.  Hence, if A and B have a common factor greater than 1, then since this 
common factor must measure the difference between any unequal multiples of A and B, 
it follows that such a difference must be greater than 1.  In general all unequal multiples 
of any two numbers must differ by at least the greatest common factor of those two 
numbers.  For example, since 4 and 6 have a greatest common factor of 2, all multiples of 
4 and 6 that differ must differ by 2 or more. 
 
 
 
 
THEOREM 7:  Two numbers proportional to two numbers that are prime to each 
other are equimultiples of them. 
 
 Given:  A is prime to B 
   A : B  =  C : D 
 
 Prove:  A and B measure C and D the same number of times. 
 
[1] Since A is prime to B, therefore find multiples of them that differ by 1 (Thm.6). 
 Say  nA – mB  =  1 
 
[2] Now  A : B  =  C : D   (given) 
 so  nA : mB  =  nC  : mD  (corresponding multiples) 
Subtracting the consequent from the antecedent in each case, we will still have a 
proportion (Ch.5, Thm.16, Remark 3). 
 So  nA – mB : mB  =  nC – mD : mD 
 or  1 : mB  =  nC – mD : mD (nA – mB = 1;  Step 1) 
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[3] Hence  mD  =  mB(nC – mD)  (products of means and extremes) 
 thus  D  =  B(nC – mD)  (dividing both sides by m) 
 and so  B  measures  D  exactly  (nC – mD)  times. 
 
[4] Now looking at the given proportion, and multiplying the means and extremes, 
   A · D  =  B · C 
 or  A · B · (nC – mD)  =  B · C ( D = B · (nC – mD), by 
Step 3) 
 and so  A · (nC – mD)  =  C  (dividing both sides by B) 
 and so  A  measures  C  exactly  (nC – mD)  times. 
 
[5] Looking at Steps 3 and 4, we see that B measures D and A measures C, and the 
same number of times in each case. 
 
Q.E.D. 
 
 
THEOREM 7 Remarks: 
 
 
1.  How do we know that we can subtract  nC – mD?  This will not be a number at all 
unless nC is greater than mD.  Look at Step 2:  nA : mB  =  nC : mD.  We know that nA 
is greater than mB, since  nA – mB = 1  (Step 1).  Hence, by the proportion, it must also 
be true that nC is greater than mD. 
 
2.  From this Theorem, it is evidence that numbers which are prime to each other are the 
least numbers in their ratio, measuring all others that are in the same ratio with 
themselves.  For example, 5 and 6 are prime to each other, and all other numbers in their 
ratio are equimultiples of them, such as 10 and 12. 
 
 
 
THEOREM 8:  If N is the greatest common factor of A × N and B × N, then A 
and B are prime to each other. 
 
For example, 3 is the greatest common factor of 6 and 15, i.e. of 2 × 3 and 5 × 3.  And, as 
the Theorem states, 2 and 5 have no common factor but 1.  Now let’s prove it generally: 
 
Given: Two numbers  A × N  and  B × N,  and N is their greatest common factor. 
Prove: A and B are prime to each other. 
 
If possible, suppose A and B have a common factor other than 1.  Then say it is M, and 
 A  =  R × M 
and B  =  S × M. 
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Thus A × N  =  R × M × N  (substituting  R × M  for A) 
and B × N  =  S × M × N  (substituting  S × M  for B) 
So  M × N  is now a common factor of A × N and B × N.  But since M is supposedly 
greater than 1, it follows that M × N is greater than N.  Therefore M × N is a common 
factor of A × N and B × N and it is greater than N.  Which is absurd, since it is given that 
N is the greatest common factor of A × N and B × N.  Therefore our original assumption, 
namely that A and B have a common factor other than 1, is impossible.  Therefore A and 
B have no common factor other than 1, and so they are prime to each other. 
 
Q.E.D. 
 
 
 
 
THEOREM 9:  If four numbers are proportional, the greatest common factor of 
the first pair measures each the same number of times that the greatest common factor of 
the second pair measures each. 
 
Given:  A × N  :  B × N  =  C × M  :  D × M, 

   N is the greatest common factor of A × N and B × N 
 M is the greatest common factor of C × M and D × M 

 
Prove:  A = C 
  B = D 
 
[1] First of all, we know that  A : B = C : D, just by removing the identical multipliers 
in the given proportion  (cf. Ch.5, Thm.13). 
 
[2] We also know that A is prime to B, since N is the greatest common measure of A 
× N and B × N (Given, and Thm.8). 
 
[3] Therefore C and D are equimultiples of A and B  (looking at Steps 1 and 2, and 
applying Thm.7). 
 
[4] Likewise, C is prime to D, since M is the greatest common measure of C × M and 
D × M (Given, and Thm. 8). 
 
[5] Therefore A and B are equimultiples of C and D (applying Thm.7 to Steps 1 and 
4). 
 
[6] Thus A and B are equimultiples of C and D (Step 3), and yet C and D are also 
equimultiples of A and B (Step 5).  Which is impossible, except when A = C and B = D. 
 Therefore A = C and B = D. 
 
Q.E.D. 
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THEOREM 9 Remarks: 
 
Verify the Theorem in some numerical examples.  Find any proportional numbers, and 
divide out the greatest common factor of the first two numbers and again the greatest 
common factor of the last two numbers, and see what you have left. 
 
 
 
 
THEOREM 10:  A prime number is prime to any number that is not its multiple. 
 
 
Given: P is a prime number. 
 N is any number which is not a multiple of P. 
 
Prove: N and P have no common factor but 1. 
 
P has no factors but 1 and P (by the definition of a prime number). 
N does not have P as a factor (given). 
Therefore 1 is the only common factor of N and P. 
Therefore N and P are prime to each other. 
 
Q.E.D. 
 
 
 
THEOREM 10 Remarks: 
 
 
What about 1?  Is that a “prime number”?  If so, it is an unusual one, since every other 
number is a multiple of it.  Shall we say, then, that 1 is not prime to any number, since it 
measures them all?  But then again, 1 and 3 are prime to each other in the sense that 
nothing except 1 measures both of them.  Still, 1 measures 3, and that kind of thing does 
not happen with other numbers that are prime to each other.  Take any other pair of 
numbers that are prime to each other, such as 3 and 5, and we see that neither one can 
measure the other; if 3 measured 5, then they would have another common factor besides 
1, namely 3.  Hence, in the case of numbers other than 1, if two numbers are prime to 
each other, then neither one measures the other. 
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THEOREM 11:  If a number is prime to two numbers, it is also prime to their 
product. 
 
For example, 3 is prime to 4 and also prime to 5.  Hence 3 is also prime to 4 × 5.  Now 
let’s prove it generally: 
 
Given: P is prime to A and also to B. 
Prove: P is prime to A × B. 
 
[1] To see it, let F be any common factor of  P  and  A × B.  Suppose, then that 
  P  =  F × N 
and  A × B  =  F × M. 
 
 
[2] Making a proportion out of these two equalities, we get 
  A × B  :  F × M  =  P :  F × N 
 
[3] According to Ch.5, Theorem 13, we can divide the first two by the same number, 
and maintain the proportion.  So divide the first two equal numbers by B: 
  A  :  (F × Μ) ÷ Β  =  P :  F × N 
Now let's alternate that proportion: 
  A  :  P  =  (F × M) ÷ B  :  F × N 
Again, we can divide both numbers in the second ratio by F and maintain the proportion: 
  A  :  P  =  M ÷ B  :  N 
 
[4] And since A and P are given as prime to each other, it follows that  N  is a 
multiple of P (Thm.7). 
 But P = F × N  (Step 1) 
 So P is also a multiple of N. 
 But the only way P and N can be multiples of each other is if  P = N, and F = 1. 
 
[5] Since F was a randomly taken common factor of  P  and  A × B, and  F  must 
equal 1, therefore 1 is the only factor common to  P  and  A × B.  Therefore P is prime to 
A × B. 
 
Q.E.D. 
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THEOREM 11 Remarks 
 
1.  For example, 3 is prime to 4 and also to 5.  So 3 is also prime to 4 × 5. 
 
2.  It also follows that if P is prime to A and to B and to C, that P must also be prime to 
the product of all three.  For since P is prime to A and also to B, therefore, by the above 
Theorem, it is also prime to A × B.  Since P is prime to A × B and also to C, therefore, by 
the above Theorem, it is also prime to A × B × C. 
 Obviously, this works for any number of numbers to which P is prime. 
 
3.  Does it follow from the Theorem that P does not measure A × B?  Not necessarily.  
Suppose  P = 1.  If  P, A, B  are  1, 3, 5,  then  1  is prime to  3 × 5  because it has no 
common factor with it but 1, which is itself.  But it also measures  3 × 5.  However, if P is 
anything besides 1, then it will not measure  A × B, since it would then have another 
factor in common with  A × B, namely P itself. 
 
 
 
 
 
 
THEOREM 12:  If a prime number measures a product, it also measures at least 
one of its factors. 
 
 
Given: The number A × B × C, a product which is divisible by prime number P. 
Prove: P is a factor of at least one of the numbers A, B, C. 
 
If P were not a factor of any of the numbers A, B, C, what would follow?  Since none of 
those numbers would be a multipl3 of P, then by Theorem 10 it would follow that P is 
prime to each of them.  Since P would be prime to each of the numbers A, B, C, then by 
Theorem 11, it would follow that P is prime to their product A × B × C.  But P is not 
prime to that product (since it is given that it measures that product, and so P and A × B × 
C have at least P as a common factor).  Therefore P cannot be prime to A and to B and to 
C.  Therefore P must measure at least one of them. 
 
Q.E.D. 
 
THEOREM 12 Remarks: 
 
From this Theorem we can draw the following corollary:  If a prime number measures a 
square number, then it also measures its side.  For suppose that the prime number P 
measures the square number  S × S.  By the present Theorem, P must therefore measure 
at least one of the factors of  S × S,  i.e. it must measure S, the side of the square number.  
For example, if a prime number measures  6 × 6, it must also measure 6.  1, 2, and 3 are 
the only prime numbers that measure  36,  and all of them also measure 6. 
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THE UNIQUE PRIME FACTORIZATION THEOREM 
 
THEOREM 13:  Any number is expressible as a product of prime numbers in 
only one way. 
 
For example,  24  =  2 · 2 · 2 · 3.  And  24  has no other prime factors.  Now let’s 
show that every number is expressible in such a way. 
 
Given: N, any number you like. 
Prove: N is expressible as the product of certain prime numbers, and it cannot be 
expressed as any other product of prime numbers. 
 
Obviously, if N is prime, we can express it as 1 × N, where 1 and N are both prime 
numbers.  And it cannot be expressed as the product of any other numbers at all, since, 
being prime, N has no other factors. 
 What if N is a composite number?  Then it is the product of numbers other than 
itself and 1, e.g. N = A × B.  And if A and B are both composite, then we can express N 
as a product of their factors, i.e. N = (C × D) × (E × F). 
 But since the factors get ever smaller as we do this, we cannot continue forever, 
but all composite factors will eventually reduce to factors which have no further factors, 
i.e. to prime factors.  Thus N itself will be expressible as the product of prime numbers, 
say, like this: 
 N = P1P2P3P4 
Of course the order of the terms makes no difference, and some of these prime numbers 
might be equal (as in 75 = 5 × 5 × 3).  But the question before us is this:  is it possible to 
express N as the product of a different collection of prime numbers?  For example: 
 N = R1R2R3 … 
Even without comitting ourselves to how many primes are in this “new” expression for 
N, we can prove that these primes must in fact be the same as those in the product 
P1P2P3P4.  For since N is divisible by P1, therefore (R1R2R3 …) is too.  But since P1 is 
prime, therefore it measures one of the primes in (R1R2R3 …), according to Theorem 12.  
But since (R1R2R3 …) are all primes, each is measured only by itself and 1, and so the 
prime P1 must be identical to one of the primes in (R1R2R3 …).  Say, then, that P1 = R1.  
We can prove, likewise, that P2 = R2, etc.  Therefore all the primes in (R1R2R3 …) end up 
being none other than the primes P1P2P3P4.  Therefore N is expressible as a product of 
certain prime numbers, and only those prime numbers. 
 We may say, then, that the “prime factorization” of any number is like its DNA 
code, its fingerprint. 
 
Q.E.D. 
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THEOREM 13 Remarks: 
 
1.  Since every composite number is expressible as a unique product of primes, but no 
prime number is expressible as a product of composites, there is a kind of priority of 
prime numbers over composite numbers.  That is why they are called primes, from 
primus for “first.” 
 
2.  Exercise:  find the prime factorization of the following numbers … 
 12, 120, 85, 496, 2808. 
 
 
 
 
THEOREM 14:  All the factors of any number are:  the primes in its prime 
factorization, all their products, and 1. 
 
 
Take any number N, and say its prime factorization is A × B × C. 
Suppose F is some factor of N besides 1 and N itself.  I say that F is either A, or B, or C, 
or some product formed out of these numbers (i.e. either A× B or A × C or B × C or A × 
B × C). 
 Proof:  Since F is a factor of N, then the prime factorization of F contains only 
primes which are also in the prime factorization of N (otherwise N could be expressed as 
a product of primes in more than one way, contrary to Theorem 13).  But A, B, and C are 
the primes in the prime factorization of N.  Therefore F contains only A, or B, or C (or 
some combination of them) in its prime factorization. 
 Since it is obvious that A × B × C does in fact have A, B, C (and any product 
formed out of these three numbers) as factors, and since we have just shown that these 
are the only factors, the Theorem is proved. 
 
Q.E.D. 
 
 
 
 
 
THEOREM 14 Remarks: 
 
If two or more of the prime factors are the same, then some of the factors of the number 
N will simply be powers of those prime factors.  For example, suppose we take the 
number 56, whose prime factorization is  2 × 2 × 2 × 7.  What are the factors of 56?  
According to the present Theorem, they are  1,  2,  22,  23,  7,  2 × 7,  22 × 7,  23 × 7. 
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THEOREM 15:  There is always a bigger prime number. 
 
 
Given:  P is any prime number you like. 
Prove:  There is another prime number bigger than P. 
 
Suppose someone thought the prime number 5 was the biggest prime number of all, so 
that no number after 5 was prime.  Let's prove him wrong. 
 Form the number 5! + 1  (i.e. “five factorial plus one”), which is the number 

(5 × 4 × 3 × 2 × 1) + 1 
If this number is prime, then since it is obviously greater than 5, we are done.  On the 
other hand, if it is composite, since every composite number is expressible as the product 
of primes (Thm.13), so this number will be also.  But since 2 goes evenly into (5 × 4 × 3 
× 2 × 1), then it will not go evenly into (5 × 4 × 3 × 2 × 1) plus one, because the unit is 
not divisible.  For the same reason, (5 × 4 × 3 × 2 × 1) + 1 is not evenly divisible by 3, or 
by 4, or by 5.  Therefore whatever prime number does measure (5 × 4 × 3 × 2 × 1) + 1 has 
to be greater than 5.  Therefore there is a prime number greater than 5. 
 By exactly the same argument, we can always prove that there is a prime number 
greater than any given prime number P, just by forming the number P! + 1.  This means 
that there is an unlimited multitude of prime numbers. 
 
Q.E.D. 
 
 
 
 
THEOREM 15 Remarks: 
 
Note that sometimes  P! + 1  is itself a prime greater than P.  In other cases it is not 
prime, but is still measured by a prime greater than P. 
 For example, if someone says  3  is the greatest prime number, we can refute him 
by proving that  3! + 1  is either a greater prime, or is measured by one.  In this case,  3! + 
1 = 7, which is a prime number greater than  3. 
 But if someone says  5  is the greatest prime number, we can refute him by 
proving that  5! + 1  is either a greater prime, or is measured by one.  In this case,  5! + 1 
= 121, which is not prime, but it is measured by 11, which is a prime greater than 5.  
Also, notice that 11 is not the next prime after 5. 
 Accordingly, the proof shows that there must always be a greater prime, but gives 
us no sure way of producing it.  To this day, there is no known formula which generates 
all the prime numbers.  The only way to find the primes is to list all the numbers as far as 
you like and cross out all the ones that have factors other than 1; the remaining numbers 
are the primes.  This method is called the “Sieve of Eratosthenes.” 
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THEOREM 16:  Give me any number:  I can always find that many consecutive 
numbers none of which is prime. 
 
We might wonder how primes are “spaced” as we take the next biggest prime, the next 
biggest, etc.  Are they more or less evenly spaced, or do they become “rarer”?  They 
become much rarer.  For example, is it possible to find 99 consecutive numbers none of 
which is prime?  Yes indeed. 
 Just form the factorial number (99 + 1)!, or 100! 
 Now  100! + 1 is, of course, divisible by 1, but it might be prime. 
 Still,  100! + 2 must be divisible by 2, since 100! is divisible by 2, 
     and so is 2.  Thus 100! + 2 is not prime. 
 Again,  100! + 3 is divisible by 3, and thus not prime. 
 Again,  100! + 4 is divisible by 4, and thus not prime. 
 
 etc., etc.  all the way up to 
 
   100! + 100 which is divisible by 100, and therefore not prime. 
 
So there you have 99 consecutive numbers none of which is prime.  Likewise, we can 
construct a billion consecutive numbers none of which is prime!  Just begin with the 
number (1,000,000,000 + 1)! + 2. 
 
Q.E.F. 
 
 
 
 
 
 
THEOREM 16 Remarks: 
 
Notice that even though the prime numbers “thin out” as we climb upward in the 
numbers, that does not mean the distances between consecutive primes steadily increases 
as we go.  That is because strange clusters of prime numbers show up – something still 
not well understood to this day.  For example, prime numbers which have only one 
number between them are called “Twin Primes”, such as 5 and 7, or 29 and 31, or 197 
and 199, or 821 and 823.  As I write these words, it is still not known to the mathematical 
community whether or not the “Twin Primes” run out, i.e. whether there is a highest pair 
of twin primes, or if there is always another pair. 
 There are only 26 prime numbers less than 100, which are: 
1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 
97.  How many pairs of twin primes can you find in this list? 
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THEOREM 17:  How to find the greatest common factor of any two numbers. 
 
 
Given:  Two numbers A and B, and A is greater than B. 
Find:  Their greatest common factor (or “G.C.F.” for short). 
 
Repeatedly subtract the lesser from the greater till nothing remains (which must happen, 
since numbers are finite): 
 A – B = C 
 C – B = D 
 B – D = E 
 etc. etc. ... 
 Z – X = X 
 X – X = 0 
Then X is the greatest common factor of A and B! 
 First of all, that X is a common factor of A and B is clear already from Theorem 6 
(go back and look at it if you forget!).  But how do we know that it is the greatest factor 
common to A and B? 
 Take any number N which is a factor of both A and B.  I will show you that it 
cannot be greater than X. 
 Since N measures both A and B, therefore it measures their difference, which is A 
– B, i.e. C.  Since we now see that N measures both B and C, it must also measure their 
difference, i.e. D.  Since we now see that N measures both C and D, it must measure their 
difference, E, etc.  So N must measure every number in the whole process, including X.  
Therefore any factor common to A and B must also measure X, and therefore must be 
equal to or less than it.  Therefore X is the greatest factor common to A and B. 
 
Q.E.F. 
 
 
 
 
 
 
 
THEOREM 17 Remarks: 
 
 
1.  If  A  and  B  are prime to each other,  D  will equal 1.  If they are not prime to eacah 
other,  D  will be some number greater than 1.  So for any two numbers there is always a 
G.C.F., even if it is only 1. 
 
2.  We can see from this that If a number measures two numbers, it will also measure 
their greatest common factor. 
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3.  Notice that in this Theorem we have found a way to discover the greatest common 
factor of two numbers without factoring either number!  Let’s try an example.  What is 
the greatest common factor of  36  and  81? 
 81 – 36 = 45 
         45 – 36 = 9 
      36 – 9 = 27 
   27 – 9 = 18 
           18 – 9 = 9 
        9 – 9 = 0 
So 9 is their greatest common factor.  Now try it with 176 and 132. 
 
4.  Obviously, we can also find the G.C.F. of three numbers  A, B, C simply by finding 
the G.C.F. of A and B (say it is N), and then the G.C.F. of B and C (say it is M), and then 
finding the G.C.F. of N and M (say it is G).  G then has to be the GCF of the 3 numbers 
A, B, C.  For since the G.C.F. of the 3 numbers measures both A and B, it must also 
measure their G.C.F., namely N.  And since it measures both B and C, it must also 
measure their G.C.F., namely M.  And since it measures both N and M, it must measure 
their G.C.F., namely G.  So the G.C.F. of A, B, C must measure G.  And therefore G is 
the greatest common factor of the 3 numbers.  Q.E.F. 
 
 
 
 
 
 
 
 
THEOREM 18:  How to find the least common multiple of any two numbers. 
 
 
Given:  Two numbers, A and B, and A is the greater one. 
Find:  Their least common multiple (or “L.C.M.”, for short). 
 
 
[1] First, by Theorem 17, find the greatest factor common to both A and B.  Say it is 
N, and that 
 A = C × N 
 B = D × N 
 
[2] Therefore 
 A  :  B  =  C × N  :  D × N  (By the two equalities above) 
thus A  :  B  =  C  :  D   (Chapter 5, Thm.13) 
 
 Now since N is the greatest factor common to A and B, it follows that C and D 
are prime to each other  (Thm. 8). 
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[3] Now the product of the extremes is equal to the product of the means, so 
 A × D = B × C    (Thm.4) 
Notice that  A × D is measured by A (namely D times), but it is also measured by B 
(namely C times).  Therefore  A × D  is a common multiple of A and B.  I say that it is 
also the least. 
 
[4] For let A and B measure any other number, K, and say that 
 A × R = K 
 B × T = K 
So that K is also a multiple of both A and B.  I say that K is greater than A × D. 
 
[5] Now since the factors of equal numbers are reciprocally proportional (Thm.7), 
and A × R = B × T    (Since they both equal K) 
Thus A : B  =  T : R    (Thm.7) 
But A : B  =  C : D    (Step 2) 
so C : D  =  T : R 
But C and D are prime to each other (Step 2) 
Thus D measures R    (Thm.7) 
Thus D is less than or equal to R. 
So A × D is less than or equal to A × R (multiplying both by A). 
i.e. A × D is less than or equal to K. 
And since, by supposition, K is a common multiple of A and B other than A × D, 
therefore  A × D is less than K. 
 Thus A × D is the least common multiple of A and B. 
 
Q.E.F. 
 
 
 
 
 
THEOREM 18 Remarks: 
 
 
1.  There is no greatest common multiple of two numbers, since all multiples of their 
least common multiple will also be common multiples of them, and we can multiply their 
least common multiple as many times as we like. 
 
2.  Let’s try a numerical example.  Take  24  and  18.  What is the least number that both 
of them measure?  Divide out their greatest common factor, namely 6, and we form the 
proportion 
  24 : 18  =  4 : 3 
Multiplying the extremes (or the means), we get 72, which is the least common multiply 
of 24 and 18.  Now try it with  36  and  15. 
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3.  Notice that the product of two numbers is always a common multiple of them, but it is 
not always their least common multiple.  For example,  4 × 6 = 24,  and  24  is indeed a 
multiple of both  4  and  6,  but it is not their least common multiple – rather, it is 12.  
Other times, however, it is the least, e.g.  5 × 6 = 30,  and  30  is the least multiple 
common to  5  and  6.  When does that happen?  When the two original numbers are 
prime to each other.  Use the procedure for finding the  L.C.M.  of any pair of numbers 
that are prime to each other (such as 5 and 6) and you will quickly see why this must be 
so. 
 
4.  Can you see how to find the L.C.M. of any three numbers? 
 
 
 
THEOREM 19:  If the base of a triangular number is N, then the triangular 

number equals  
2

)1( +NN . 

 
Consider the number 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10. 
By definition, that is a triangular number whose base is 10. 
Now rearrange the addition by putting together pairs of numbers starting with the two 
ends (1 and 10), and working your way in toward the middle (2 and 9 are next): 
 (1 + 10) + (2 + 9) + (3 + 8) + (4 + 7) + (5 + 6) 
Notice that we have here five sums each equal to 11, so the whole sum is 5 × 11 = 55.  
The pairs will all be the same, since we start out with 1 + 10, and in the next pair we add 
1 to the first number (giving us 2), but we subtract 1 from the second number (giving us 
9), and so on. 

 Since there are 10 original numbers being added, that is 
2
10  pairs, or 5 pairs, each 

of which equals 10 + 1.  So the whole sum is  
2

)110(10 + . 

 What happens if we have an odd number of numbers, you ask? 
 Consider   1 + 2 + 3 + 4 + 5 + 6 + 7  =  K. 
This number K equals half of   (1 + 2 + 3 + 4 + 5 + 6 + 7) + (1 + 2 + 3 + 4 + 5 + 6 + 7). 
Now rearrange, as before, in pairs of numbers, and now K is half of 
 (1 + 7) + (2 + 6) + (3 + 5) + (4 + 4) + (5 + 3) + (6 + 2) + (7 + 1) 
each of these pairs being equal to (7 + 1).  And how many pairs are there?  Since we 
simply repeated our original numbers twice, there are 7 pairs, i.e. as many pairs as 
original numbers.  The entire sum, then, is equal to the number of these pairs times the 
value of each pair, i.e. 7(7 + 1).  But K is only half of that, and so it is equal to 

 
2
)17(7 +  

So the formula 
2

)1( +NN  works equally well with odd numbers. 

 
Q.E.D. 
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THEOREM 19 Remarks: 
 
1.  Carl Friedrich Gauss, the great German mathematician, discovered this formula for 
triangular numbers all by himself at the tender age of 6.  His teacher assigned his class 
this problem:  add all the numbers from 1 to 100.  The teacher, expecting the students to 
be busy for a solid hour, was surprised when little Gauss approached him with the correct 
answer right away:  5050.  Gauss saw that 1 + 2 + 3 + … + 98 + 99 + 100 is equal to 50 
pairs each equal to 101.  So he simply multiplied 50 times 101 and got his answer. 
 
2.  It is possible to give a “visual proof” for this Theorem.  
Let a triangular number, having a base equal to N, be 
represented by filled circles placed in the form of a right 
triangle.  If we place an identical triangular number of 
empty circles against it, we complete a rectangle with sides 
of  N  and  N + 1.  The whole rectangle contains N (N + 1) 
circles.  Accordingly, since the original triangular number 
is only half this rectangle, it contains  N (N + 1) ÷ 2  
circles.  Hence the triangular number of base N is 

2
)1( +NN . 

 
 
 
THEOREM 20:  The sum of two consecutive triangular numbers is a square 
number, and the base of the larger triangular number is the side of the square. 
 
Given:  Two consecutive triangular numbers, namely 

  
2

)1( +NN   and  
2

]1)1)[(1( +++ NN  

  which, by the last Theorem, are triangular, and which are consecutive 
  because they have consecutive bases N and N + 1. 
 
Prove:  The sum of these two numbers is a square number whose side is N + 1. 
 
Our two triangular numbers are half of  N(N + 1)  and  (N + 1)[(N + 1) + 1]  respectively.  
So their sum is half the sum of these two numbers, or 
  N (N + 1)  +  (N + 1) [(N + 1) + 1]      divided by two, 
which is N (N + 1) + (N + 1) (N + 2)  divided by two. 
Now, using Theorem 1 of Chapter 5, we can “factor out” the (N + 1) common to both 
parts of our sum, which is to say that our whole sum is the same as 
  (N + 1) [N + (N + 2)]   divided by two 
which is (N + 1) (2N + 2)   divided by two 
Again, using Theorem 1 of Chapter 5, we can “factor out” the 2 common to both parts of 
(2N + 2), which is to say that our whole sum is the same as 

NN

NN
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  (N + 1) (N + 1)2   divided by two 
And since our whole sum is reached by multiplying by two but then dividing by two, we 
can simply say that the sum of our two triangular numbers is 
  (N + 1) (N + 1) 
which is, by definition, a square number whose side is  N + 1. 
 
Q.E.D. 
 
 
 
THEOREM 20 Remarks: 
 
 
1.  As a kind of porism, we can say that any square number is equal to the sum of 
consecutive numbers from 1 up to its square root and back down to 1.  For example, 
 16 = 1 + 2 + 3 + 4 + 3 + 2 + 1 
The reason is that 1 + 2 + 3  is a triangular number 
and again  1 + 2 + 3 + 4  is the next triangular number, 
and so, by the Theorem, their sum is equal to 42.  But their sum is the same as the 
numbers from 1 up to 4 and back down again to 1. 
 
 
2.  Can a number be both square and triangular?  Yes.  For example, 36 is both 62 and 
also 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8.  How many numbers are both square and triangular?  
An infinity of them, but we won't prove that here. 
 
 
 
3.  As you have probably guessed, it is possible to give a kind of 
visual proof for this Theorem.  Arrange any square number of dots in 
a square pattern, and you will see that you can slice it into two 
consecutive triangular numbers.  For example, 42 equals the 
triangular number on base 3 plus the triangular number on base 4. 
 If you draw lines diagonally through a square number of 
things arranged in a square pattern, you can see that the longest 
diagonal – 5 in the diagram – equals the side of the square and is the 
common base of two identical triangular numbers.  You can see why    
25  =  1 + 2 + 3 + 4 + 5 + 4 + 3 + 2 + 1. 
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THEOREM 21:  Every square number N2 is the sum of N consecutive odd 
numbers beginning with 1;  and the even number following the last odd number added is 
double the side of the square. 
 
 
Notice  1  is a square, for it equals  1 × 1, 
and  1 + 3  is a square, for it equals 2 × 2, 
and  1 + 3 + 5  is a square, for it equals 3 × 3. 
Will this always work?  Yes, and here's why: 
 Take any square number N2, having side N.  This number is the sum of two 
consecutive triangular numbers, say one with base N and one with base N – 1, which is to 
say that 
N2 = 1 + 2 + 3 + 4 +  … + N  (triangular number with base N) 
     + 1 + 2 + 3 + … + N – 1  (triangular number with base N – 1) 
 
Now add the numbers in pairs, each number in the top row to the one below it in the 
bottom row, and we have 
 
N2 = 1 + (2 + 1) + (3 + 2) + (4 + 3) + … + (N + N – 1) 
 
Since in each case we are adding an even number and an odd one, the parentheses all 
contain odd sums.  And since, moreover, each member of each pair is always one more 
than its corresponding member in the previous pair, the result is that each pair adds up to 
two more than the previous pair.  i.e. we are adding consecutive odd numbers.  i.e. 
 
N2 = 1 + 3 + 5 + 7 + … + 2N – 1 
 
And the last number added is  (2N – 1), and so the number after it is simply 2N, half of 
which is N, the side of the square. 
 
Q.E.D. 
 
 
 
 
 
THEOREM 21 Remarks: 
 
Since 2N is double the number of odd numbers from 1 to N, it follows that N is not only 
the side of the square, but also the number of consecutive odds which add up to the 
square.  For example,  1 + 3 + 5  =  9,  and the side of this square, namely  3,  is also the 
number of odds added. 
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THEOREM 22:  The product of two square numbers is a square number (whose 
side is the product of their sides). 
 
Given:  A × A   and   B × B 
Prove:  (A × A)(B × B)  is a square 
 
Since the order of multiplication makes no difference, therefore 
 
(A × A)(B × B) = (A × B)(A × B), 
 
i.e. (A × A)(B × B)  is a square number whose side is  (A × B). 
 
Q.E.D. 
 
 
THEOREM 22 Remarks: 
 
For example, 5 2 × 9 2  =  (5 × 9) 2 
or  25 × 81  =  45 2  =  2025. 
It is also true that the product of two cubes is a cube whose side is the product of their 
sides.  That is, (A × A × A)(B × B × B)  =  (A × B)(A × B)(A × B) 
For example 2 3  · 5 3  =  (2 · 5) 3 
or  8 · 125  =  10 3 
 
 
 
THEOREM 23:  If a square times some number makes a square, the number is 
also a square. 
 
Given:  (A × A) × N  =  ( B × B) 
Prove:  N is a square number. 
 
Now either A is prime, or else it is the product of primes (Thm.13).  Either way, A can be 
expressed in terms of nothing but primes, so say 
  A  =  P1P2P3 
Since A measures B × B, therefore all these primes measure B × B.  But any prime that 
measures a square number must also measure the side of the square (Thm.12 Remarks).  
Therefore all these primes measure  B.  Hence  P1P2P3  must be found in the prime 
factorization of  B.  But that means that each  B  in  B × B  is measured by  P1P2P3, or 
more simply, by A.  Since each B is divisible by A, it follows that  B ÷ A  is a number. 
 Now A × A × N  =  B × B  (given) 
 so N  =  ( B × B) ÷ (A × A) (dividing both sides by  A × A) 
 so N  =  ( B ÷ A) × ( B ÷ A) (See Ch.6, Thm. 4) 
and since  ( B ÷ A)  is a number, therefore  N  is a square number.  Q.E.D. 
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THEOREM 23 Remarks: 
 
1.  For example, consider 5 2 × N  =  30 2 
  clearly  N  =  30 2 ÷ 5 2 
  or  N  =  (30 × 30) ÷ (5 × 5) 
  so  N  =  (30 ÷ 5) × (30 ÷ 5)  =  6 × 6 
 
2.  It follows from this Theorem that No square number is double any other square 
number.  For if so, i.e. if  Q × 2 = R  where Q and R are both square numbers, it would 
follow by the Theorem that  2  is a square number, which it certainly isn't. 
 Thus, in general, it follows that No square number is a non-square multiple of any 
other square number.  For example, no square number is 3 times another, or 5 times 
another, or 6 times another, etc. 
 
 
 
THEOREM 24:  No prime number is to any other prime number as a square 
number is to a square number. 
 
Take any two distinct prime numbers N and M.  I say that N and M do not have the same 
ratio as any two square numbers. 
 
[1] If possible, assume that 
  N : M  =  A 2 : B 2 
where  A2  and  B2  are the least square numbers having the ratio of N to M. 
 
[2] Since N and M are distinct primes, they have no common factor but 1, and hence 
are prime to each other.  Therefore, according to the proportion above, N must measure 
A2   (Thm.7).  But since N is prime, it must also measure A, since any prime number that 
measures a square number also measures its side (Thm.12, Remarks).  Likewise M 
measures B. 
 
[3] So let A  =  K·  N  and  B  =  L · M 
 Thus A2  =  K2  · N 2  and  B 2  =  L 2  · M 2 

 
[4] Then A2  :  B 2   =   K2  · N 2  :  L 2  · M 2 
 But  N  and  M  have the same ratio as  A2  and  B2  (Step 1), so 
  N  :  M   =   K2  · N 2  :  L 2  · M 2 
 Now dividing both antecedents by N, and both consequents by M, we have 
  1  :  1   =   K2  · N  :  L 2  · M 
 From which it obviously follows that 
  K2  · N  =  L 2  · M 
 Since the factors of equal numbers are reciprocally proportional (Thm.4), thus 
  N  :  M   =   L 2  :  K 2 
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[5] By Step 3 it is plain that  L2  and  K2  are less than  A2  and  B2.  But by Step 4, we 
see that  L2  and  K2  have the same ratio as  N  and  M,  whereas  A2  and  B2  are 
supposed to be the least squares in that ratio.  Which is impossible.  Therefore  N  and  M  
cannot have the same ratio as two square numbers. 
 
Q.E.D. 
 
 
 
 
THEOREM 24 Remarks: 
 
Citing Step 3, Step 5 asserts that   K2 < A2   and   L2 < B2.  How is this clear from Step 3? 
Because A2  =  K2  · N 2 and B2  =  L2  · M 2. 
But what if  N = 1 ?  1 is a prime number, after all.  And in such a case 
  A2  =  K2. 
All right, but then since  N  and  M  are distinct primes,  M  is not 1, but some number 
greater than 1.    So since    B2  =  L2  · M 2    it will still be true that 
  B2  >  L2. 
So the Theorem will hold regardless. 
 
 From this Theorem, then, it follows that no two square numbers have the ratio of 
1 to 2, or 1 to 3, or 2 to 3, or 3 to 5, etc. 
 
 
 
 
 
 
 
THEOREM 25:  Two numbers whose factors are proportional have a mean 
proportional between them. 
 
Consider A ⋅ B  and  C ⋅ D 
where  A : B  =  C : D. 
I say that A ⋅ B  and  C ⋅ D  have a mean proportional number between them. 
 
For  A : B  =  C : D   (given) 
so  A : C  =  B : D   (alternating the proportion) 
thus  A⋅B  :  B⋅C  =  B  :  D  (multiplying the 1st two terms by B) 
and  A⋅B  :  B⋅C  =  B⋅C  :  C⋅D (multiplying the last two terms by C) 
i.e.  B ⋅ C is a mean proportional between  A ⋅ B  and  C ⋅ D. 
 
Q.E.D. 
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THEOREM 25 Remarks: 
 
1.  Since  B ⋅ C  is equal to  A ⋅ D  (since we are given that  A : B = C : D), it also 
follows that  A ⋅ D is a mean proportional between the two given numbers.  Although it 
is the same mean proportional, it is expressed in terms of different factors. 
 
2.  Any two square numbers have one mean proportional between them.  For  N × N  and  
M × M  obviously have proportional factors:   N : N = M : M.  Thus the mean 
proportional between them is the product of their sides,  N × M.  Confirm this with some 
examples. 
 
3.  Also, any two cube numbers have two mean proportionals between them.  Consider  
A⋅A⋅A   and   B⋅B⋅B.  The 2 means between them are  A⋅A⋅B  and   A⋅B⋅B.  Why? 
Because A⋅A  :  A⋅B   =   A⋅A  :  A⋅B obviously, since these ratios have identical 
terms.  Now we maintain the proportion if we multiply the first two terms by A and the 
last two terms by B, giving us 
(1)  A⋅A⋅A  :  A⋅A⋅B  =  A⋅A⋅B  :  A⋅B⋅B 
Again  A⋅B  :  B⋅B   =   A⋅B  :  B⋅B obviously, since these ratios have identical 
terms.  Multiplying the first two terms by A and the last two terms by B, we have 
(2)  A⋅A⋅B  :  A⋅B⋅B  =  A⋅B⋅B  :  B⋅B⋅B 
Putting together Proportion (1) with Proportion (2), we see that A⋅A⋅B and A⋅B⋅B are 
mean proportionals between the two original cube numbers. 
 
 
 
 
THEOREM 26:  Two numbers with a mean proportional between them have 
proportional factors. 
 
 
Given:  X : N  =  N : Z 
Prove:  X and Z have proportional factors 
 
[1] Find the G.C.F. of X and N, and call it G  (Thm.17).  Since G is a factor of both X 
and N, therefore each is equal to some number times G, say 
  A ⋅ G  =  X 
  B ⋅ G  =  N 
 
[2] And since G is the greatest factor common to X and N, it follows that A and B are 
prime to each other (Thm.8).  Now, from the two equalities in Step 1, it is clear that 
  A⋅G  :  B⋅G  =  X : N 
thus  A : B  =  X : N   (dividing the first terms by G) 
but  X : N  =  N : Z   (given) 
thus  A : B  =  N : Z   (each is the same as the ratio X : N) 
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[3] But A and B are prime to each other, and therefore N and Z are equimultiples of 
A and B (Thm.7).  Say N and Z are each F times A and B, i.e. 
  A ⋅ F  =  N 
  B ⋅ F  =  Z 
 
[4] Thus A ⋅ F  =  B ⋅ G   (each is equal to N; Steps 1 and 3) 
 so A : G  =  B : F   (means and extremes are proportional) 
But these are the factors of X and Z, since 
  A ⋅ G  =  X   (Step 1) 
and  B ⋅ F  =  Z   (Step 3) 
So that X and Z in fact have proportional factors. 
 
Q.E.D. 
 
 
THEOREM 26 Remarks: 
 
 
It follows from this Theorem that two numbers whose factors are not proportional have 
no mean proportional between them.  For if they did have a mean proportional between 
them, their factors would be proportional (by this Theorem).  Find some numerical 
examples to confirm this and other numerical examples to confirm the Theorem. 
 
 
 
THEOREM 27:  The product of two numbers with proportional factors is square. 
 
For example, consider  12  and  48,  whose factors are proportional, since  3 × 4 = 12, and 
6 × 8 = 48,  and since  3 : 4  =  6 : 8.  Hence the product of 12 and 48 is square, and 
indeed     3 × 4 × 6 × 8  =  576  = 24 2.  Now let’s prove it generally ... 
 
Given:  A × B   and   C × D 
  A : B  =  C : D 
 
Prove:  A × B × C × D   is a square number 
 
[1] First,  A : B  =  C : D  (given) 
 
[2] Thus  A × D  =  B × C (product of means = product of extremes) 
 
[3] Therefore (A × D) (B × C)  is a square number, since by Step 2 these two 
factors are equal.  That is,  A × B × C × D  is a square number (since the order of 
multiplication makes no difference). 
 
Q.E.D. 
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THEOREM 28:  If one number measures the square of another, then there is a 
third number proportional to the two numbers; if not, not. 
 
Given:  A  measures  B2 
 
Prove:  There is a third proportional number N such that 
  A : B  =  B : N 
 
Since A measures B2 some definite number of times, let that number be N, so that 
  A ⋅ N  =  B ⋅ B 
Thus  A : B  =  B : N   (Thm.4) 
So N is a third proportional to A and B. Q.E.D. 
 
 
Given:  A  does not measure  B2 
 
Prove:  There is no third proportional number N such that 
  A : B  =  B : N 
 
If possible, suppose that 
  A : B  =  B : N 
then  A ⋅ N  =  B ⋅ B   (Thm.4) 
i.e.  A  does measure B2, which is absurd, since we are given that A does not 
measure B2.  So there is no number N such that  A : B = B : N, unless A measures B2. 
 
Q.E.D. 
 
 
 
THEOREM 28 Remarks: 
 
1.  For example, do 5 and 6 have a third proportional number N, such that  5 : 6  =  6 : N?  
No, since 5 does not measure 6 × 6 or 36.  On the other hand, 4 and 6 have a third 
proportional number N, since 4 does measure 6 × 6, namely 9 times.  So  4 : 6  =  6 : 9. 
 
2.  If two numbers (neither of which is 1) are prime to each other, then there is no third 
proportional to them.  Say A and B are prime to each other.  Therefore A is prime to B2, 
since A is given as prime to B and therefore it must also be prime to the product of two 
B's (Thm.11).  Therefore A does not measure B2.  So there is no third proportional 
number to A and B (by the present Theorem).  Therefore if two numbers are prime to 
each other, they have no 3rd proportional. 
 Of course, 1 and 3 are prime to each other, and yet they have a third proportional, 
namely 9.  But that is because 1 is not only prime to every number, but measures every 
number (see Thm.11, Remark 3).  So 1 must measure the square of every number, and 
therefore for 1 and any number X there will always be a third proportional. 
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THEOREM 29:  If one number measures the product of two others, then there is 
a fourth number proportional to them; if not, not. 
 
 
Given:  A measures B × C 
 
Prove:  There is a fourth proportional number to  A, B, C 
  i.e. there is some number N such that  A : B  =  C : N 
 
A measures B × C some number of times (given).  Say A measures it N times. 
Hence   A ⋅ N  =  B ⋅ C 
thus   A : B  =  C : N   (Thm.4) 
i.e. A, B, C have a fourth proportional. 
 
Q.E.D. 
 
 
Given:  A does not measure B × C 
 
Prove:  There is no fourth proportional number to A, B, C 
 
If possible, say A : B  =  C : N 
thus   A ⋅ N  =  B ⋅ C   (Thm.4) 
i.e.  A measures B × C exactly N times, which is absurd, since it is given that A does not 
measure B × C.  So it is impossible to find a fourth proportional number to A, B, C. 
 
Q.E.D. 
 
 
 
 
 
 
 
THEOREM 30:  If numbers are in a continuous proportion that begins from 1, 
then all terms after the second term are consecutive powers of it. 
 
Consider the numbers  1, 3, 9, 27, 81.  They are in a continuous proportion beginning 
from 1, since  1 : 3  =  3 : 9  =  9 : 27  =  27 : 81. 
Also 9 = 32 
and 27 = 33 
and 81 = 34 
That is, all the terms after 3 are consecutive powers of 3.  Every continuous proportion 
beginning from 1 must be this way.  Here’s why: 
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Given:    A, B, C, D, E etc. in continuous proportion beginning from 1, 
    i.e. 1 : A  =  A : B  =  B : C  =  C : D  =  D : E  etc. 
 
Prove:    B = A2 
    C = A3 
    D = A4  etc. 
 
[1]  1 : A  = A : B  (given) 
 so B  =  A2  (products of means and extremes) 
 
[2] But A : B  =  B : C  (given) 
 so A · C  =  B · B  (products of means and extremes) 
 or A · C  =  A · A · A · A (B = A · A,  Step 1) 
 so C  =  A · A · A  (dividing both sides by A) 
 i.e. C  =  A3 
 
and so on. 
 
Q.E.D. 
 
 
 
THEOREM 31:  How to find the sum of  N numbers that are in a continuous 
proportion beginning from  1. 
 
Recalling the last theorem, numbers in continuous proportion beginning from 1 look like 
this:    1,  A,  A2,  A3,  A4   etc. 
If we want the sum of these up to and including A4, just take the difference  (A5 – 1)  and 
divide it by  (A – 1).  For example 
 
 1  +  3  +  32  +  33  +  34   =   (35 – 1) ÷ (3 – 1) 
 
Why does that work?  For brevity, 
let S  =  1 + A + A2 + A3 + A4 
now S (A – 1)  =  S · A – S   (Ch.5, Thm.1) 
or S (A – 1)  =  A (1 + A + A2 + A3 + A4)  – 1 – A – A2 – A3 – A4 
so S (A – 1)  =  A  +  A2  +  A3  +  A4  +  A5  –  1  –  A  –  A2  –  A3  –  A4 
or S (A – 1)  =  A5 – 1 
hence S  =  (A5 – 1)  ÷ (A – 1) 
 
Q.E.F. 
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THEOREM 31 Remarks: 
 
1.  Although the proof sums terms only up to A4, you can see why  1 + A + A2 + A3 + A4 
+ A5  =  (A6 – 1) ÷ (A – 1).  In general, the sum of continuously proportional numbers 
from  1  to  AM  is  (AM + 1 – 1) ÷ (A – 1). 
 
2.  In particular, then,  1  +  2  +  22  +  23  +  ...  +  2X  =  (2X + 1 – 1). 
 
 
 
 
 
 
 
 
 
THEOREM 32:  If  (2N – 1)  is a prime number  P, 
then the product  T  =  (2N – 1) (2N – 1)  is a perfect number. 
 
 
[1]  To see this, recall that a perfect number is a number equal to the sum of all its factors 
other than itself.  Now what are all the factors of the product T?  Since  (2N – 1)  is prime 
P, and since  (2N – 1)  is a power of  2  made of nothing but a bunch of twos multiplied 
together (and 2 is prime), therefore all the factors of  T  =  (2N – 1) (2N – 1)  are: 
 {a}  1,  plus all the powers of  2  up to  2N – 1, 
and {b}  the products of  P  with 1 and with all those different powers of  2. 
This we know from Theorem 14. 
 
[2]  As for the sum of  {a},  namely of  1  and all the powers of  2  up to  2N – 1,  this is 
equal to  2(N – 1) + 1  – 1  (Thm.31, Remark 2). 
 So the sum of  {a}  =  (2N – 1). 
 
[3]  As for the sum of  {b},  namely the products of  P  with  1  and with all the powers of  
2,  this is equal to the product of  P  with the sum of  1  plus all those powers of  2  (Ch.5, 
Thm.1), 
 so the sum of  {b}  =  P (1  +  2  +  22  +  23  +  ...  +  2N – 1) 
 i.e. the sum of {b}  =  P [ sum of {a} ] 
 that is,     sum {b}  =  P (2N – 1) 
 
[4]  Since all the factors of  T  add up to  sum {a} + sum {b}, hence all the factors of T 
add up to (2N – 1)  +  P (2N – 1)  (Steps 2 and 3) 
 or (2N – 1) (1 + P)  (factoring out (2N – 1); Ch.5, Thm.1) 
 or (2N – 1) (1 + 2N – 1)  (writing out the expression for P) 
 so (2N – 1) (2N) is the sum total of all the factors of T. 
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[5]  So what is the sum of  T’s  factors that are less than itself?  Nothing but the sum of 
all its factors minus itself, i.e. 
  (2N – 1) (2N)  –  T 
Replacing  T  with its whole expression, this is 
  (2N – 1) (2N)  –  (2N – 1) (2N – 1) 
But  2N  is double  2N – 1,  since every power of two is double the previous power of two.  
Hence  2N  =  (2N – 1  +  2N – 1).  Substituting this expression for  2N,  all the factors of  T  
less than itself add up to 
  (2N – 1) (2N – 1  +  2N – 1)  –  (2N – 1) (2N – 1) 
But the product on the left equals the sum of  (2N – 1)  times each term in the parentheses  
(Ch.5, Thm.1).  So we have 
  (2N – 1) (2N – 1)  +  (2N – 1) (2N – 1)  –  (2N – 1) (2N – 1) 
But this simply leaves 
  (2N – 1) (2N – 1) 
which is  T ! 
 
[6]  So the sum of all  T’s  factors less than itself is equal to  T  itself.  Therefore  T  is a 
perfect number. 
 
Q.E.D. 
 
 
THEOREM 32 Remarks: 
 
1.  For example,   22 – 1  is prime, since it is 3.  Therefore  (22 – 1)(22 – 1)  must be perfect.  
Working it out, this product is  (4 – 1)(21),  or simply  (3)(2),  which is  6.  And indeed all 
the factors of  6  which are less than  6  itself are  1,  2,  3.  And these add up to  6. 
 
2.  Perfect numbers are relatively rare.  The first 10 of them are: 
N = 2  6 
N = 3  28 
N = 5  496 
N = 7  8128 
N = 13  33550336 
N = 17  8589869056 
N = 19  137438691328 
N = 31  2305843008139952128 
N = 61  2658455991569831744654692615953842176 
N = 89  191561942608236107294793378084303638130997321548169216 
Note that all the values for N are prime.  The next several perfect numbers are generated 
by plugging in the following values for N in the perfect number formula:  107, 127, 521, 
607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701.  The last 
few of these, when spelled out in all their digits, take up several sheets of paper.  In 1981, 
the largest known prime was of the form  2N – 1,  namely  244497 – 1,  and so  44497  is 
also a value for  N  generating a perfect number. 
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3.  There are some interesting facts about perfect numbers.  First, it is unknown to this 
day whether or not any odd perfect numbers exist.  All the perfect numbers of the type 
described in this Theorem are obviously even.  It is known, however, that all perfect 
numbers that are even are of the form described in this Theorem. 
 
4.  If you add the digits in a perfect number, and do the same with the resulting number, 
and so on until you can go no further, the result is always 1.  The only exception is with 
the first perfect number, 6.  But the next is 28, and its digits add up to 10, whose digits 
add up to 1.  The next perfect number is 496, whose digits add to 19, whose digits add to 
10, whose digits add to 1.  The next perfect number is 8128, whose digits add to 19, 
whose digits add to 10, whose digits add to 1, etc. 
 
5.  It has been proved that there is an infinity of perfect numbers, but fewer than 50 are 
known today. 
 
6.  Every number of the form  (2N – 1)(2N – 1),  including those that are perfect (namely 
when 2N – 1 is prime), is a triangular number whose base is  (2N – 1).  So the prime 
number which is distinctive of each even perfect number is also its triangular base. 
 
7.  No even perfect number is square.  That is obvious, since its prime factorization is a 
bunch of twos and one odd prime.  There is no way to divide up those factors into two 
equal factors. 
 
8.  No even perfect number measures any other.  That is clear because if they are 
different, their unique primes are different.  But then if one measures the other, all its 
factors will have to measure the other, also.  And so its unique prime will measure the 
other, and so the other will have that prime in its prime factorization, too, which is 
impossible.  For each even perfect number has only one odd prime in its factorization, 
namely 2N – 1. 
 
9.  All even perfect numbers end their digits with either 6 or 8. 
 
10.  All even perfect numbers (except 6) have the same remainder when you divide them 
by 6, namely a remainder of 4. 
 
 
 
 
“HOOK”:  THE ONLY SQUARE SQUARE-PYRAMIDAL NUMBER. 
 
If you add consecutive numbers starting from 1, the sum is called a “triangular number.”  
But if you add consecutive square numbers starting from 1, the sum is called a “square 
pyramidal number,” because the units can be arranged in the form of a “square pyramid”. 
 
Question:  Is any square pyramidal number also a square number?  Yes!  The number  
4900  =  702  =  12 + 22 + 32 + ... + 242 . 
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What is more amazing, 4900 is the only square pyramidal number which is also a square 
number (other than the trivial example of 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
“HOOK”:  THE ONLY TRIANGULAR SQUARE-PYRAMIDAL NUMBERS. 
 
Are any square pyramidal numbers triangular?  Yes, namely these: 
 
 1 
 55 
 91 
 208335 
 
And those are the only ones! 
 
 
“HOOK”:  NUMBERS EXPRESSIBLE AS SUMS OF CUBES IN TWO WAYS. 
 
When G. H. Hardy pulled up in front of Ramanujan’s flat for the first time, in a cab 
numbered 1729, Hardy remarked it was a singularly uninteresting number, to which 
Ramanujan famously replied “Not at all, it is a very interesting number, since it is the 
first to be expressible as the sum of two cubes in two ways,” meaning 
 
 1729 = 13 + 123  =  93 + 103 
 
Apparently, this identity was found in Ramanujan’s notebooks dated earlier than this 
meeting, so he did not simply come up with it on the spot. 
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It is perhaps unsatisfying that 1 is involved, since 1 is in a way a “cube number” only in a 
degraded sense.  So here are a couple other examples which don’t involve 1: 
 
 
 
6507811154  =  313 + 18673  =  3973 + 18613  
 
6058655748  =  613 + 18233  =  10493 + 16993  
 
 
“HOOK”:  FERMAT’S LAST THEOREM. 
 
 
Is it ever the case that the sum of two square numbers is itself a square number?  Yes.  
For example: 
 
 32  +  42  =  52   
 
This is plainly connected to the Pythagorean Theorem. 
 
But what about cube numbers?  Is it ever the case that the sum of two cube numbers is 
itself a cube? 
 
No!  With the trivial exception of 0 (which, for the purposes of this book, is not 
considered a “number” anyway), it is never the case that 
 
 a3  +  b3  =  c3   
 
where  a, b, c  are all numbers, i.e. positive integers. 
 
In fact, it is never the case that 
 
 an  +  bn  =  cn   
 
where  a, b, c, n  are all integers, and  n > 2. 
 
This more general statement is Fermat’s famous last theorem, proved only in the 20th 
century. 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 

Chapter Eight 
 
 
 

Irrational Magnitudes 
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DEFINITIONS 

 
 
 
1.  A MAGNITUDE is a quantity which is divisible forever. 
 For example, a line is a magnitude because it can be divided into parts, its parts 
can be divided into parts, and so on without ever coming to an end.  But a number (as 
defined in Ch.7, definitions 2 & 3) is not a magnitude, because its divisibility ends with 
its units, which are indivisible. 
 
 
2.  Two magnitudes are COMMENSURABLE if they have a common measure, but 
INCOMMENSURABLE if they do not. 
 (The sense of “measure” in this definition is the one defined in Ch.5, Def.1.) 
 For magnitudes to be commensurable or incommensurable they must be 
comparable in terms of greater than, less than, or equal to – e.g. two lines, or two areas, 
not a line and an area. 
 
 
3.  Designating any straight line as our unit length, straight lines commensurable with it 
are called RATIONAL LINES in reference to it; those incommensurable with it are 
called IRRATIONAL LINES.  And any areas commensurable with the square on the unit 
line (i.e. the “unit square”) are called RATIONAL AREAS in reference to it; those 
incommensurable with the unit square are called IRRATIONAL AREAS. 
 
 
4.  A FRACTION of a magnitude is any measure of it taken any number of times. 
 For example, “five eighths” of a straight line is a fraction of it, since that means 
taking one eighth of it give times, and it is written 
  
 
 
 
And “eight fifths” of a straight line is a fraction of it, since that means taking one fifth of 
it eight times, and it is written  
 
 
 
Though eight fifths is larger than the original line, it is still called a fraction (although 
sometimes it is called an “improper” fraction). 
 
 
 

8
5

5
8
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PRINCIPLES 
 
 
 
1.  Any two commensurable magnitudes have to each other the same ratio as some pair of 
numbers, and any two magnitudes having the same ratio as some pair of numbers are 
commensurable with each other. 
 For example, if a straight line measures another straight line 5 times, and yet 
another straight line 8 times, then the two measured lines have the ratio  5 : 8.  And if two 
straight lines have the ratio  5 : 8,  then they are commensurable. 
 
 
 
2.  No two incommensurable magnitudes have to each other the same ratio that any two 
numbers have, and magnitudes not having the same ratio that any two numbers have are 
incommensurable with each other. 
 
 
 
3.  Any two multiples of the same magnitude are commensurable with each other, and 
have the same ratio as the multiplying numbers. 
 For example, 5A and 3A are commensurable, having A as a common measure, 
and they have the same ratio as 5 and 3. 
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THEOREMS 
 
 
THEOREM 1:  Any fraction of a magnitude is commensurable with it. 
 

 
Given: Any magnitude M 
 Any fraction of it, F 
 
Prove: F is commensurable with M 
 
 
 

Since F is a fraction of M, it is equal to some measure of M taken some number of times.  
Say it is equal to 5 times the seventh part of M. 
Then  a seventh of M measures F  (5 times) 
and  a seventh of M measures M  (7 times) 
so  F and M have a common measure (namely a seventh of M) 
thus  F is commensurable with M 
 
Q.E.D. 
 
 
THEOREM 1 Remarks: 
 
 
1.  It does not matter whether F is greater or smaller than M.  The proof still works in 
exactly the same way. 
 
2.  Any fraction of the unit length is rational.  For a fraction of the unit length will have to 
be commensurable with it (by this Theorem), and any length commensurable with the 
unit length is rational (Def.3). 
 
3.  Any fraction of the unit square is rational.  For a fraction of the unit square will have 
to be commensurable with it (by this Theorem), and any area commensurable with the 
unit square is rational (Def.3). 
 
4.  No irrational line length is expressible as a fraction of the unit line, for then it would 
be rational (Remark 2 above).  So if we call a certain line length “1,” then it is impossible 
to designate an irrational line (i.e. one that is incommensurable with the line we have 
chosen to call 1) as a fraction, e.g. as “two thirds” or as “one-hundred-and-twenty-three 
thousandths.” 

F M
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THEOREM 2:  Squares with commensurable sides have the same ratio as two 
square numbers. 
 
Given: Square A and square B, which have 
commensurable sides. 
 
Prove: Square A has to square B the same 
ratio as a square number to a square number. 
 
 
Since the side of  A  is commensurable with 
the side of  B, let  K,  their common 
measure, go  n  times into the side of  A,  and  m  times into the side of  B. 
 Now divide the sides of  A  into  n  equal parts, and divide the sides of  B  into  m  
equal parts, each part therefore being equal to  K, and complete the “grid” in each square. 
 The area of square  A  is now divided into  n  rows each containing  n  of the 
equal squares, each with a side of  K.  So the area of  A  equals  n × n  such squares.  
Likewise, the area of  B  equals  m × m  of those same squares, each with a side of  K. 
 
Thus  A  :  B   =   n × n squares  :  m × m squares 
 
that is  A  :  B   =   n × n  :  m × m   (Principle 3) 
 
And so squares A and B have the same ratio as a pair of square numbers. 
 
Q.E.D. 
 
 
 
 
 
THEOREM 2 Remarks: 
 
1.  The proof reveals that if the sides of two squares are as the numbers  n  and  m,  then 
the squares themselves are as the numbers  n2  and  m2. 
 
2.  It follows that squares with areas that do not have the ratio of any two square numbers 
have incommensurable sides.  For if their sides were commensurable, then their areas 
would have the same ratio as a pair of square numbers. 
 
 
 
 
 

nK

nK

mK

mK

A B
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THEOREM 3:  Any square whose area is a non-square number of times the unit 
square has an irrational side. 
 

Let your unit line length be set out, and make a 
square on it, which is thus the unit square (with 1 
square unit of area).  Now take any square whose 
area is some number of times this unit square, but 
choose a non-square number, say 2. 
 
Since 2 is a non-square number, I say that the side 
of the new square (having 2 times the area of the 
unit square) is irrational. 
 

For these two squares have the ratio of   1 : 2  (given). 
But no two square numbers have the ratio of  1 : 2. 
 For, if possible, say  1 : 2  =  N2 :  M2 
 Then, multiplying the means and extremes in this numerical proportion, 
 we get    M2  =  2N2  (Ch.7, Thm.4) 
And so it seems that 2 times a square number (namely N2) makes a square number 
(namely M2).  From this fact, it follows that 2 is itself a square number, since only a 
square number times a square number produces a square number (Ch.7, Thm.23).  But 2 
is not a square number, so our initial assumption that two square numbers can have the 
ratio of 1 : 2 must have been false. 
 So no two square numbers have the ratio of  1 : 2. 
 Therefore our two squares, which do have the ratio of  1 : 2, do not have the ratio 
of any two square numbers, either.  Therefore our two squares have incommensurable 
sides (Thm.2, Remarks).  Thus the side of the square with 2 times the area of the unit 
square, being incommensurable with the unit length, is irrational. 
 And the same is true for the side of a square with 3 square units of area, or 5, or 6, 
or 7, or any non-square number of square units of area.  They all have irrational sides. 
 
Q.E.D. 
 
 
THEOREM 3 Remarks: 
 
1.  Incidentally, how would you make a square with 2 times the area of the unit square?  
How do you make a square that is double the area of a given square?  How about triple?  
How about 4 times?  Can you see how to make a square that has any number of times the 
area of a given square?  Start by taking the given square the required number of times, 
and putting them together into one rectangle.  Now make a square equal to that rectangle. 
 
2.  Even if we do not use the unit square, but just any old square S, the proof works the 
same way to show that the side of another square that is a non-square number of times the 
area of S is incommensurable with the side of the first square. 
 

1

2

1
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THEOREM 4:  The diagonal of a square is incommensurable with its side. 
 
 
Take any square ABCD.  I say that side AB is 
incommensurable with diagonal AC. 
 
Draw the square on AC, namely ACEF.  If you extend 
CD and AD, they pass through F and E, dividing square 
ACEF into 4 triangles identical to triangle ACD.  But 
square ABCD is divided into 2 triangles identical to 
triangle ACD. 
 Therefore £ABCD : £ACEF  =  2 : 4 
 or  £ABCD : £ACEF  =  1 : 2 
So these two squares do not have the ratio of a square number to a square number, since 
no square numbers have the ratio of 1 : 2 (as we saw in Thm.3).  And therefore the sides 
of these two squares are incommensurable with each other (by Thm.2, Remarks).  Thus 
AB is incommensurable with AC. 
 
Q.E.D. 
 
 
 
THEOREM 4 Remarks: 
 
This Theorem, even more clearly than the last one, shows that some 
magnitudes are incommensurable.  We can easily make a square – now 
just draw the diagonal, and it will be incommensurable with the side of 
the square.  In the absence of proof, it might seem impossible for two 
comparable magnitudes to be incommensurable.  Given any pair of 
straight lines, A and B, can’t we find a tiny straight line that fits 
exactly into each of them some number of times?  After all, there is no 
limit to how small straight lines can get – there must be one small 
enough to measure both A and B exactly ... right? 
 Wrong!  Some magnitudes are incommensurable.  We have just shown that 
nothing measures both the side of a square and its diagonal. 
 Before reading this Chapter, you might have thought that all ratios can be 
expressed numerically, as a ratio between two numbers.  After all, there is an infinity of 
numbers, and an infinity of numerical ratios.  So given any two straight lines, such as A 
and B, musn’t their ratio be expressible as a ratio between two numbers?  Not if A and B 
are incommensurable, as the side of a square and its diagonal are.  Not all ratios are 
numerical ratios, and all the numerical ratios are not all the ratios. 
 
 
 

B C

D E

F

A

A B
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THEOREM 5:  The height of an equilateral triangle is incommensurable with its 
side. 

 
 
Take any equilateral triangle ABC, drop AH 
perpendicular to BC.  Thus AH is the height. 
 
I say side AB is incommensurable with height AH. 
 
 
 

Proof:  Since BH is half the length of the side of the triangle, thus AB = 2BH.  Hence the 
square on AB is four times the square on BH, i.e. 
 
 £AB : £BH  =  4 : 1 
so £AB : £AB – £BH  =  4 : 4 – 1  (Ch.5, Thm.16, Remark 3) 
i.e. £AB : £AH  =  4 : 3    (£AB - £BH = £AH; Pythagorean) 
 
Now 4 and 3 don't have the same ratio as any two square numbers.  For if possible, 
suppose that 
 
 4 : 3  =  M2 :  N2 
thus 4N2  =  3M2     (Ch.7, Thm.4) 
 
And since 4N2 is a square number (since a square number times square number yields a 
square number), thus 3M2, its equal, is also a square number.  But since only a square 
number times a square number yields a square number (Ch.7, Thm.23), thus 3 must be a 
square number.  But that's impossible.  Therefore, too, it is impossible that 4 and 3 should 
have the same ratio as any two square numbers. 
 But since the ratio of 4 : 3 is not the ratio of any two square numbers, therefore 
the ratio of  £AB : £AH  is likewise not the ratio of any two square numbers.  Therefore 
(by Thm.2 Remarks) it follows that their sides are incommensurable, i.e. AB is 
incommensurable with AH. 
 
Q.E.D. 
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THEOREM 6:  The parts of a magnitude cut into mean and extreme ratio are 
incommensurable. 
 

Take any straight line  AB  and cut it 
in mean and extreme ratio at  S. 
Hence  BA : AS  =  AS : SB. 

 
 
I say that  AS  and  SB  are incommensurable with each other. 
 
If possible, suppose  AS  and  SB  are commensurable, and therefore have a numerical 
ratio.  Say  AS : SB  =  n : m,  where  n  and  m  are the least numbers in that ratio, and so 
are prime to each other  (Ch.7, Thm.7, Remark 2). 
 
[1] Since AS : SB  =  n : m  (assumed) 
 thus AS : AS + SB  =  n : n + m (Ch.5, Thm.15, Remarks) 
 or AS : AB  =  n : n + m  (AS + SB  is  AB) 
 but AS : AB  =  SB : AS  (inverse of given) 
 so SB : AS  =  n : n + m  (each ratio is the same as AS : AB) 
 but SB : AS  =  m : n  (inverse of the assumed proportion) 
 so m : n  =  n : n + m  (each ratio is the same as SB : AS) 
 
[2] Since  m  and  n  are the least numbers in their ratio, hence they measure the 
numbers in the same ratio with them (Ch.7, Thm.7).  So the antecedent measures the 
antecedent in the proportion above, i.e.  m  measures  n.  But since  m  and  n  are prime 
to each other, they have no common measure but  1.  So  m = 1. 
 
[3] So 1 : n  =  n : n + 1  (replacing m with 1 in Step 1 proportion) 
 hence n × n  =  n + 1   (product of means = product of extremes) 
But this is impossible for any number  n. 
Consider: 1 × 1  <  1 + 1 
 but 2 × 2  >  2 + 1 
 and 3 × 3  >  3 + 1 
 and 4 × 4  >  4 + 1 
 and 5 × 5  >  5 + 1 
 etc. 
 
[4]  Since it is impossible for  n  to be a number, it is impossible to express mean and 
extreme ratio as the ratio between two numbers,  n  and  m.  Hence  AS  is 
incommensurable with  SB. 
 
Q.E.D. 
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THEOREM 7:  Two magnitudes each commensurable with the same magnitude 
are also commensurable with each other. 
 

 
Given: A and C are commensurable 
 B and C are commensurable 
 
Prove:  A and B are commensurable 
 
 

Since A and C are commensurable, they have a common measure, say W, that goes into 
each of them some number of times.  Say 
  A = 5W 

 C = 7W 
Since B and C are commensurable, they have a common measure, say Z, that goes into 
each of them some number of times.  Say 

 B = 3Z 
 C = 4Z 

 
[1]  Now A : 5W  =  B : 3Z  (A = 5W, and  B = 3Z) 
 
[2]  thus 7 · 4 · A  :  7 · 4 · 5W   =   7 · 4 · B  :  7 · 4 · 3Z 
 
All we have done in this step is multiply every term in the proportion of Step 1 by 7 × 4, 
i.e. by 28.  Doing this does not destroy the proportion.  A few inconsequential 
rearrangements of the multipliers gives us 
 
[3]  28A  :  4 · 5 · 7W   =   28B  :  7 · 3 · 4Z 
 
And since 7W = C (as we set out in the beginning), and 4Z = C, we can replace those two 
terms in the proportion with C: 
 
 so 28A  :  4 · 5 · C   =   28B  :  7 · 3 · C 
 or 28A  :  20C   =   28B  :  21C 
 thus 28A  :  28B   =   20C  :  21C (alternating the proportion) 
 i.e. A : B  =  20 : 21 
 
So A and B have to each other the ratio that a number has to a number, and so they are 
commensurable. 
 
Q.E.D. 
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THEOREM 7 Remarks: 
 
1.  In particular, if one magnitude is commensurable with another, then it is also 
commensurable with any measure of it.  That is, if  M  is commensurable with 35Q, then 
M is also commensurable with Q.  For 
 M is commensurable with 35Q (given) 
 Q is commensurable with 35 Q (since Q measures both) 
thus M and Q must be commensurable (both being commensurable with 35Q) 
 
2.  We have seen many relationships which are transitive, i.e. which are such that if two 
things have that relationship to a third thing, they also have it to each other.  This is true 
about the relationships of  (a) equality, (b) congruence, (c) parallelism, (d) sameness of 
ratio, (e) similarity, and now (f) commensurability. 
 
 
 
 
 
THEOREM 8:  Any magnitude commensurable with one of two incommensurable 
magnitudes must be incommensurable with the other one. 
 

 
Given: A and B are incommensurable with each other 
 Z is commensurable with A 
 
Prove: Z is incommensurable with B 
 
 

If Z were commensurable with B, 
then A and B would both be commensurable with Z (it is given that A is), 
and so A and B would be commensurable with each other (by Thm.7), 
but A and B are not commensurable with each other (given), 
and therefore neither can Z be commensurable with B. 
 
Q.E.D. 
 
 
 
 
THEOREM 8 Remarks: 
 
Now it is also clear that if a straight line is commensurable with an irrational line, it is 
irrational too. 
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THEOREM 9:  The sum of two incommensurable magnitudes is incommensurable 
with each of them – and the difference of two incommensurable magnitudes is 
incommensurable with each of them. 
 
Given: A is incommensurable with B 
 
Prove: A + B is incommensurable with A 
 A + B is incommensurable with B 
 
If A were commensurable with A + B, then they have some common measure M going 
into each some number of times, say 
 
      A + B = 5M 
and  A = 3M 
thus  B = 2M (subtracting equals from equals) 
 
And so M also measures B, not just A.  Thus A will be commensurable with B.  But it is 
given that it is not.  Therefore neither can A be commensurable with A + B. 
 Likewise B cannot be commensurable with A + B. 
 
Q.E.D. 
 
Similarly with the differences, if A is incommensurable with B, then 
 A – B is incommensurable with A 
 A – B is incommensurable with B 
 
For suppose, if possible, that A and A – B were commensurable, and so each is measured 
by a common measure, M, some definite number of times, say 
 
  A = 12M 
      A –  B =  8M 
thus  B =  4 M (subtracting equals from equals) 
 
And so again A and B would have to have M as a common measure, which is contrary to 
what is given about them.  Therefore A must be incommensurable with A – B. 
 Likewise B is incommensurable with A – B. 
 
Q.E.D. 
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THEOREM 10:  Either of two commensurable magnitudes is commensurable 
with their sum, and also with their difference. 
 
Given: A and B are commensurable. 
 
Prove: A is commensurable with A + B 
 B is commensurable with A + B 
 A is commensurable with A – B 
 B is commensurable with A – B  
 
Since A and B are commensurable, they have a common measure, M,which goes into 
each some number of times, say 
 A = 7M 
 B = 5M 
Thus A + B = 12M, and so their sum is also measured by M, the common measure of A 
and B, and so A + B is commensurable with A and with B. 
 And A – B = 2M, and so their difference is also measured by M, and thus is 
commensurable with A and also with B. 
 
Q.E.D. 
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THEOREM 11:  How to make an infinity of magnitudes, every one of which is 
incommensurable with all the rest. 
 
 
Given: Two incommensurable magnitudes to start with, 
A and B, such as the side and diagonal of a square. 
 
Find:  A way to generate from them an infinity of magnitudes every one of which is 
incommensurable with every other. 
 
 
If we make the following magnitudes: 
 
 A + 1B 
 A + 2B 
 A + 3B  …  etc. 
 
I say that every one of these is incommensurable with all the rest.  Consider, for example, 
A + 5B  and A + 12B.  I say they are incommensurable. 
 
For, if possible, suppose that 
 A + 5B  is commensurable with  A + 12B 
then A + 5B  is commensurable with  7B  (i.e. with their difference; Thm.10) 
then A + 5B  is commensurable with  B  (i.e. with a measure of 7B; Thm.7) 
then A + 5B  is commensurable with 5B  (i.e. with a multiple of B) 
 
Now, since 5B is commensurable with A + 5B, it follows that 5B is also commensurable 
with their difference, namely with A (by Thm.10). 
 
thus A is commensurable with 5B 
so A is commensurable with B 
 
since B is a measure of 5B, and anything commensurable with 5B must also be 
commensurable with anything that measures it (see Thm. 7, Remark). 
 But it is impossible for A to be commensurable with B, since it is given that they 
are not commensurable.  Therefore our initial supposition, namely that  A + 5B  and  A + 
12B are commensurable, is impossible.  Therefore  A + 5B  and  A + 12B  are 
incommensurable. 
 Likewise any two magnitudes in our infinite list are incommensurable with each 
other. 
 
Q.E.D. 
 
 
 
 

A

B



 261 

THEOREM 11 Remarks: 
 
 
Here is another way to set out an 
infinity of lines all incommensurable 
with each other.  Set out the unit line 
1, make another line equal to it at 
right angles and join the endpoints.  
Since this hypotenuse is in fact the 
diagonal of the square on the unit 
line, the square on that hypotenuse 
equals two times the unit square.  
Call this line side of square two.  
Now draw another unit line at right 
angles to the side of square two, and 
join its endpoint to the other end of 
the side of square two.  By the 
Pythagorean Theorem, the square on 
this new hypotenuse equals the 
square on 1 (i.e. 1 square unit) plus the square on the side of square two (i.e. 2 square 
units), and so it is equal to 3 square units of area.  Call this line side of square three.  
Repeat the process and you will get the hypotenuses which are the sides of squares 4, 5, 6 
etc., having 4 square units of area, 5 square units of area, and so on. 
 Looking at the hypotenuses, the squares on any two of them are as the numbers 
under the radical signs, which are simply all the numbers (if the process is carried on 
indefinitely).  Now attend only to the hypotenuses with prime numbers.  The squares on 
any two of these will be as those prime numbers – but no two prime numbers have the 
same ratio as two square numbers (Ch.7, Thm.24).  So the squares on any two prime-
numbered hypotenuses will not be as a square number to a square number, and so those 
hypotenuses themselves will be incommensurable (Thm.2, Remark 2).  But we can make 
as many such hypotenuses as there are prime numbers, and there is an infinity of those 
(Ch.7, Thm.15).  Therefore we can make an infinity of straight lines, each one of which is 
incommensurable with all the others. 
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THEOREM 12:  How to make an infinity of straight lines commensurable with a 
given line, but falling between two given lengths. 
 
 
 
 
 
 
Suppose I give you a straight line  G,  and also two other lengths  AR  and  AP  differing 
by however much or little you please.  Can you find a way to make an infinite series of 
different lengths falling between  AR  and  AP,  which are all commensurable with  G?  
Absolutely. 
 
 
[1]  First notice that however small  RP  may be, some multiple of it will exceed G.  
Suppose    57 RP  >  G 
Now divide G into more than 57 equal parts, say  5700  equal parts (Ch.6, Thm.8), and 
call each one F.  So  G  =  5700 F. 
So now    57 RP  >  5700 F 
hence          RP  >  100 F 
So if we now multiply  F  until it first exceeds AR, we will have to add almost another 
100 F’s before we reach P.  In other words, there are plenty of multiples of  F  between  
AR  and  AP. 
 
[2]  So let  AI  and  AN  both be multiples of  F  falling between  AR  and  AP  in length.  
Bisect  IN  at  V. 
 
[3]  Since  AI  and  AN  are both commensurable with  G  (all three are multiples of  F), 
hence  AI is sommensurable with AN (Thm.7) 
so  AI is commensurable with IN  (their difference; Thm.10) 
but  IV is commensurable with IN  (IV is half IN) 
so  AI is commensurable with IV  (Thm.7) 
thus  AI is commensurable with AV (their sum; Thm.10) 
but  AI is commensurable with G  (both are multiples of F) 
so  AV is commensurable with G 
 
[4]  So AV lies between AR and AP in length, and it is commensurable with G, the given 
line.  If we now bisect  IV  at  Q,  AQ  will likewise lie between AR and AP and be 
commensurable with G by similar reasoning, and their is no limit to how many lines we 
can make like this. 
 
 
Q.E.F. 
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THEOREM 13:  Between any two irrational lengths there is an infinity of 
rational lengths; and between any two rational lengths there is an infinity of irrational 
lengths, each incommensurable with all the others. 
 
 
 
 
 
 
 
 
[1]  Set out the unit length  U,  and any two irrational lengths  LQ  and  LP,  with as small 
a difference between them as you like.  By Thm.12, we can construct an infinity of 
straight lines falling between LQ and LP in length, but all commensurable with  U,  and 
hence rational.  So the first part of the Theorem is proved. 
 
[2]  Take any two rational lengths  LR  and  LT  (falling between LQ and LP if you 
wish), with as small a difference between them as you like.  Set out any irrational line  D  
(such as the diagonal of the square on U). 
 Consider the length  D + U.  Since  D  is incommensurable with  U,  hence their 
sum is also incommensurable with  U  and hence irrational (Thm.9).  But by Thm.12, we 
can make an infinity of lines between  LR  and  LT  in length, all commensurable with  D 
+ U,  and thus all irrational.  Choose any one of these and call it X1. 
 
[3]  Now consider the length  D + 2U.  It must likewise be irrational, since  D  is 
incommensurable with  U  and hence with all its multiples such as  2U,  and so  2U  is 
incommensurable with their sum  D + 2U  (Thm.9).  Therefore  U, being commensurable 
with  2U,  is also incommensurable with  D + 2U  (Thm.8).  Therefore  D + 2U  is 
irrational. 
 Also,  D + 2U  is incommensurable with  D + U  (Thm.11).  But again, using 
Thm.12, we can make an infinity of lines between LR and LT in length, all 
commensurable with  D + 2U, all of them therefore irrational and incommensurable with  
D + U.  Choose any of these, and call it  X2. 
 Because  X1  is commensurable with  D + U,  but  X2  is commensurable with  D 
+ 2U,  it follows that  X1  and  X2  are incommensurable with each other. 
 
[4]  We can continue with  D + 3U, and make  X3  between LR and LT, another irrational 
length, again incommensurable with both  X1  and  X2.  And so on forever. 
 
 
Q.E.D. 
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THEOREM 14:  If a straight line is divided into two parts incommensurable with 
each other, it is impossible to divide it into two other parts commensurable with the 
original two parts. 
 
 
 
 
 
Given:  AC is divided at B, and AB is incommensurable with BC 
 
Prove:  It is impossible to divide AC at another point X so that AX is commensurable 
with AB and XC is commensurable with BC. 
 
 
For let it be given that AX is commensurable with AB. 
Then I say that XC must be incommensurable with BC. 
 
For AX is commensurable with AB (given) 
 
and so the difference between them, XB, must be commensurable with each of them, 
 
so XB is commensurable with AB (Thm.10) 
 
Now since AB and BC are incommensurable (given), and XB is commensurable with one 
of them, namely AB, it follows that 
 
 XB is incommensurable with BC (Thm.8) 
 
and so the sum of these two must be incommensurable with each of them (Thm.9), 
 
i.e. XC is incommensurable with BC. 
 
And so it is impossible to divide the line AC at any point other than B so as to get two 
parts that are each commensurable with AB and BC respectively. 
 
Q.E.D. 
 
 
THEOREM 14 Remarks: 
 
Obviously we could make X the same distance from A that point B is from C, and thus 
AX would be commensurable with BC (being equal to it), and XC with AB (being equal 
to it).  But then we would not have really divided the line into two new kinds of parts. 
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THEOREM 15:  It is possible to contain a rational area with irrational lines, and 
also to contain an irrational area with rational lines. 

 
Begin with the square on the unit line, the unit square.  Form the 
square on its diagonal.  Since this diagonal is incommensurable 
with the unit side (Thm.4), it is irrational.  So the square on the 
diagonal of the unit square is contained by four irrational lines.  
And yet its area is rational, being double (and so commensurable 
with) the area of the unit square.  So it is possible to contain a 
rational area with irrational lines. 
 

Begin again with the square on the unit line, and extend one 
of its sides, AB, to D, so that DA = AB (and so DB is 
called 2 in reference to the unit length).  Now make 
equilateral triangle DHB on DB.  Thus AH is both the 
height of rDHB, and the extension of one side of the unit 
square (namely EA).  Complete the rectangle AHRB. 
 
Now,  £EABC : rect. AHRB  =  EA : AH 
  (Ch.6, Thm.1) 
 
But AH is the height of the equilateral triangle, and so it is incommensurable with its 
side, DB (Thm.5).  Thus height AH is also incommensurable with AB, half the side.  
Thus AH is also incommensurable with EA, which is equal to AB.  So EA is 
incommensurable with AH, and thus  EA : AH is not a numerical ratio. 
 
Thus  £EABC : rect AHRB  is not a numerical ratio. 
 
But rectangle AHRB is equal to the equilateral triangle DHB.  Therefore 
 
  £EABC : rDHB  is not a numerical ratio, 
 
which is to say that these two areas are incommensurable with each other.  But since 
square EABC is the unit square, hence rDHB is an irrational area.  And yet it is 
contained by rational sides, each of its sides being double (and thus commensurable with) 
the unit length.  So it is possible to contain an irrational area with rational lines. 
 
Q.E.D. 
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DEFINITIONS 
 
 
1.  A SOLID is whatever has length, width, and depth. 
 
 
 
2.  You have a STRAIGHT LINE PERPENDICULAR TO A 
PLANE if it is perpendicular to all the straight lines it stands 
on in that plane. 
 For example, PR stands on AB, and is perpendicular 
to it.  And if PR is perpendicular to all such lines in the plane 
passing through R, then PR is perpendicular to the plane. 
 
 
 

3.  You have PERPENDICULAR PLANES if every straight 
line in one of them that is perpendicular to their intersection 
is also perpendicular to the other plane. 
 For example, let two planes intersect along SX.  If 
every straight line AB drawn perpendicular to SX in one of 
the planes is also perpendicular to the other plane, then the 
two planes are perpendicular to each other. 
 

 
4.  Consider a straight line AB that passes through some plane 
at point A, and is not perpendicular to the plane, but leans over 
somewhat.  How much does it lean?  If we choose any point B 
along it, and BP falls perpendicular to the plane, then the 
INCLINATION OF THE STRAIGHT LINE TO THE PLANE 
is angle BAP. 
 
 
 

5.  The INCLINATION OF A PLANE TO A PLANE is the 
angle between two straight lines, one drawn in each plane, 
and both drawn perpendicular to the line of intersection and 
from the same point on it. 
 For example, angle ABC is formed by two 
perpendiculars to SX, each of them drawn in one of the two 
planes.  So angle ABC is the inclination of the planes. 
 
 

 

A

B

P

R

S

B

A

X

A P

B

A

B
S

X

C



 268 

6.  PARALLEL PLANES are those which never meet, no matter how far they are 
extended. 
 

 
7.  A PLANAR SOLID ANGLE is formed by three or more 
planes meeting at a point. 
 For example, in a cube, one angle of it is formed by three 
right-angled faces, namely BAC, BAD, CAD. 
 
 
 

8.  A SOLID FIGURE is a figure contained by one or more surfaces. 
 

 
9.  A SPHERE is a solid figure contained by one surface which is at all 
points equidistant from one point within called the CENTER.  If a 
semicircle is rotated all the way around on its diameter once, the solid 
figure it describes is a sphere.  The center and diameter of the 
semicircle are also the center and diameter of the sphere.  Any straight 
line drawn through the center of a sphere and stopping at the surface of 
the sphere in each direction is a DIAMETER of the sphere. 

 
 
10.  A RIGHT CONE is a solid figure described by rotating a right 
triangle all the way around once about one of the sides forming the 
right angle.  The side about which the triangle was rotated is called 
the AXIS of the cone, and the circle described by the other side of 
the right angle is the BASE of the cone.  The point at which the 
axis meets the hypotenuse of the original triangle is the VERTEX 
of the cone. 
 Note:  this kind of cone is called a right cone because its 
axis is at right angles to its base.  There are other kinds of cones 
called oblique cones, but since these will not come up in this book, 
the simple term cone will always refer to a right cone. 
 

 
11.  A RIGHT CYLINDER is a solid figure described by rotating a 
rectangle all the way around once about one of its sides.  The side about 
which the rectangle was rotated is called the AXIS of the cylinder, and 
the two circles described by the two sides of the rectangle adjacent to 
the axis are the BASES of the cylinder. 
 Note:  this kind of cylinder is called a right cylinder because its 
axis is at right angles to its bases.  There are other kinds of cylinders 
called oblique cylinders, but since these will not come up in this book, 
the simple term cylinder will always refer to a right cylinder. 
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12.  SIMILAR CONES or SIMILAR CYLINDERS are those in which the axes and the 
diameters of the bases are proportional. 
 
 
13.  A POLYHEDRON is a solid figure contained by four or more rectilineal plane 
figures.  Note:  the plural for polyhedron is often written polyhedra.  I prefer to say 
polyhedrons. 
 
 
14.  SIMILAR POLYHEDRONS are those whose faces are similar, each to each, and 
similarly arranged. 

By “similarly arranged” I mean that if any two faces in one solid meet each 
other, then the two correspondingly similar faces in the other solid also meet each other, 
forming an edge; also, if a solid angle in one solid is convex, then the corresponding 
solid angle in the other solid is also convex, but if concave, then concave. 

SIMILAR AND EQUAL POLYHEDRONS are similar polyhedrons whose 
corresponding faces are equal in size.  These can also be called congruent polyhedrons. 
 
 
 
 
15.  A PYRAMID is a polyhedron contained by a plane and three or more 
triangles drawn down to it from one point.  The portion of the plane bounding 
the pyramid is called its BASE, whereas the point is called its VERTEX. 
 
 
 
 
16.  A PRISM is a polyhedron contained by two congruent and parallel 
polygons similarly oriented, and all the parallelograms joining their 
corresponding sides.  The two identical and parallel polygons are the BASES 
of the prism. 
 
 
 
 
17.  A PARALLELEPIPED is a prism whose bases are parallelograms. 
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BASIC PRINCIPLES OF SOLID GEOMETRY 
 
 
 
 
 

1. If any two points of a straight line lie in a plane, the whole straight 
 line lies in that plane. 

 
 
 

2. If two planes intersect, their intersection is a straight line, and they 
 have no other points in common. 

 
 
 
 

3. Any plane can be extended as far as we please in any of its 
directions. 

 
 
 
 

4. Any plane can be rotated about any straight line that lies within it. 
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THEOREMS 
 
 
 
 
 
THEOREM 1:  Any three points not lying in a straight line lie only in one plane, 
and every triangle lies only in one plane. 
 
Consider any three points  A, B, C  which do not lie 
in one straight line.  It is impossible for all three of 
these points to lie in more than one plane. 
 
If possible, suppose A, B, C all lie in two distinct 
planes:  plane Q and also plane Z. 
 
Now, since A and B both lie in plane Q, therefore straight line AB lies in plane Q (Princ. 
1).  And since A and B both lie in plane Z, therefore straight line AB lies in plane Z 
(Princ. 1).  Therefore plane Q and plane Z have line AB in common, i.e. they intersect 
along that straight line.  But then they have no other points in common, beyond those 
lying in a straight line with AB (Princ. 2).  Therefore point C, not lying in line with AB 
(given), is not common to planes Q and Z.  And thus it is not possible for A, B, C to lie 
all in plane Q, and also all in plane Z. 
 
 Again, the whole triangle ABC lies only in one plane.  For any plane containing 
all of triangle ABC must also contain its three vertices A, B, and C.  But we have just 
showed that there is only one such plane.  Therefore the whole of any triangle lies only in 
one plane. 
 
Q.E.D. 
 
 
THEOREM 1 Remarks: 
 
1.  One point can have many straight lines passing through it, but any two points lie only 
in one straight line.  Similarly, two points can have many planes passing through them, 
but any three points (if they are not in a straight line) lie only in one plane. 
 It is obvious that any two points can in fact have a straight line passing through 
them.  Is it also obvious that any three points can have a plane passing through them?  
Yes.  Say the points are  A, B, C.  Join AB, and pass any plane through AB.  Now rotate 
the plane around AB like a hinge until it hits C, and the result is a plane containing points 
A, B, and C. 

B
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 So any three points do lie in one plane.  But a fourth point might not lie in the 
same plane. 
2.  Obviously, if you have 3 points in a straight line, there is an infinity of planes that 
contain those 3 points.  Pass any plane through the straight line containing the 3 points, 
and this plane will contain all 3 points. 
 
3.  If it were not obvious enough by itself, it is now obvious that One and only one plane 
can be drawn through a given straight line and a given point not on that straight line.  
For example, only one plane goes through straight line AB and point C – otherwise, more 
than one plane would contain the three points A, B, C. 
 
4.  If it were not obvious enough by itself, it is now obvious that One and only one plane 
can be drawn through a given pair of intersecting straight lines.  For example, only one 
plane goes through the straight lines AB and BC – otherwise, more than one plane would 
contain the three points A, B, C. 
 
 
THEOREM 2:  One and only one plane passes through any pair of parallel 
straight lines, and any straight line joining any two points on the parallels also lies in 
that plane. 
 
Given:  AB and CD, a pair of parallel straight lines, 
with P and R being random points on each of them. 
 
Prove:  One and only one plane passes through both 
AB and CD, and PR lies in that plane. 
 
Put a pencil down on the table, and imagine it indicating a straight line going on forever 
in both directions, say North and South.  Now hold a pen over the pencil, but pointing 
East and West.  These two straight lines will never intersect each other, and yet we do not 
call them “parallel.”  Why?  Because they are not in the same plane.  It is especially 
interesting that even in the same plane two straight lines can be so oriented that they will 
never meet – there is in fact only one orientation you can give a straight line to make it 
parallel to another.  And thus “parallel” means not only “never meeting,” but also “in one 
plane.”  Therefore the first part of the theorem, namely that any two straight lines that are 
parallel must lie in the same plane, is really self-evident.  It is part of what “parallel” 
means. 
 It is also clear that the parallels AB and CD lie only in one plane – it is not 
possible for more than one plane to contain them both.  For supposing it were so, then 
two distinct planes would contain points A, B, C, even though these do not lie in a 
straight line with each other, which is impossible (Thm.1).  Thus it is impossible for more 
than one plane to contain a given pair of parallel straight lines. 
 And since points P and R both lie in the plane containing the parallels AB and 
CD, therefore the line PR lies in that plane, too (Princ. 1). 
 
Q.E.D. 
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THEOREM 2 Remarks: 
 
A pair of lines that never meet, but are not in the same plane as each other, are called 
skew lines. 
 
 
 
 
 
 
THEOREM 3:  If a straight line is perpendicular to two intersecting straight lines 
at the point where they meet, then it is perpendicular to the plane in which they lie. 
 
Suppose AB and CD meet each other at M, 
and PM is perpendicular to both AB and CD.  
Then I say PM is perpendicular to the plane 
passing through AB and CD. 
 
Cut off  MA  =  MD  =  MB  =  MC. 
Join AD, BC, AP, DP, BP, CP. 
In the plane of AB and CD, draw GMH 
through M at random, cutting AD and BC. 
Join GP, HP. 
 
I say that PM is at right angles to the line GMH drawn through M randomly in the plane. 
 
[1] Since ∠AMD and ∠BMC are vertical and are contained by equal lines, hence 
rMAD ≅ rMBC, so ∠MAD = ∠MBC. 
 
[2] Now ∠MAG = ∠MBH  (being the same as ∠MAD and ∠MBC) 
 but ∠AMG = ∠BMH  (being vertical) 
 and AM = MB   (we made them so) 
 so rMAG ≅ rMBH  (Angle Side Angle) 
 
[3] Again PA = PB   (rMAP ≅ rMBP by S-A-S) 
 and PD = PC   (rMDP ≅ rMCP by S-A-S) 
 and AD = BC   (rMAD ≅ rMBC;  Step 1) 
 so rPAD ≅ rPBC  (Side Side Side) 
 so ∠PAD = ∠PBC 
 
[4] Again ∠PAG = ∠PBC  (being the same as ∠PAD and ∠PBC) 
 and PA = PB   (rMAP ≅ rMBP) 
 and AG = BH   (rMAG ≅ rMBH;  Step 2) 

P

A

G

D

M

B

H

C



 274 

 so rPAG ≅ rPBH  (Side Angle Side) 
 
[5] Now PG = PH   (rPAG ≅ rPBH;  Step 4) 
 and MG = MH   (rMAG ≅ rMBH;  Step 2) 
 and PM is common  (to rPMG and rPMH) 
 so rPMG ≅ rPMH  (Side Side Side) 
 so ∠PMG = ∠PMH 
But these equal angles are adjacent.  Hence PM is at right angles to GMH. 
 
[6] Since PM is thus at right angles to any straight line drawn through M in the plane 
of AB and CD, therefore PM is perpendicular to that plane. 
 
Q.E.D. 
 
 
 
 
THEOREM 3 Remarks: 
 
1.  If GH is drawn through M so that it does not cut AD and BC, then it will cut AC and 
DB, and we use them for the proof instead. 
 
2.  A kind of converse to this Theorem is:  All perpendiculars to one point on a straight 
line lie in one plane.  All the perpendiculars to PM drawn from M lie in the plane of AB 
and CD. 
 
3.  Prove that the line drawn perpendicular to a plane from a point above it is the shortest 
straight line that can be drawn from that point to the plane. 
 
4.  Prove that only one straight line can be drawn from a given point perpendicular to a 
given plane. 
 
 
 
 
 
THEOREM 4:  If one of two parallels is perpendicular to a plane, so is the other. 
 
Given:  AB is parallel to CD, and AB is perpendicular 
to plane X. 
 
Prove:  CD is also perpendicular to plane X. 
 
Join BD. 
Draw DE (in plane X) perpendicular to BD, and cut 
off DE equal to AB. 
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Join BE, AE, AD. 
 
[1] Now, rABD ≅ rEDB  (SAS) 
 
[2] Thus AD = BE   (see Step 1) 
 but DE = AB   (we made them equal) 
 and AE is common   (to rABE and rEDA 
 so rABE ≅ rEDA  (SSS) 
 
 
[3] Now ∠ABE = ∠EDA  (by Step 2) 
 but ∠ABE is right   (since AB is given perpendicular to plane X) 
 so ∠EDA is right 
 
[4] So ED is perpendicular to DA 
 but ED is perpendicular to DB (by construction) 
 so ED is perpendicular to the plane through DA and DB (Thm.3), i.e. the 
plane containing points A, B, D. 
 
[5] Now, there is only one plane containing points A, B, D (Thm.1), but the plane 
containing parallels AB and CD (Thm.2) contains points A, B, D, and therefore the plane 
containing points A, B, D is the same as the plane containing parallels AB and CD.  Thus 
ED is perpendicular to the plane of the parallels, i.e. to the plane containing triangle 
BDC.  Therefore ∠EDC is a right angle (see Def.2). 
 
[6] So CD is perpendicular to DE (Step 5) 
 and CD is perpendicular to BD (∠ABD is right, and CD is parallel to AB) 
 so CD is perpendicular to two straight lines intersecting in plane X, and thus 
CD is perpendicular to plane X (Thm.3). 
 
Q.E.D. 
 
 
 
THEOREM 5:  If two straight lines are perpendicular to the same plane, they are 
parallel. 
 
Given: AB is perpendicular to plane X. 
 CD is perpendicular to plane X. 
 
Prove: AB is parallel to CD. 
 
Suppose, if possible, that AB is not parallel to CD.  
Then since B, D, C are all in one plane, draw BE in 
this plane parallel to CD.  Therefore BE is 
perpendicular to plane X (Thm.4). 
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 Now, A, B, E are all in one plane.  Let the intersection of their plane with plane X 
be called GK. 
 Since BE is perpendicular to plane X, therefore ∠GBE is right. 
 Since AB is perpendicular to plane X, therefore ∠GBA is right. 
 Thus  ∠GBE = ∠GBA,  i.e the whole is equal to the part, which is impossible. 
Thus our initial assumption was impossible – AB in fact is parallel to CD. 
 
Q.E.D. 
 
 
 
 
THEOREM 5 Remarks: 
 
From this it is clear that You can't have two straight lines perpendicular to the same point 
on a plane (except, of course, on opposite sides of the plane, i.e. one above it and one 
below it). 
 
 
 
THEOREM 6:  How to drop a straight line perpendicular to a plane from a given 
point above it. 
 
Suppose P is the point above our plane X.  Choose any 
straight line RM in plane X.  Thus P, R, M are in one 
and only one plane – drop PL perpendicular to RM in 
that new plane (as we learned to do in Ch. 1). 

Now draw LA perpendicular to RLM in plane 
X.  Thus P, L, A are in one and only one plane.  Drop 
PT perpendicular to LA in that new plane. 

 
I say that PT is perpendicular to plane X. 

 
 In plane X, draw BTE parallel to RLM. 
 
 Now RLM is perpendicular to plane PLT, since it is perpendicular to both PL and 
LT by construction (Thm.3).  Thus BTE, parallel to RLM, is also perpendicular to plane 
PLT (Thm.4). 
 Thus BT is perpendicular to all lines through T in plane PLT (Def.2). 
 So BT is perpendicular to PT. 
 But LT is perpendicular to PT, by construction. 
 So PT is perpendicular to BT and LT, which both lie in plane X. 
 Therefore PT is perpendicular to plane X  (Thm.3). 
 
Q.E.F. 
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THEOREM 7:  How to set up a straight line perpendicular to a plane from a 
given point on it. 
 
 
Given: Point P in plane X. 
Make: A straight line perpendicular to plane X at P. 
 
Choose any point R at random above plane X, and drop RL 
perpendicular to plane X (Thm.6). 
 In the plane of  R, L, P  draw PT parallel to RL. 
 
Now RL is perpendicular to plane X (by construction) 
and PT is parallel to RL   (by construction) 
so PT is perpendicular to plane X (Thm.4) 
 
 
Q.E.F. 
 
 
 
THEOREM 8:  Any plane containing a straight line perpendicular to another 
plane is itself perpendicular to that plane. 
 

 
Given: AB is perpendicular to plane X, 
 EHKG is a containing through AB 
 
Prove: Plane EHKG is perpendicular to plane X. 
 
 
 

Choose any random point R on GK, the intersection of plane EHKG and plane X. 
Draw RC perpendicular to GK in plane EHKG. 
We already know that AB is also perpendicular to GK, since AB is perpendicular to all 
straight lines through B in plane X. 
 
Since AB is perpendicular to plane X (given) 
and RC is parallel to AB   (RC and AB, in one plane, are ⊥ to GK) 
thus RC is perpendicular to plane X (Thm.4) 
  
For the same reasons, any straight line (in plane EHKG) drawn perpendicular to GK will 
be perpendicular to plane X.  Therefore plane EHKG is perpendicular to plane X (Def. 3). 
 
Q.E.D. 
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THEOREM 8 Remarks: 
 
From this it is clear how to Drop a plane perpendicular to a 
given plane from a given straight line above the given plane, 
and how to Set up a plane perpendicular to a given plane 
upon a given straight line in the given plane. 
 Given a plane and a straight line in it, to set up a 
plane on that line perpendicular to the given plane:  (1)  pick 
any 2 points R and Z on the given line,  (2)  set up ZT and RP 
perpendicular to the given plane (Thm.7),  (3)  since ZT and 
RP are perpendicular to the same plane, therefore they are 
parallel (Thm.5), and thus are in one and only one plane 
together (Thm.2),  (4)  since the plane containing them passes 
through lines that are at right angles to the given plane, 
therefore their plane is at right angles to the given plane 
(Thm.8). 
 Given a plane and a straight line above it, to construct the plane which contains 
that line and is perpendicular to the base plane:  (1)  pick any 2 points L and N on the 
given line,  (2)  drop LS and NV perpendicular to the given plane (Thm.6).  The rest of 
the proof is the same as above. 
 
 
 
 
THEOREM 9:  If three straight lines are not all in one plane, and yet one of them 
is parallel to the other two, then the other two are also parallel to each other. 
 
 
Given:  AB, CD, EF are three lines not all 
in one plane. 
 AB is parallel to EF. 
 CD is parallel to EF. 
 
Prove: AB is parallel to CD. 
 
 
[1] Choose R at random on EF. 
 Draw RG perpendicular to EF in the plane of parallels AB and EF. 
 Draw RK perpendicular to EF in the plane of parallels CD and EF. 
 
[2] Now  R, G, K  are all in one plane  (Thm.1). 
 And since ER is perpendicular to both KR and RG in the plane of  R, G, K, 
 therefore ER is perpendicular to the plane of KRG  (Thm.3). 
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[3] Now AG is parallel to ER    (given) 
 and ER is perpendicular to plane  K, R, G  (Step 2) 
 so AG is perpendicular to plane  K, R, G (Thm.4) 
 
[4] But CK is parallel to ER    (given) 
 and ER is perpendicular to plane  K, R, G  (Step 2) 
 so CK is perpendicular to plane  K, R, G (Thm.4) 
 
[5] Since  AG and CK  are both perpendicular to the same plane, namely the plane of 
points  K, R, G,  therefore AG and CK are parallel to each other  (Thm.5). 
 
Q.E.D. 
 
 
 
 
 
 
 
THEOREM 10:  If one straight line is perpendicular to two planes, the planes 
are parallel. 
 
 

Given: AB is perpendicular to 
plane X and to plane Z. 
 
Prove:  Plane X is parallel to 
plane Z. 
 
 

 
If possible, suppose planes X and Z are not parallel, but eventually meet each other – let 
KG be the line of their intersection.  Pick point R at random on KG. 
 Join AR. 
 Join BR. 
 
[1] Now, A and R are both in plane X, and so line AR is in plane X. 
 And B and R are both in plane Z, and so line BR is in plane Z. 
 
[2] Since BA is perpendicular to plane X  (given), therefore any straight line in plane 
X passing through A is at right angles to BA.  But AR is in plane X (Step 1), and it passes 
through point A.  Therefore AR is at right angles to BA. 
 Thus ∠BAR is right. 
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[3] Since AB is perpendicular to plane Z (given), therefore any straight line in plane 
Z passing through B is at right angles to AB.  But BR is in plane Z (Step 1), and it passes 
through point B.  Therefore BR is at right angles to AB. 
 Thus ∠ABR is right. 
 
[4] Thus ABR is a triangle two of whose angles are right angles – which is 
impossible.  Therefore our initial assumption was impossible, namely that planes X and Z 
should meet.  Therefore planes X and Z never meet – and so they are parallel. 
 
Q.E.D. 
 
 
 
 
THEOREM 11:  If two intersecting lines in one plane are parallel to two 
intersecting lines in another plane, the two planes are parallel. 
 

 
 
Given: AB and BC intersect in plane X, 
 DE and EF intersect in plane Z, 
 AB is parallel to DE, 
 BC is parallel to EF. 
 
Prove: Plane X is parallel to Plane Z 
 
 

 
[1] Drop BG perpendicular to plane Z (Thm.6). 
 In plane Z, draw GH parallel to ED, and GK parallel to EF. 
 
[2] Since BG is perpendicular to plane Z, 
 thus ∠BGH is right 
 and ∠BGK is right 
 
[3] But GH is parallel to DE  (we made it so) 
 and AB is parallel to DE  (given) 
 so AB is parallel to GH  (Thm.9) 
 
 Thus ∠ABG is right   (since ∠BGH is right; Step 1) 
 
[4] Again GK is parallel to EF  (we made it so) 
 and BC is parallel to EF  (given) 
 so BC is parallel to GK  (Thm.9) 
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 Thus ∠CBG is right   (since ∠BGK is right; Step 1) 
[5] Therefore BG is at right angles to both AB and BC (Steps 3 and 4), which are two 
lines intersecting in plane X.  Therefore BG is at right angles to plane X (Thm.3).  But 
BG is at right angles to plane Z (we dropped BG at right angles to plane Z; Step 1).  
Therefore planes X and Z have a common perpendicular, namely BG, and thus these two 
planes are parallel to each other (Thm.10). 
 
Q.E.D. 
 
 
 
 
THEOREM 12:  A pair of intersecting lines parallel to another pair of 
intersecting lines in another plane will contain the same angle (or supplementary 
angles). 
 

Given: AB and BC intersect in plane X, 
 DE and EF intersect in plane Z, 
 AB is parallel to DE, 
 BC is parallel to EF. 
 
Prove: ∠ABC = ∠DEF. 
 
Cut off AB = DE, and cut off BC = EF. 
Join AC, DF, AD, BE, CF. 

 
[1] AB and DE are parallel (given), and so they are in one plane. 
 But we have just cut off AB and DE equal to each other. 
 Therefore the lines joining their endpoints are also parallel and equal (Ch.1). 
 i.e. AD and BE are parallel and equal to each other. 
 
[2] BC and EF are parallel (given), and so they are in one plane. 
 But we have just cut off BC and EF equal to each other. 
 Therefore the lines joining their endpoints are also parallel and equal (Ch.1). 
 i.e. BE and CF are parallel and equal to each other. 
 
[3] Since AD is parallel and equal to BE (Step 1) 
 and CF is parallel and equal to BE (Step 2) 
 thus AD is parallel and equal to CF (Thm.9) 
  
And so the lines joining their endpoints are also parallel and equal (Ch.1), i.e. AC is 
parallel and equal to DF. 
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[4] Now AB = DE    (we cut them off equal) 
 and BC = EF    (we cut them off equal) 
 and AC = DF    (Step 3) 
 thus ΔABC ≅ ΔDEF   (Side-Side-Side) 
 so ∠ABC = ∠DEF 
 
Q.E.D. 
 
 
 
THEOREM 12 Remarks: 
 
If we extend FE to T, then TE is parallel to BC, too, but ∠TED will not be equal to 
∠ABC (unless ∠TED and ∠FED are both right angles).  Still, ∠TED is supplementary to 
∠DEF, and therefore also supplementary to ∠ABC. 
 
 
 
 
 
 
 
THEOREM 13:  If one plane intersects two parallel planes, the two lines of 
intersection are parallel. 
 
Given: Plane X is parallel to plane Z, each is cut 
by plane ABCD, namely at AB and CD. 
 
Prove: AB is parallel to CD. 
 
Since planes X and Z never meet in any direction, 
a line contained in one can never meet a line 
contained in the other.  Therefore AB can never 
meet CD. 
 But since AB and CD are both in the one plane ABCD (given), therefore they are 
non-meeting straight lines in the same plane, and therefore they are parallel to each other. 
 
So AB is parallel to CD. 
 
Q.E.D. 
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THEOREM 14:  Straight lines cut by parallel planes are cut in the same ratios. 
 

 
 
 
Given: AB and CD are cut by three parallel planes  
X, Y, Z, cutting them off at  A, K, B  and  C, E, D. 
 
Prove: AK : KB  =  CE : ED. 
 
 
 
 
 
 

[1] Join AD, AC, DB, GE, GK. 
 
[2] Since A and C are both in plane X, thus AC is in plane X. 
 Since A and C are both in the plane of A, C, D, thus AC is in the plane of A, C, D. 
 Therefore AC is the line of intersection of plane X and plane A, C, D. 
 
[3] Likewise EG is the intersection of plane Y and plane A, C, D. 
   GK is the intersection of plane Y and plane A, B, D. 
   DB is the intersection of plane Z and plane A, B, D. 
 
 
[4] Thus  AC is parallel to EG, being intersections of plane ACD 

with the parallel planes X and Y.  (Thm.13) 
 

 and  GK is parallel to DB, being intersections of plane ABD 
   with the parallel planes Y and Z.  (Thm.13) 
 
[5] And so, since GK is parallel to DB (Step 4) in ΔABD, thus 
   AK : KB  =  AG : GD 
 and since AC is parallel to EG (Step 4) in ΔACD, thus 
   CE : ED  =  AG : GD 
and since in these two proportions two ratios are the same as a third, it follows that they 
are the same as each other, i.e. 
   AK : KB  =  CE : ED 
 
Q.E.D. 
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THEOREM 15:  The intersection of two planes each perpendicular to a third 
plane is a straight line perpendicular to the third plane. 

 
 
 
Given: Planes A and B, both perpendicular 
to plane X, and intersecting each other along 
PN, P being in plane X. 
 
Prove: PN is perpendicular to plane X. 
 
 
 

 
[1] Since plane A is perpendicular to plane X, and CD is their intersection, therefore 
every line drawn in plane A perpendicular to CD is also perpendicular to plane X (Def. 
3).  Therefore the straight line drawn from P (in plane A), perpendicular to CD, is 
perpendicular to plane X. 
 
[2] Likewise since plane B is perpendicular to plane X, and EG is their intersection, 
therefore every line drawn in plane B perpendicular to EG is also perpendicular to plane 
X (Def. 3).  Therefore the straight line drawn from P (in plane B), perpendicular to EG, is 
perpendicular to plane X. 
 
[3] Therefore there is a perpendicular to plane X standing on point P that lies in plane 
A (Step 1), and again there is a perpendicular to plane X standing on point P that lies in 
plane B (Step 2).  But there is only one perpendicular to plane X standing on point P 
(Thm.5 Remark).  Therefore the line perpendicular to plane X, standing on point P, must 
be a line common to planes A and B.  But the only line common to them is their line of 
intersection (Princ. 2), namely NP.  Therefore the line perpendicular to plane X, standing 
on point P, is NP. 
 
So PN is perpendicular to plane X. 
 
Q.E.D. 
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THEOREM 16:  In a solid angle formed by three rectilineal angles, any two of 
those angles together are greater than the third. 
 
 
Let V be the vertex of a solid angle 
made up of the three rectilineal angles  
AVD, DVB, and AVB.  I say that any 
two of these together are greater than 
the third. 
 
[1] Drop DK perpendicular to the 
plane of AVB (Thm.6).  In plane 
AVB, draw KT perpendicular to VB.  
Join DT. 
 
 
[2] Now since DK is perpendicular to AVB, 
 thus  plane DKT is perpendicular to plane AVB  (Thm.8). 
 So  any line in plane AVB that is perpendicular to KT 
   (which is the intersection of planes DKT and AVB) 
   must be perpendicular to plane DKT  (Def.3). 
 But  VT is perpendicular to KT  (Step 1). 
 Hence  VT is perpendicular to plane DKT. 
 
[3] Since  VT is perpendicular to plane DKT  (Step 2), 
 thus  VT is perpendicular to every line through T in plane DKT  (Def.2). 
 So  VT is perpendicular to DT,  i.e.  ∠DTV is right. 
 
[4] Now since DK is perpendicular to plane AVB, hence ∠DKT is right. 
 Thus  DT  >  TK    (since DT is hypotenuse in right rDTK) 
 So cut off TQ  =  TK. 
 Now  ∠VTK = ∠VTQ    (both are right; ∠VTQ is ∠DTV) 
 and  VT is common    (to triangles VTK and VTQ) 
 so  rVTK ≅ rVTQ 
 so  ∠QVT = ∠KVT 
 
[5] Now  ∠DVT > ∠QVT    (the whole is greater than the part) 
 so  ∠DVT > ∠KVT    (∠KVT = ∠QVT, Step 4) 
 
[6] So  ∠DVB > ∠KVB    (Step 5) 
 Similarly ∠DVA > ∠KVA 
 hence  ∠DVB + ∠DVA  >  ∠KVB + ∠KVA    (adding) 
 or  ∠DVB + ∠DVA  >  ∠AVB 
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So these two given angles are greater than the third.  Since there was nothing special 
about the two angles we chose among the given three, it follows the same way that any 
two of them will be greater than the third. 
 
Q.E.D. 
 
 
 
 
THEOREM 16 Remarks: 
 
 
1.  A solid angle contained by 3 plane angles is called a trihedral angle. 
 
 
2.  What if K lands outside angle AVB?  
Then the proof is identical up to Step 4, 
where we said  ∠DVT > ∠KVT.  Now 
extend KV through ∠AVB. 
Thus ∠KVT  =  ∠NVB    (vertical) 
so ∠DVT  >  ∠NVB. 
And since  ∠DTV  is right, hence  ∠DVT  is 
acute (in rDTV), and so its supplementary 
angle, ∠DVB, is obtuse. 
Hence ∠DVB  >  ∠DVT 
so ∠DVB  >  ∠NVB   (since ∠DVT > ∠NVB above) 
and ∠DVA  >  ∠NVA    by the same reasoning.  And the remainder of the proof is the 
same as in the Theorem. 
 
 
 

3.  To illustrate why this Theorem is true, draw any 
angle XYZ on a piece of paper, and on each side of it 
draw angles VYX and ZYW which together add up to 
an angle less than angle XYZ.  Cut out rVYW, and 
fold along XY and YZ.  Do triangles VYX and ZYW 
form a solid angle with triangle XYZ?  Do they meet 
above the plane of rXYZ?  What happens if  ∠VYX + 
∠ZYW  =  ∠XYZ? 
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THEOREM 17:  Any solid angle is contained by plane angles adding up to less 
than four right angles. 
 
 
Let's start once more with a “trihedral” 
angle, an angle formed by three plane 
angles, namely 7, 8, 9, all coming up to a 
point D.  (You must imagine that point D 
is above the plane of this page.)  I say that  
7 + 8 + 9  is less than four right angles. 
 
Choose  A, B, C  at random along the legs 
of the solid angle, and join AB, BC, CA, 
thus forming solid angles again at A and at 
B and at C.  Looking at the diagram, then, you must remember that you are looking down 
like a bird at the peak of a solid pyramid – so ABC is the base of the pyramid, but angles 
1 through 9 all lie in planes that rise up toward you from that base. 
 
[1] Because A is a trihedral angle, thus 1 + 2 > ∠CAB  (Thm.16) 
 
[2] Because B is a trihedral angle, thus 3 + 4 > ∠ABC  (Thm.16) 
 
[3] Because C is a trihedral angle, thus 5 + 6 > ∠BCA  (Thm.16) 
 
[4] Adding together all these inequalities, keeping the greater things on one side, 
  1 + 2 + 3 + 4 + 5 + 6  >  ∠CAB + ∠ABC + ∠BCA 
 but ∠CAB + ∠ABC + ∠ΒCA  =  two rights  (triangle ABC) 
 so 1 + 2 + 3 + 4 + 5 + 6  >  two rights 
 
[5] Now angles 1 through 9, added together, equal all the angles in three triangles, 
and so all together they add up to three times the angle-sum of a triangle, i.e. three times 
two rights, i.e. six rights.  So 
  1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9  =  six rights 
 
[6] Thus, if we subtract more than two rights from these nine angles, less than four 
rights will remain.  But 1 + 2 + 3 + 4 + 5 + 6 is more than two rights (Step 4).  Therefore, 
when subtracted from the nine angles, less than four rights remain, i.e. 
  7 + 8 + 9  <  four rights. 
So the three plane angles forming a trihedral angle must add up to less than four right 
angles. 
 
Q.E.D. 
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THEOREM 17 Remarks: 
 
 
This Theorem is not limited to solid angles made 
of three plane angles.  Take any solid angle with 
vertex V formed out of  n  plane angles.  Pass a 
plane through the legs of the angle, forming a 
polygon base and a pyramid with vertex V.  The 
polygon base will thus have  n  sides, and if we 
pick a random point R inside it, we can divide it 
into  n  triangles. 
 Now the angle-sum of the polygon base 
equals the angles of all those  n  triangles minus 
the angles around R, i.e. minus 360°.  So the 
angles of the polygon  =  (n ×180°  –  360°). 
 Since every vertex of the polygon base is 
also the vertex of a trihedral angle in the pyramid, 
hence very angle of the polygon must be less than 
the two angles above it which form the angles at 
the foot of the pyramid.  For example,  ∠ABC  <  
∠ABV + ∠CBV  (Thm.16).  So all  2n  angles 
about the foot of the pyramid add up to more than 
the  n  angles of the polygon,  i.e. more than  (n ×180°  –  360°).  So let those angles at 
the foot of the pyramid add up to  (n ×180°  –  360°  +  Z°). 
 Now the  n  plane angles forming the solid angle at V equal the angles in the  n  
triangular faces of the pyramid minus their  2n  angles at the foot of the pyramid.  So the  
n  angles forming solid angle V add up to 
  (n ×180°)  –  (n ×180°  –  360°  +  Z°) 
or  360°  –  Z° 
So the  n  plane angles forming solid angle V add up to less than four rights. 
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THEOREM 18:  If among three angles in a plane any two are greater than the 
third, and they are made the peak angles of three isosceles triangles of the same leg-
length, then likewise for the bases of these triangles, any two together will be greater 
than the third. 

 
Given: Three isosceles triangles whose legs 
are all equal, i.e. PA = PB = PC = PD, and 
whose peak angles (1, 2, 3) are such that any 
two are greater than the third. 
 
Prove:  Any two bases of these triangles will 
be greater than the third. 
 

For example, I say that  AB + BC > CD. 
 
 
[1] Join AC. 
 
[2] Since AP = CP = DP  (given) 
 but ∠APC > ∠CPD (given) 
 thus AC > CD  (Ch.1, Thm. 16 Question 1) 
 
[3] Now AB + BC > AC (triangle ABC) 
 and AC > CD  (Step 2) 
 so AB + BC > CD 
 
Since there was nothing special about AB and BC, the same proof works just as well to 
show that BC + CD > AB, and again that AB + CD > BC.  To show that AB + CD > BC, 
just rearrange the triangles so that angles 1 and 3 are next to each other, and 2 is on the 
outside. 
 So whenever three isosceles triangles of the same leg-length are formed with three 
peak angles any two of which are greater than the third, likewise for their bases any two 
of them together will be greater than the third. Q.E.D. 
 
 
THEOREM Remarks: 
 
A quick corollary follows from this Theorem:  we can make a triangle out of lengths AB, 
BC, CD, since any two of them are greater than the third.  Thus we conclude:  When 
three isosceles triangles of the same leg-length are formed with three peak angles any 
two of which are greater than the third, then it will be possible to make a triangle out of 
the lengths of their bases.  For short, call such a triangle a “base triangle.” 
 Obviously, this Theorem is simply a matter of plane geometry, but we will need it 
for the upcoming Theorem 20, here in solid geometry, where we shall construct a solid 
angle. 
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THEOREM 19:  If the peak angles of three isosceles triangles with a common 
leg-length L add up to less than four right angles, then L is greater than the radius of the 
circle circumscribing their “base triangle.” 

 
Again, this is a matter of plane geometry, but it is 
crucial for the solid geometry in the next theorem.  Start 
with three isosceles triangles of leg-length L, with peak 
angles 1, 2, 3 adding up to less than 360°, and bases X, 
Y, Z.  Since they have the same leg length, L, if we 
place their equal sides together and give them a 
common vertex, C, the circle of center C and radius L 
will pass through the endpoints of bases X, Y, Z.  Since  
1 + 2 + 3  is less than 360°, hence the chords X, Y, Z do 
not cut off the circle’s entire circumference. 
 Now if the angles 1, 2, 3 are such that any two 
are together greater than the third, we can make a 
triangle out of X, Y, Z (Thm.18).  So suppose this 
condition is met, and make rTUV with sides equal to 
X, Y, Z.  Circumscribe a circle about rTUV (Ch.4).  
Call its center M. 
 Obviously the chords X, Y, Z together cut off 

the entire circumference of circle M.  But these same chords together cut off only a 
portion of the circumference of circle C.  Therefore circle C is greater than circle M, and 
so L (the radius of circle C) is greater than the radius of circle M. 
 
Q.E.D. 
 
 
 
 
THEOREM 19 Remarks: 
 
The proof takes it as evident that if the same chord 
length cuts off a greater portion of the circumference in 
one circle than it does in another, the other circle is 
greater than the one.  For example, if KD cuts off an arc 
in circle G corresponding to ∠KGD, and an arc in 
circle H corresponding to ∠KHD, and ∠KGD > 
∠KHD, then circle H is larger than circle G.  To see it, 
compare isosceles triangles KGD and KHD.  Since 
∠KGD is greater than ∠KHD, the base angles of 
isosceles rKGD must be less than those of rKHD, and so KG and DG must meet 
inside rKHD.  Hence the legs of rKGD are less than those of rKHD.  So GK < HK, 
which means circle G is smaller than circle H. 
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THEOREM 20:  How to make a solid angle out of three plane angles.  Thus it is 
required that they add up to less than four right angles, and that any two of them are 
greater than the third. 
 
Let our three given plane angles be 1, 2, 3.  By Theorem's 16 
and 17 we know that it is impossible to make a solid angle 
out of them unless they meet the conditions that any two of 
them are greater than the third, and they add up to less than 
four right angles.  So let them meet these conditions. 
 To make a solid angle out of them, 

 
[1]  Cut off any length PW along the 
leg of angle 1, and make three 
isosceles triangles PWX, QXY, RYZ, 
all having leg-length PW. 
 

 
[2]  Thus a triangle can be made out of their bases 
(Thm.18).  So make triangle ABC with  
 AB = WX 
 and BC = XY 
 and CA = YZ. 
 Draw a circle around triangle ABC, find 
center M, and join MA. 
 
 
[3] Draw a semicircle on PW.  Setting your compass to length MA, make a circle (not 
shown) around center W, and where it cuts the semicircle call K.  Thus WK = MA.  This 
can be done because MA is less than diameter WP (by Thm.19). 
 
[4] Join PK.  Thus ∠PKW is right (Ch.3). 
 Set up MV perpendicular to the plane of the circle (Thm.7), making MV = PK. 
 
[5] Now MV = KP  (we made it so; Step 4) 
 and MA = KW  (we made it so; Step 3) 
 and ∠VMA = ∠PKW (both are right; Step 4) 
 so rVMA ≅ rPKW (Side-Angle-Side) 
 thus VA = PW 
Likewise VC and VB are also each equal to PW, the common leg-length of our original 
isosceles triangles. 
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[6] But  AB, BC, CA  are equal to the bases of our isosceles triangles  WX, XY, YZ  
(Step 2).  So the three triangles standing on  AB, BC, CA  from point V are congruent to 
the three isosceles triangles (SSS), and hence the three peak angles forming solid angle V 
are equal to the given angles 1, 2, 3. 
 
 
Q.E.F. 
 
 
 
 
THEOREM 20 Remarks: 
 
This Theorem is the converse of Theorems 16 and 17.  In 16 and 17 we learned that any 
trihedral angle must be made of plane angles which add up to less than four rights and 
any two of which add up to more than the third one.  But we were left wondering:  are 
there more conditions required for three plane angles to be able to form a solid angle, or 
are those two conditions sufficient?  Also, we might wonder this:  the three angles must 
be less than four right angles – but do they in fact have to be less than three right angles, 
too?  Or is it enough for them to be less than four right angles?  This Theorem answers all 
those questions:  as soon as the three plane angles are such that they are less than four 
right angles (by whatever amount you like), and such that any two of them are greater 
than the third, we can make them into a solid angle.  Those conditions are not only 
necessary, but sufficient. 
 
 
 
 
 
THEOREM 21:  If a solid is contained by three pairs of parallel planes, the 
opposite faces are congruent parallelograms (i.e. the solid is a parallelepiped). 
 

 
Suppose solid AH is contained by three pairs 
of parallel planes, namely BE and CK, and 
BH and AK, and BD and GK.  I say that each 
pair of opposite faces, such as ABCD and 
EGHK, are identical parallelograms. 
 
[1] Since AB and CD are the intersections 
of plane AC with the parallel planes BE and 
CK, therefore AB is parallel to CD (Thm.13). 

 
[2] Since BC and AD are the intersections of plane AC with the parallel planes BH 
and AK, therefore BC is parallel to AD (Thm.13). 
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[3] Since AB is parallel to CD  (Step 1) 
 and BC is parallel to AD  (Step 2) 
 thus ABCD is a parallelogram. 
Likewise the remaining 5 faces are parallelograms. 
 
[4] Join AG, DH. 
 
[5] Since AD is parallel to EK  (because ADKE is a parallelogram) 
 and GH is parallel to EK  (because GHKE is a parallelogram) 
 thus AD is parallel to GH  (Thm.9) 
 
[6]  And thus A, D, G, H are all in one plane (Thm.2).  And their plane intersects the 
parallel planes BE and CK at AG and DH, and therefore AG is parallel to DH (Thm.13).  
But AD was just proved parallel to GH (Step 5), and therefore AGHD is a parallelogram. 
 
[7] So AG = DH   (opp. sides in parallelogram AGHD) 
 and AB = DC   (opp. sides in parallelogram ABCD) 
 and BG = CH   (opp. sides in parallelogram BGHC) 
 so rABG ≅ rDCH  (Side-Side-Side) 
 
[8] But  ABGE is just two of rABG, and DCHK is just two of rDCH, similarly 
arranged.  Therefore 
  ABGE ≅ DCHK. 
Likewise the other opposite parallelograms containing the solid are congruent to each 
other. 
 Therefore if a solid is contained by 3 pairs of parallel planes, then its six faces are 
three pairs of congruent parallelograms, and such a solid is called a parallelepiped. 
 
 
 
 
 
THEOREM 22:  If a parallelepiped is cut by a plane parallel to one of its pairs 
of opposite faces, the two resulting parts have to each other the same ratio as the bases 
on which they stand. 

 
Given:  Parallelepiped A + X, cut by a plane 
at PLN parallel to one pair of its opposite 
faces, thus dividing it into two 
parallelepipeds, namely A and X. 
 
Prove:  volume of A : volume of X  =  area 
of base of A : area of base of X 
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[1]  Place a solid B, identical to A, right next to it, and a solid Y, identical to X, right next 
to it.  And thus multiply solids A and X however many times you like.  Say you double 
A, and triple X. 
 
[2]  Because of the identical shape and size of solids A and B, it is clear that the base of 
the whole solid A + B is double the base of A. 
 Likewise the base of the whole solid X + Y + Z is triple the base of solid X. 
 
[3]  Now, because they lie inside the same parallels and have identical angles, if the solid 
A + B is equal in volume to the solid X + Y + Z, this can only be because they stand on 
equal bases, i.e. the base of A + B must be equal to the base of X + Y + Z. 
 But if the solid A + B is bigger than solid X + Y + Z, then A + B must stand on a 
bigger base than X + Y + Z does.  And if the solid A + B is smaller than solid X + Y + Z, 
then A + B must stand on a smaller base than X + Y + Z does. 
 
[4]  Therefore, whatever multiple we take of solid A (and therefore of its base), and 
whatever multiple we take of solid X (and therefore of its base), the multiple solids must 
compare the same way as the corresponding multiple bases. 
 
[5]  Therefore  solid A : solid B  =  base of A : base of B  (Ch.5, Def.8) 
 
Q.E.D. 
 
 
 
 
 
 
 
THEOREM 23:  Parallelepipeds standing on the same base and having the same 
height are equal (i.e. they have the same volume). 
 
Given:  Parallelepipeds AE and ME, both 
standing on base BCE and having their 
tops in the same plane. 
 
Prove:  AE and ME have the same 
volume. 
 
First, suppose solids AE and ME not only 
have their tops in the same plane, but also 
that some other pair of their faces lie in the same plane, say CG and CN lie in the same 
plane – and therefore also the parallel faces BK and BP lie in the same plane on the 
opposite side. 
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But CDA and EGK do not coincide with CLM and ENP (if they did, the two solids would 
coincide entirely). 
 
I say that solids AE and ME have the same volume. 
 
[1] For since CDGE and CLNE are both parallelograms, therefore 
  DG = LN   (each is equal to CE) 
 so DL = GN   (subtracting part LG from both sides) 
 but DC = GE   (in parallelogram CDGE) 
 and CL = EN   (in parallelogram CLNE) 
 so rDCL ≅ rGEN  (Side-Side-Side) 
 
[2] Now AD is parallel to BC  (ABCD is a parallelogram) 
 and ML is parallel to BC  (BCLM is a parallelogram) 
 so AD is parallel to ML  (Thm.9) 
 thus ADLM is a parallelogram. 
Clearly KGNP is also a parallelogram, and it is congruent to ADLM. 
And, because they are opposite faces in the parallelepipeds, 
  AC and KE are congruent parallelograms 
and  MC and PE are congruent parallelograms 
 
[3] Clearly, then, the two triangles and three parallelograms containing prism 1 are 
congruent with and arranged similarly to the two triangles and three parallelograms 
containing prism 3 (Steps 1 and 2).  And thus they can be made to coincide and therefore 
have equal volumes. 
 
[4] So prism 1  =  prism 3  (Step 3) 
 so solid 1 + 2 = solid 2 + 3 (adding solid 2 to each side) 
 i.e. solid AE is equal to solid ME. 
 
 
 

 
 
Next, suppose that solids AE and ME 
have only their tops and bottoms in the 
same planes, and the front face of ME, 
namely CRSE, does not lie in the same 
plane as CDGE, the front face of solid 
AE. 
 
AE and ME are still going to be equal 
in volume. 
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Let MRST be the top face of solid ME, in the same plane as ADGK, the top face of solid 
AE. 
 
[1] Extend RM to Z on AK, and ST to P on the extension of AK. 
 Extend LG to N. 
 Join ZB, LC, NE, and P to X, the back corner of base BCE (which, to avoid 
cluttering up the diagram, I have not drawn). 
 
[2] Now  ZLNP is a part of the top plane, and the top plane is parallel to base BCEX 
(given).  Thus 
  plane ZLNP is parallel to plane BCEX. 
 
[3] And  CLNE is a part of the face plane CDGE, which is parallel to the back plane 
BAKX (in solid AE).  But BZPX is a part of the back plane.  Thus 
  plane CLNE is parallel to plane BZPX. 
 
[4] And ZLCB is a part of the side plane MRCB, which is parallel to the opposite 
side plane TSEX (in solid ME).  But PNEX is a part of that opposite side plane.  Thus 
  plane ZLCB is parallel to plane PNEX. 
 
[5] Therefore the solid contained by planes 
  ZLNP and BCEX 
 and CLNE and BZPX 
 and ZLCB and PNEX 
 is contained by 3 pairs of parallel planes (Steps 2 – 3). 
Therefore that solid, namely ZE, is a parallelepiped (Thm.21), and it stands on base 
BCEX and under the same height as the two given solids) 
 
[6] Since solid ZE has its face CLNE in the same plane as CDGE, the face of solid 
AE, therefore  solid ZE  =  solid AE,  by the first part of this Theorem. 
 
[7] Again, since solid ZE has its face ZLCB in the same plane as BMRC, the face of 
solid ME, therefore  solid ZE  =  solid ME, by the first part of this Theorem. 
 
[8] Therefore  solid AE  =  solid ME  (each being equal to solid ZE; Steps 6 and 7). 
 
Therefore, no matter what, when two parallelepipeds have the same base and stand under 
the same height, they have the same volume. 
 
 
Q.E.D. 
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THEOREM 24:  Parallelepipeds which are of the same height and on bases of 
equal area are equal. 
 
Conceive two parallelepipeds, AV 
and TX, with the same height and 
with bases ABCD and QRST 
having the same area.  I say the 
solids have the same volume. 
 
[1] Let’s take the simplest case 
first:  let the sides of these solids 
all be perpendicular to their bases – 
thus CV and RX are perpendicular 
to the bases and CV = RX (because 
the heights are the same).  Because 
the walls of these solids are thus all 
standing at right angles to the 
bases, we can imagine the solids 
like two buildings, and just look at 
their “floor plans,” namely their 
bases ABCD and QRST. 
 
Now, to prove that AV = TX … 
 
[2] We place a solid identical to TX in line with AD, that is, letting DEGH (identical 
to base QRST) be its base, we place DE in a straight line with AD.  Complete 
parallelogram CDEW in the base plane, and build a “building” on it with the same height 
again as the solids on ABCD and DEGH. 
 
[3] Extend CD to where it meets GH extended, namely at L, and complete 
parallelogram EDLK in the base plane, and build another “building” on top of it with the 
same height once more. 
 
[4] Now, there is an undrawn rectangle standing straight up on DE (coming up at you 
out of the page) which is a wall for the building on DEKL; but it is also a wall for the 
building on DEGH.  Since there is no absolute up and down in geometry, this wall can 
also be thought of as a base of each of these two solid buildings, and both are under the 
same height, i.e. both their tops lie in the plane standing on LKHG.  Therefore they are 
equal in volume (Thm.23). 
 So The solid on DEKL  =  the solid on DEGH 
 
[5] Notice that the buildings on DEKL and CDEW together make up one big 
parallelepipedal building, since they are in line with each other.  Therefore, by Thm.22, 
 building on DEKL : building on CDEW  =  area of DEKL : area of CDEW, 
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[6] But, looking just at the parallelograms in the base plane, 
  DEKL = DEGH (both stand on DE, and are in the same parallels) 
 but DEGH = QRST (we made DEGH identical to QRST) 
 and QRST = ABCD (given) 
 so DEKL = ABCD 
 
[7] So, substituting ABCD for DEKL in the proportion from Step 5, we have: 
 
 building on DEKL : building on CDEW  =  area of ABCD : area of CDEW, 
But also by Theorem 22, we have 
 
 building on ABCD : building on CDEW  =  area of ABCD : area of CDEW 
 
Since we have two ratios the same as a third ratio, they are the same as each other, i.e. 
 
 blding on DEKL : blding on CDEW  =  blding on ABCD : blding on CDEW. 
 
Notice in this proportion the buildings on DEKL and ABCD both have the same ratio to 
the building on CDEW.  From this, it follows that they are equal.  Thus 
 
  building on DEKL  =  building on CDEW. 
 
[8] Now solid on DEKL  =  solid on ABCD (Step 7) 
 but solid on DEKL  =  solid on DEGH (Step 4) 
 so solid on ABCD  =  solid on DEGH 
 but solid on QRST  =  solid on DEGH (we made it thus in Step 2) 
 so solid on ABCD  =  solid on QRST 
 
Therefore the solid AV is equal in volume to the solid TX. 
 
 
[9] Now what if the solids on ABCD and QRST, although having their tops and 
bottoms in the same planes, yet have their walls tilted in different ways?  Will they still 
be equal?  Yes. 

 Just build the solids on 
those same bases whose walls are 
perpendicular to the bases, having 
their tops also in the same top-
plane as the “tilty” solids.  Then, 
by Theorem 23, each upright solid 
is equal to the tilty solid whose 

base it shares.  But, by the proof we just gave, the two upright solids are equal to each 
other – since they stand on equal bases and between the same parallel planes.  Therefore 
the tilty solids are equal, too. 
 
Q.E.D. 
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THEOREM 25:  Parallelepipeds of the same height are to each other as their 
bases. 
 
 
 
 
 
 
 
 
Given: Parallelepipeds 1 and 2 of the same height, standing on bases EFGK and ABCD. 
 
Prove:  Solid 1 has to solid 2 the same ratio that base EFGK has to base ABCD. 
 
[1] Extend base ABCD so that parallelogram DCPQ, while having the same angles as 
parallelogram ABCD, nonetheless has the same area as EFGK. 
 
[2] Complete the parallelepipedal solid on DCPQ by extending the planes of solid 2, 
and by capping it off with plane QXZP parallel to plane DTVC.  Thus we have solid 3, 
and solids 2 and 3 together form one big parallelepiped. 
 
[3] Now solid 3 : solid 2  =  DCPQ : ABCD  (Thm.22) 
 
[4] But solid 3  =  solid 1, 
since they stand between the same parallel planes, and have bases of equal area 
(Thm.24).  Substituting solid 1 for solid 3 in the proportion from Step 3, then, we have: 
  solid 1 : solid 2  =  DCPQ : ABCD 
 
[5] But DCPQ  =  EFGK,  by Step 1.  Substituting EFGK for DCPQ in the 
proportion, we now have 
  solid 1 : solid 2  =  EFGK : ABCD, 
which is what we sought to prove. 
 
 
 
Q.E.D. 
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THEOREM 25 Remarks: 
 

You might be wondering how we 
accomplish Step 1.  How do we extend 
the base ABCD with a parallelogram 
DCPQ that is equiangular with ABCD, 
but equal in area to EFGK? 
 Since that all takes place in the 
base plane, it is a matter of simple plane 
geometry, and Chapter 1 gives us all we 
need: 
 

[1]  Place EFGK on BC so that K is on point C. 
 
[2]  Draw LER parallel to AB and CD.  Join RC.  Extend RC and FG until they meet at 
N.  Extend DC to M.  Complete parallelogram DMNQ.  Extend BC to P. 
 
[3]  Parallelogram DCPQ is clearly equiangular with parallelogram ABCD.  But it is 
equal to parallelogram EFGC in area, 
since  DCPQ  =  ECML  (complements in parallelogram RLNQ) 
and  EFGC  =  ECML  (in the same parallels and on the same base) 
so  DCPQ  =  EFGC 
 
 
 
 
 
 
 
THEOREM 26:  Similar parallelepipedal solids are to one another in the 
triplicate ratio of their corresponding sides. 
 

 
 
Given: Similar parallelepipeds AB and CD, with 
sides AE and ED being a pair of corresponding 
sides. 
 
 
Prove: Solid AB : solid CD  is the ratio triplicate of  
AE : ED. 
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[1] Place solids AB and CD so that they have a common corner at E, and the 
corresponding sides AE and ED lie in a straight line.  Thus the corresponding sides LE 
and EK will also line up (since ∠LED = ∠KEA in the similar solids). 
 
[2] In angles HED and HEK complete parallelepiped EG. 
 In angles HED and HEL complete parallelepiped LQ. 
 
[3] Because of the similarity of the solids, AE, KE and HE are proportional to ED, 
EL, and EM.  Hence 
 AE : ED = KE : EL = HE : EM 
 
[4] Now, because parallelograms under the same height are to one another as their 
bases (Ch.6, Thm.1), it follows that: 
 AE : ED = AK : KD 
and KE : EL = KD : DL 
and HE : EM = HD : DM. 
 Because of Step 3, the first in each of these pairs of ratios are all the same ratio.  
Therefore the second in each of these pairs of ratios are also all the same, 
i.e. AK : KD = KD : DL = HD : DM. 
 
[5] But since parallelepipeds under the same height are to each other as their bases 
(Thm.25), it follows further that: 
 AK : KD = solid AB : solid EG 
and KD : DL = solid EG : solid LQ 
and HD : DM = solid LQ : solid CD 
 Because of Step 4, the first in each of these pairs of ratios are all the same ratio.  
Therefore the second in each of these pairs of ratios are also all the same, 
i.e. solid AB : solid EG = solid EG : solid LQ = solid LQ : solid CD 
 
[6] Since that proportion is continuous, and contains four terms, therefore the first has 
to the last the triplicate ratio of the first to the second, i.e. 
  solid AB : solid CD is the triplicate ratio of solid AB : solid EG. 
 
[7] But, as we saw above in Steps 5 and 4, 
  solid AB : solid EG = AK : KD = AE : ED. 
Therefore solid AB : solid CD is the triplicate ratio of AE : ED. 
 
So similar parallelepipeds have to each other the triplicate ratio of their corresponding 
sides. 
 
Q.E.D. 
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THEOREM 26 Remarks: 
 
The most important instance of this, of course, is with cubes.  All cubes are similar 
parallelepipeds, and so it follows that they are to each other in the ratio triplicate of their 
corresponding sides. 
 For example, suppose you had a pair of cubes, and the side or edge of one was 
double the side or edge of the other, i.e. their sides were in the ratio of  1 : 2.  Then what 
is the ratio of their volumes?  It will be  1 : 8, since 
 1 : 2 = 2 : 4 = 4 : 8, 
and thus 1 : 8 is the ratio triplicate of 1 : 2. 
 This Theorem should make you wonder about the ratios of other kinds of similar 
solids, such as curved ones.  Do spheres have to each other the triplicate ratio of their 
diameters? 
 
 
 
 
 
 
 
 
THEOREM 27:  If the sides of opposite faces in a parallelepiped are bisected by 
two planes, then the intersection of these two planes bisects (and is bisected by) the 
diagonal of the solid. 
 
Given:  Parallelepiped BE, with diagonal 
CH.  Planes QOPR and MKLN bisect the 
edges at Q, O, M, K, R, P, N, L.  SU is the 
intersection of these two cutting planes. 
 
Prove:  SU and CH bisect each other. 
 
 
[1] Join CU, UF. 
 
[2] It is easily seen that OULC and UPEL are parallelograms. 
 Thus OU = CL 
 and UP = LE. 
 but CL = LE  (given) 
 thus OU = UP 
 but OC = PF  (being halves of the equal sides DC and EF) 
 and ∠UOC = ∠UPF (each is equal to ∠PEL) 
 so rUOC ≅ rUPF (Side-Angle-Side) 
 thus ∠OUC = ∠PUF. 
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[3] But OUP is a straight line, and therefore CUF is also a straight line, since the 
vertical angles OUC and PUF are equal. 
 Likewise ASH is a straight line. 
 And since AC and FH are equal and parallel lines, ACFH is a parallelogram. 
 
[4] Thus SU lies in the plane of parallelogram ACFH, since it joins points U and S 
which lie on its opposite sides.  Thus CH and SU must meet, say at T. 
 
[5] Now CU = UF  (since rUOC ≅ rUPF; Step 2) 
 and AS = SH  (since similarly rSQA ≅ rSRH) 
Thus SU joins the midpoints of the opposite sides in parallelogram ACFH.  Therefore SU 
bisects the diameter of ACFH, namely CH, and also is bisected by it. 
 
Q.E.D. 
 
 
 
 
 
THEOREM 27 Remarks: 
 
 
1. If it is not perfectly clear why the line joining 
the midpoints of a parallelogram's opposite sides must 
bisect and be bisected by the diagonal, consider the 
following.  Let ACFH be a parallelogram, and let CU 
= UF, and AS = SH. 
 
Now CU = SH  being halves of the opposite sides of a parallelogram, 
and ∠HCF = ∠CHS since CF is parallel to HA 
and ∠CUS = ∠HSU since CU is parallel to SH 
so rCUT ≅ rHST (Angle-Side-Angle) 
so UT = TS 
and CT = TH  Q.E.D. 
 
2. Obviously, this Theorem is true about cubes in particular – if the sides of a cube 
are bisected by two planes, the intersection of those planes will bisect the diagonal of the 
cube, and be bisected by it. 
 
3. In parallelepipeds other than cubes, the four diagonals can be unequal to each 
other.  But that doesn't make any difference to this Theorem – take any diagonal you like, 
the proof did not require that we choose a special one. 
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THEOREM 28:  If a triangular prism lies on one of its parallelogram sides, and 
in this position has the same height as another triangular prism lying on its triangular 
base, and if the parallelogram is double the triangle, then the prisms will have the same 
volume. 
 
Imagine a prism with triangular 
bases ABM and DCN, lying on 
one of its parallelogrammic sides 
ABCD, and another prism with 
triangular bases EGK and OLP, 
lying on EGK, which has half the 
area of ABCD. 
 Now if we further suppose that ABCD and EGK lie in the same plane, and also 
that OLP and MN lie in the same plane, then I say that the prisms will have the same 
volume. 
 
[1] Complete the parallelepiped AR contained by the angles ADC, ADN, NDC. 
 Complete parallelogram EGKT, and 
 Complete the parallelepiped GZ contained by the angles GKT, GKP, PKT. 
 
[2] Since ABCD is double triangle EGK in area, and EGKT is also double triangle 
EGK in area, therefore ABCD = EGKT. 
 
[3] But that means that solids AR and GZ stand on equal bases.  And yet they also 
have the same height, since it is given that the height of the prisms is the same, and we 
made the parallelepipeds to have that same height.  Therefore AR and GZ have the same 
volume (Thm. 24). 
 
[5] Since AR and GZ are the same volume, therefore also their halves have the same 
volume.  But the triangular prisms are obviously their halves.  Therefore the two prisms 
are equal in volume, too. 
 
Q.E.D. 
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THEOREM 28 Remarks: 
 
 
We assumed in this Theorem that each prism is obviously half the volume of the 
parallelepiped of which it is a part.  Why is that obvious? 
 Consider the prism contained by triangles OLP and EGK.  It makes up a 
parallelepiped by being combined with another prism, the one contained by triangles 
OZP and ETK.  Now EGKT and OLPZ are parallelograms, and so are OZTE and all the 
other faces of the parallelepiped. 
Thus rOLP ≅ rOZP 
and rEGK ≅ rETK 
and LPKG ≅ OZTE 
and OLGE ≅ ZPKT 
and, of course, OPKE is a common face for both prisms. 

So the two prisms are contained by an equal number of congruent and similarly 
arranged faces.  Therefore they are congruent and contain equal volumes. 

Does that mean that these prisms can coincide?  Not necessarily. 
Consider your right hand and your left hand.  Even if they were perfectly 

symmetrical, and of a ghostly quality so that they could pass through each other, they 
would not be able to coincide with each other and form one self-same hand.  A right hand 
simply can't be a left hand! 

Now, can the two prism halves of a parallelepiped be like that?  Can they be 
perfect mirror images of each other, and yet not be able to coincide?  Yes.  It is almost 
impossible to represent this in a two-dimensional diagram in a clear and convincing way, 
so the best thing to do is to make a pair of such prisms.  It is best not to use paper, since 
that is too flimsy – you need something more rigid like cardstock or a manila folder.  
Transfer the diagrams below onto a piece of manila:  each consists of a square, a rhombus 
with angles of 60° and 120° (it is made of two equilateral triangles), and two isosceles 
triangles with peak angles of 105° (i.e. 60° + 45°) placed at the bottom corners of the 
square.  The legs of the isosceles triangles are equal to the sides of the square. 

After you have transferred the diagrams, cut out the two figures along the solid 
lines.  Next, with all the labeling face up on the table, fold up the triangles and square 
along all the dotted lines.  Bring together the edges marked with the same letters, such as 
“A”, and tape them together.  When you are done, you will have two triangular prisms, 
each with one open face.  If you place the square faces down on the table and turn H and 
Z toward you, you will see that the prisms are symmetrical, but, like a right hand and a 
left hand, cannot be made to coincide.  Their corresponding faces can be made to 
coincide one at a time, but not all of them simultaneously.  If you pick them up in your 
hands, and place edges X and Z together, and in that position bring together the two open 
faces of the prisms, you will be holding a parallelepiped. 

What makes the equality of these two prisms obvious, then, is not that they could 
be made to coincide.  Rather, like your two hands, it is their perfect symmetry – one is a 
perfect mirror image of the other. 
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“HOOK”:  TRIANGULAR SECTIONS OF A CUBE. 
 
If you are given a cube and a triangle  abc,  will it be possible to slice the cube with a 
plane so that there will be formed a triangular facet which is similar to  abc?  Not if  abc  
is right or obtuse.  But if  abc  is acute, it can always be done. 
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DEFINITIONS 
 

1.  A SERIES is a multitude of quantities produced in an order determined by some 
repeated process.  It is an INFINITE SERIES if the process producing it can always be 
repeated to produce the next quantity. 
 For example, the numbers  2  4  8  16  constitute a series because they are 
quantities produced in this order by the repeated process of doubling.  They are part of 
an infinite series because there is no end to how many times we can repeat the process of 
doubling, and so we can always say which number comes next in the series. 
 
 
2.  An infinite series is said to APPROACH a quantity that is not a member of it if, every 
time we are given an assigned amount, it is possible to find a member of the series 
differing from the quantity by less than that amount. 
 For example, take a series of lengths beginning with one foot: 
 
First Term:  1 
 

Second Term:  1  +  
2
1  

 

Third Term:  1 +  
2
1   +  

4
1  

 

Fourth Term:  1  +  
2
1   +  

4
1   +  

8
1   etc. 

 
These lengths constitute an infinite series, since we can always form the next new term by 
adding half of the last thing added in the previous term.  Now, two feet, or 2, is not a 
member of this series – no matter how far we go in it, every term will always be less than 
two feet long.  But each new member of the series gets us closer to two feet, and in fact 
the terms come as close to two feet as you want (as we will prove in the Theorems).  For 
example, take one millionth of an inch – there will be a term in the above series that falls 
short of being two feet long by LESS than a millionth of an inch.  And so this series is 
said to approach  two feet.  It never gets there, but it gets closer than any assigned 
difference. 
 
 
3.  A GROWING series is one each new member of which is greater than the one before 
it.  A SHRINKING series is one each new member of which is less than the one before it. 
 Note:  you can also have oscillating series, e.g. where all the odd terms are 
growing but all the even terms are shrinking.  It is not within the scope of this book to 
exhaust all the kinds of series that are possible. 
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THEOREMS 
 
 

THEOREM 1:  If we subtract half from the greater of two unequal magnitudes, 
and always half again of what remains of it, by this process we will eventually have left a 
magnitude less than the lesser one set out. 
 
 
Recall from Chapter 8 that a magnitude is 
any quantity which is infinitely divisible, 
such as a line, or a surface, or a solid.  Now 
consider any two unequal magnitudes, A and B, and suppose A is the greater one.  What I 
wish to prove amounts to this: 
 

The process    A  –  
2
1 A  –  

4
1 A  –  

8
1 A   etc.    will eventually leave a remainder that is 

less than B. 
 
[1] Since B has a ratio to A (A being greater than B), therefore some multiple of B is 
greater than A.  Thus if we double B, and then double its double, and double this again, 
etc., we will eventually arrive at a magnitude Z that is greater than A. 
 
[2] Suppose, then, that Z  >  A 
   and Z  =  8B 
 8B being a number of B's reached by repeatedly doubling B. 
 
[3] Now   A  <  Z  (Step 2) 
 

 so   
8
1 A  <  

8
1 Z (obviously) 

 

 so   
8
1 A  <  B (B equals one eighth Z by Step 2) 

 

[4] But  
8
1 A  is a part of A that remains after repeatedly halving A, and halving what 

remains, etc.  That is, 

8
1 A   =   A  –  

2
1 A  –  

4
1 A  –  

8
1 A 

 
[5] Therefore, by repeatedly halving A, and halving its half, etc., we must eventually 
arrive at a remainder that is less than B. 
 
Q.E.D. 

A

B

Z
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THEOREM 1 Remarks: 
 
 

1. In Step 3 we mentioned 
8
1  of A, and also 

8
1  of Z.    

8
1  of Z  poses no problem, 

because that is just B – we started with B, and got Z by taking B  8 times.  But with A we 
actually started with A, not with something which, taken 8 times, equals A. 

 So how do we make 
8
1  of A?  Do we know how to find exactly one eighth of any 

random magnitude?  No.  But this theorem does not assume we know how to do that – it 

only says that if we can take half and half again as often as we like (and thus leave 
8
1 , or 

16
1 , or 

32
1 , etc.)  then we will by this process eventually leave a remainder that is less 

than any given magnitude. 
 
 
 
2. Even if we don't know how to take exactly half of any magnitude, as long as its 
parts always have a ratio to each other we can easily take more than half of it.  Divide it 
at random, and take the larger piece (if they happen to be equal, then you did divide it in 
half, after all). 
 And clearly, if repeatedly taking just half of what remains of A gets us to a 
remainder less than B, then all the more quickly will repeatedly taking more than half of 
what is left get us to a remainder less than B.  So suppose we have a growing series of 
magnitudes  Q, R, S, T  etc., and another greater magnitude X.  Suppose further that each 
new term in the series takes up more than half of the difference by which X exceeded the 
last term, i.e.  X – R  is less than half of  X – Q,  and  X – S  is less than half of  X – R  
etc.  Then the series approaches X. 
 
 
 
3. Can you prove that repeatedly taking one third of A, and then one third of what 
remains of A etc., will eventually leave a remainder less than B?  Remember, we are not 
subtracting one third of A each time (we could only do that 3 times, and we would have 
nothing left):  we are subtracting one third of each new remainder, so what we are 
subtracting is always getting smaller.  Do you think this will get us to less than B?  How 
about repeatedly taking one millionth of what remains each time?  Will that get us down 
to less than B, regardless of how small B is?  Believe it or not, the answer is yes.  But I 
leave it to the reader to find proof – it is a digression from the goals of this book. 
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THEOREM 2:  If some multiple of magnitude W is greater than magnitude Q, 
and a series approaches W, then the same multiple of some term in that series is also 
greater than Q. 
 

 
 
(We are bothering with this only because 
we need it for the next Theorem.  Don't 
worry, though, it's easy.) 
 
 
 

 
Suppose we are given that  3W  >  Q,  and we are also given a series of magnitudes  A, B, 
C etc., which approaches W  (i.e. there is no limit to how close the terms in the series get 
to being equal to W, even if none of them actually equal it). 
 I say that there is some term T in the series A, B, C  such that  3T  >  Q. 
 
[1] Take any part of the difference between 3W and Q which is less than a third of 
that difference, and call it  d. 
 Thus  3d  <  3W  –  Q  (we chose d this way) 
 
[2] Since  A, B, C etc. approaches W (given), therefore there is always a term in that 
series differing from W by less than any specified amount.  So take any term T in the 
series which differs from W by less than  d. 
 Thus  W  –  T  <  d 
 
[3] So  3W –  3T  <  3d  (multiplying both sides by 3) 
 but   3d  <  3W – Q  (Step 1) 
 so  3W – 3T  <  3W – Q 
 thus  3T  >  Q 
 
 
Q.E.D. 
 
 
 
 
 
THEOREM 2 Remarks: 
 
 
1. We chose 3W and then took less than a third of 3W – Q.  There is nothing special 
about 3 and one third.  The exact same argument would work for 5W, as long as we also 
take less than one fifth of 5W – Q, etc. 
 

W

A B C T
. . .

W W W

Q 3W
Q_
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2. In Step 1 we “take less than a third of 3W – Q.”  How do we do that?  As a matter 
of fact, as with Theorem 1, we will not be applying this Theorem except to magnitudes 
that we can do this with.  So all this Theorem needs to assert (for our purposes) is that 
whenever we can find a way to take less than one third of the difference (or whatever 
fraction, depending on the multiple of W we start with), there must be a term in series A, 
B, C such that 3T > Q. 
 
3. Obviously, if A, B, C is a growing series, then it is likewise true for every term 
after T, such as V, that  3V > Q.  And if A, B, C is a shrinking series, then the Theorem 
would hold for every term before T. 
 
 
 
 
THEOREM 3:  If two growing series approach two quantities, and the 
corresponding terms in the two series always have the same ratio, then the two quantities 
they are approaching also have that ratio. 
 
 
 
 
 
 
 
 
 
Given:   Series  A, B, C … etc.   is a growing series approaching X, 
   Series  a, b, c … etc.   is a growing series approaching Z, 
and   A : a  =  B : b  =  C : c   etc. 

 
Prove:   X : Z  =  A : a 
 
Take any multiple of X and A, say 5 times each:  5X  and  5A. 
Take any multiple of Z and a, say 3 times each:  3Z  and  3a. 
 
Suppose that  5X  >  3Z 
 
[1] Since 5X  >  3Z, 
therefore in the series approaching X it is possible to take a term T so that 
  5T  >  3Z  (Thm.2) 
 
[2] Let t be the term in the series approaching Z that corresponds to T. 
 Thus T : t  =  A : a (given) 
Now since the series approaching Z is growing toward it (given), therefore every member 
of it is less than Z, and therefore 
  t  <  Z 

. . .

. . .

X
A B C

Z

a b c
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[3] Thus 3t  <  3Z  (multiplying both sides of the inequality by 3) 
 but 5T  >  3Z  (Step 1) 
 so 5T  >  3t 
 
[4] Now T : t  =  A : a  (Step 2) 
 thus 5A  >  3a  (since 5T > 3t,  Step 3) 
Therefore if 5X > 3Z then 5A > 3a. 
Likewise if NX < MZ then NA < Ma, 
and if  QX = RZ then QA = Ra. 
 
That is, any random multiples of X and Z must compare the same way as the 
corresponding multiples of A and a.  Therefore 
 X : Z  =  A : a   (Ch.5, Def.8) 
 
Q.E.D. 
 
 
 
THEOREM 3 Remarks: 
 
I chose to speak about growing series in this Theorem not because there is something 
special about them, but because we will be looking only at growing series in this Chapter.  
The Theorem, in fact, would also apply as well to other kinds of approaching series. 
 
 
 
 
 
 
 
THEOREM 4:  Similar polygons inscribed in circles are to each other as the 
squares on the diameters. 
 
 
Let ABCD and abcd be similar polygons, 
each inscribed in a circle.  Let diameters 
be drawn through corresponding points in 
the polygons, say points b and B, making 
diameters BM and bm. 
 
 
I say that  ABCD : abcd  =  £BM : £bm. 
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[1] Join AC, ac, CM, cm. 
 
[2] Because similar polygons are made of similar triangles (Ch.6, Thm.14, Remarks), 
 therefore rABC is similar to rabc 
 so  ∠BAC = ∠bac 
 
[3] But  ∠BAC = ∠BMC (both stand on BC; Ch.3, Thm.20) 
 and  ∠bac = ∠bmc  (both stand on bc; Ch.3, Thm.20) 
 so  ∠BMC = ∠bmc 
 But  ∠MCB = ∠mcb (both are right; Ch.3, Thm.24) 
 so  rBCM is similar to rbcm, 
since they have two angles equal to two angles (Ch.6, Thm.4). 
 
[4] Thus  rBCM : rbcm  =  £BC : £bc (Ch.6, Thm.16) 
 but  ABCD : abcd  =  £BC : £bc  (Ch.6, Thm.17) 
 so  ABCD : abcd  =  rBCM : rbcm 
 but  £BM : £bm  =  rBCM : rbcm (Ch.6, Thm.16) 
 so  ABCD : abcd  =  £BM : £bm 
 
 
Q.E.D. 
 
 
 
 
 
 
THEOREM 5:  Circles are to each other as the squares on their diameters. 
 

 
 
Take any two circles.  Call their diameters 
AB and ab.  I say that the circles are to 
each other in the same ratio as the squares 
on their diameters, i.e. as £AB to £ab. 
 
 
 

 
[1] Bisect the semicircumferences in the circle AB at D and K, and inscribe square 
ADBK.  Now bisect the quarter circumferences in circle AB at C, E, G, M, and inscribe 
the regular octagon ACDEBGKM.  Thus we are making a series of inscribed regular 
polygons, each having twice the number of sides as the one before it. 
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[2] Each new polygon takes up more than half of what was left of the circle by the 
last polygon.  For example, the square ADBK leaves 4 pieces of the circle such as the one 
contained by straight line AD and arc ACD.  But the octagon removes ΔACD from that 
piece, which is more than half of it – because ΔACD is half of the rectangle ATRD (Ch.1, 
Thm.33), and since this rectangle is greater than the circle's segment ACD, it follows that 
rACD is more than half segment ACD.  So each polygon in the series leaves some 
amount of the circle left over, but the next polygon takes up more than half of that 
leftover.  Therefore the series of polygons is approaching the area of the circle (Thm.1, 
Remark 2). 
 
[3] Likewise the series of regular polygons inscribed in circle ab, made by repeatedly 
bisecting arcs, is approaching the area of circle ab.  And just as the square in circle AB is 
similar to the square in circle ab, so every polygon in circle AB is similar to the 
corresponding polygon in ab. 
 
[4] But similar polygons inscribed in circles are as the squares on their diameters 
(Thm.4).  Therefore all the corresponding polygons in the two series have the ratio of  
£AB : £ab.  And therefore the two magnitudes approached by these two series also 
have that ratio (Thm.3).  That is 
 circle AB : circle ab  =  £AB : £ab. 
 
Q.E.D. 
 
 
 
 
THEOREM 5 Remarks: 
 
 
1. In Step 2 I asserted that rectangle ATRD is more than the segment ACD.  How do 
I know that?  I form the rectangle by drawing TCR tangent to point C.  See if you can 
complete the proof by doing the following: 
 (a)  Prove that TR is parallel to AD.  (This allows you to complete a rectangle 
between TR and AD.) 
 (b)  Argue from the fact that TCR is tangent that segment ACD of the circle must 
be less than that rectangle. 
 
 
2. From this Theorem we can show how to make a 
square equal to an interesting curvilinear figure called a 
“lunule,” or little moon. 
(i)  Consider a circle with center M, diameter AMB, and CM 
drawn perpendicular to AMB.  Join AC and circumscribe a 
circle about triangle ACM. 
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(ii)  Since ∠AMC is right, therefore AC is the diameter of the circle ADCM (Ch.3).  So 
circle ADCM : circle M  =  £AC : £AB (by the present Theorem) 

(iii)  But £AC is the square ACBE, and £AB is the square on its diagonal, so 
 £AC : £AB  =  1 : 2 
thus circle ADCM : circle M  =  1 : 2  (because of Step ii) 
(iv)  Thus circle M is double circle ADCM, 
so one quarter circle M = one half circle ADCM 
i.e. quadrant MAC = semicircle ADC 
or areas S + Q  =  areas S + L 
thus area Q = area L    (subtracting S from each) 
i.e. rAMC = lunule L 
 
 
3. Since we can make a square equal to any rectilineal figure, we can thus make a 
square equal to the lunule L.  This is called quadrature, or squaring an area.  You can see 
why the quadrature of this and other kinds of lunules gave the ancient Greeks great hopes 
of finding a way to make a circle equal to a square.  The various attempts at the 
“quadrature of the circle” over the centuries make up an interesting part of the history of 
mathematics.  The end of the story came in modern mathematics (only about a couple 
hundred years ago), with a proof that it is actually impossible to construct a square equal 
to a circle using nothing but straight lines and circles (the tools we are using in this 
geometry book).  Worse than that, even if you allow yourself all kinds of curves 
described by algebraic equations, you still cannot make a square equal to a circle! 
 
 
 
 
THEOREM 6:  Any pyramid on a triangular base is divisible into two congruent 
pyramids (each similar to the whole) and two equal triangular prisms. 
 
 

TWO CONGRUENT PYRAMIDS SIMILAR TO THE WHOLE 
 

Conceive a pyramid on triangular base ABC, 
vertex V. 
 
[1]  Bisect its six edges at  D, K, E, L, T, M.  Join 
DE, EK, KD, DT, TL, LD. 
 
[2]  Since the sides of the pyramid’s triangular 
faces are all cut proportionally by these lines 
joining the midpoints, therefore these lines are 
parallel to the edges of the pyramid.  For example, 
DE is parallel to AB. 
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 So  rVDE is similar to rVAB 
 but  rDAT is similar to rVAB 
 so  rVDE is similar to rDAT 
And the corresponding sides AD and DV are equal, 
 so  rVDE ≅ rDAT. 
 
[3] Similarly rVDK ≅ rDAL. 
 
[4] Now  AL = DK  (Step 3 congruence) 
 and  AT = DE  (Step 2 congruence) 
 and  ∠LAT = ∠KDE (since KD║LA and AT║DE, Ch.9 Thm.12) 
 so  rLAT ≅ rKDE 
 
[5] Similarly rDLT ≅ rVKE 
 
[6] Hence all the triangles containing pyramid VDKE are congruent to those 
containing pyramid DALT.  So these pyramids are congruent.  And since they are 
contained by triangles similar to the triangular facees of the whole pyramid on base ABC, 
hence they are similar to the whole pyramid. 
 

TWO EQUAL TRIANGULAR PRISMS 
 

[7] Join KM, MT. 
 Now  DK║LC  (since DK║AC) 
 but  DL║KC  (since DL║VC) 
 so  DKCL is a parallelogram 
 
[8] Likewise LTMC is a parallelogram. 
 
[9] So  DK is parallel and equal to LC (opp. sides of DKCL) 
 and  TM is parallel and equal to LC (opp. sides of LTMC) 
 so  DK is parallel and equal to TM 
 hence  DKMT is a parallelogram 
 
[10] Since the opposite sides of parallelograms are equal, 
 thus  DL = KC 
 and  LT = CM 
 and  TD = MK 
 so  rDLT ≅ rKCM 
 
[11] Since rDLT and rKCM are congruent, and their corresponding sides are sides 
of parallelograms, therefore they contain a prism on LTMC as base. 
 
[12] Likewise rDKE and rTMB are congruent, and their corresponding sides are 
sides of parallelograms, so they contain a prism on rTMB as base. 
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[13] Now rTMB is half parallelogram LTMC, since they stand on equal bases CM 
and MB, and in the same parallels LT and CB.  Hence the two triangular prisms standing 
on these bases, being under the same height (since the plane of DKE is parallel to the 
plane of CLTB), are equal.  (Ch.9, Thm.28) 
 
[14] So the whole pyramid is composed of the two congruent pyramids and these two 
equal triangular prisms 
 
Q.E.D. 
 
 
 
 
 
THEOREM 7:  When a pyramid on a triangular base is divided as in the last 
Theorem, the two equal prisms are more than half the whole. 
 

[1] Reproduce the diagram of Theorem 6, and join 
LM.  Can you see that KLCM and ETMB are pyramids 
congruent to VDKE and DALT?  (For clarity I leave 
some lines undrawn.) 
 
[2] The triangular faces of the whole pyramid had 
their sides bisected, as at D, E, and T.  Joining these 
midpoints divides each triangular face into four congruent 
triangles, each similar to the whole face. 
 
 
 

[3] So rBMT ≅ rALT 
 but rALT ≅ rDKE (Thm.6, Step 4) 
 so rBMT ≅ rDKE 
 again rETB ≅ rVDE for the same reasons, 
 and rEMB ≅ rVKE for the same reasons again. 
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[4] Since the corresponding sides in these congruent triangles are equal, 
 hence MT = DK 
 and TE = DV 
 and EM = VK 
 so rTEM ≅ rDVK (SSS) 
 
[5] Hence all the triangles containing pyramid ETMB are congruent to those 
containing pyramid DALT, 
 so ETMB ≅ DALT. 
Likewise KLCM ≅ DALT. 
Now pyramids ETMB and KLCM are only parts of the two equal prisms, and so 
pyramids VDKE and DALT, equal to those pyramids, are less than the two prisms.  Since 
VDKE and DALT, together with those two prisms, exhaust the whole pyramid, hence the 
two prisms are more than half of it. 
 
Q.E.D. 
 
 
 
 
 
 
 
 
THEOREM 8:  If two triangular pyramids under the same height are divided 
each into their two prisms and two pyramids (as in the last Theorem), then the two prisms 
in one are to the two prisms in the other as the base to the base. 
 
 
Suppose you have two 
pyramids whose triangular 
bases ABC and abc are in the 
same plane, and also their 
vertices V and v are in a 
parallel plane.  Let them each 
be divided, as in Theorem 6, 
into two congruent pyramids 
each similar to the whole and 
two equal prisms. 
 
 
 
[1] Now the prism on TBRN with top edge DE is half the parallelepiped on that base 
and with its top in the plane of DEK  (Ch.9, Thm.28, Remarks).  So too, the prism on 
tbrn is half the parallelepiped on tbrn.  So 

 prism TBRN : prism tbrn  =  parallelepiped TBRN : parallelepiped tbrn 
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[2] Since the original pyramids are under the same height, therefore the planes cutting 
their edges in half are also of the same height, i.e. planes DEK and dek.  Therefore the 
parallelepipeds just mentioned are under the same height, and therefore they are to each 
other as their bases (Ch.9, Thm.25).  And therefore, the prisms which are their halves are 
also as their bases.  So 

 prism TBRN : prism tbrn  =  TBRN : tbrn 
 
[3] And likewise the prism on NRC (with top DEK) is to the prism on nrc (with top 
dek) as the base NRC is to the base nrc.  That is, 

 prism NRC : prism nrc  =  NRC : nrc 
 
[4] Now if we join TR, then rABC is divided into four congruent triangles ATN, 
NTB, BRN, NRC.  Likewise if we join tr, then Δabc is divided into its four congruent 
triangles. 

So TBRN : rABC  =  tbrn : rabc   (both are the ratio 2:4 
thus TBRN : tbrn  =  rABC : rabc  (alternating) 
 
and NRC : rABC  =  nrc : rabc   (both are the ratio 1:4) 

 thus NRC : nrc  =  rABC : rabc   (alternating) 
 
[5] Now prism TBRN : prism tbrn  =  TBRN : tbrn (Step 2) 
 But TBRN : tbrn  =  rABC : rabc  (Step 4) 
 so prism TBRN : prism tbrn  =  rABC : rabc 
 
 Also prism NRC : prism nrc  =  NRC : nrc  (Step 3) 
 But NRC : nrc  =  rABC : rabc   (Step 4) 
 so prism NRC : prism nrc  =  rABC : rabc 
 
[6] So prism TBRN : prism tbrn  =  rABC : rabc (Step 5) 
 but prism NRC : prism nrc  =  rABC : rabc (Step 5) 
 so prisms TBRN + NRC : prisms tbrn + nrc  =  rABC : rabc 
 
since the sums of things in the same ratio remain in the same ratio (Ch.5, Theorem 15).  
And so the two prisms in the one whole pyramid are to the two prisms in the other whole 
pyramid in the same ratio as the bases of the whole pyramids. 
 
Q.E.D. 
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THEOREM 8 Remarks: 
 
If we now divide the small pyramids on DEK and dek in the same way, the sums of their 
corresponding prism-parts will be as their bases DEK and dek.  So 
 2 prisms in pyramid DEK : 2 prisms in pyramid dek  =  DEK : dek (this Thm.) 
But since rDEK is identical to rNRC, and rdek is identical to rnrc, therefore 
 DEK : dek  =  NRC : nrc 
Therefore, putting together these two proportions, 
 2 prisms in pyr. DEK : 2 prisms in pyr. dek  =  NRC : nrc 
But, as we saw, NRC is one fourth of ABC, and nrc is one fourth of abc.  So 
 2 prisms in pyr. DEK : 2 prisms in pyr. dek  =  rABC : rabc 
So even the little prisms in the leftover little pyramids also have to each other the ratio of 
the original base ABC to the original base abc.  Likewise, if we now take the little 
pyramids into which DVEK and dvek are divided, and divide them, the equal prisms in 
them will be as DEK to dek, and hence as ABC to abc.  And therefore all the prisms so 
made in pyramid ABC have to all the prisms so made in pyramid abc the ratio of rABC 
to rabc. 
 
 
 
 
 
 
 
THEOREM 9:  Pyramids on triangular bases and under the same height are to 
each other as their bases. 
 
 
 
Consider a pyramid with vertex V on 
base ABC, and another pyramid with 
vertex X on base DEF, and suppose 
their bases are in the same plane, and 
their vertices are in a parallel plane.  
I say that 
 
 
pyramid V : pyramid X  =  ABC : DEF. 
 
 
[1]  Divide each pyramid into two congruent pyramids, similar to the whole, and two 
equal triangular prisms, as before.  In each pyramid, the 2 prisms take up more than half 
the whole (Thm.7).  And so if we now divide the smaller leftover pyramids in the same 
way, such as pyramids VGHK and GAOP, their prisms will also take up more than half 
of them.  And they, too, will have two left over pyramids, and so on.  So, continuing in 
this way  we will have a series of magnitudes approaching pyramid V, namely: 
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 1.  The 2 prisms in pyramid V 
 2.  The 2 prisms in pyramid V plus the 4 prisms in the two leftover pyramids 
 3.  The 2 prisms in pyramid V plus the 4 prisms in the two leftover pyramids, 
plus the 8 prisms in the four leftover pyramids etc. 
In each step of this process, we take what we had before and add more than half of what 
remained of pyramid V.  Thus this series is approaching pyramid V  (Thm.1, Remark 2). 
 So, too, there is a corresponding series of prisms approaching pyramid X. 
 
 
[2] Now since, at any step in the series, all the prisms in pyramid V have to all the 
corresponding ones in pyramid X the same ratio as ABC to DEF (Thm.8, Remarks),  
therefore the magnitudes approached by these two series of prisms also have that same 
ratio (Thm.3).  That is 
 Pyramid V : Pyramid X  =  ABC : DEF. 
 
Q.E.D. 
 
 
 
THEOREM 9 Remarks: 
 
In particular:  Pyramids under the same height which are on equal triangular bases are 
equal.  For they must be as their bases (by this Theorem), which are equal. 
 
 
 
 
 
 
THEOREM 10:  Pyramids of the same height are to each other as their bases. 
 
 
Didn't we just do this?  No – we 
limited the last Theorem to pyramids 
with triangular bases.  Now we are 
saying:  the bases don't have to be 
triangles.  They can be any two 
polygons at all. 
 
 
 
Take any two pyramids V and X whose bases (ABCDE and GHKL) are in the same plane 
and whose vertices are in a parallel plane, and it will follow that 
 Pyramid V : Pyramid X  =  ABCDE : GHKL. 
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[1] Pick any vertex on base ABCDE, say A, and join AC, AD, dividing the base into 
triangles 1, 2, 3, and thus dividing pyramid X into three triangular pyramids on 1, 2, 3. 
 Similarly, divide base GHKL into triangles 4, 5, thus dividing pyramid X into two 
triangular pyramids on 4, 5. 
 For shorthand, let P1 mean “The Pyramid on triangular base 1,” let P2 mean “The 
Pyramid on triangular base 2,” and so on with the other triangular bases. 
 
[2] Now P1 : P2  =  Base 1 : Base 2   (Thm.9) 
And so, adding each consequent to its antecedent, 
  P1 + P2 : P2  =  Base 1 + Base 2 : Base 2 (Ch.5, Thm.15, Remarks) 
And the consequents in this proportion are P2 and Base 2. 
 
[3] But P3 : P2 =  Base 3 : Base 2   (Thm.9) 
And the consequents in this proportion are also P2 and Base 2. 
 Therefore, putting this proportion together with that in Step 2, and leaving out the 
identical consequents, we have a proportion among the antecedents: 
 
  P1 + P2 : P3  =  Base 1 + Base 2 : Base 3 (Ch.5, Thm.17) 
 
And thus, adding each consequent to its antecedent (Ch.5, Thm.15), we have 
 
  P1 + P2 + P3  : P3  =  Base 1 + Base 2 + Base 3 : Base 3 
 
[4] Similarly, we can prove that all the triangular pyramids in Pyramid X have to any 
one of them the same ratio as the whole base to the triangular base of that one, i.e. 
 
  P4 + P5 : P4  =  Base 4 + Base 5 : Base 4 
 
[5] But the consequents of this proportion and in the proportion from Step 3 form a 
proportion, since 
  P3 : P4  =  Base 3 : Base 4   (Thm.9) 
And therefore the antecedents of the two proportions also form a proportion, and in the 
same order (Ch.5, Thm.17).  That is, 
  P1 + P2 + P3 : P4 + P5  =  Base 1 + Base 2 + Base 3 : Base 4 + Base 5 
which is the same as saying 
  Pyramid V : Pyramid X  =  ABCDE : GHKL. 
 
Q.E.D. 
 
 
 
THEOREM 10 Remarks: 
 
Again, note the particular case that Pyramids under the same height and on equal bases 
are equal. 
 



 324 

THEOREM 11:  Any triangular prism is composed of three triangular pyramids 
of equal volume. 
 

 
 
Let ABC and DEK be the triangular bases of 
a prism.  I say that it is divisible into three 
equal pyramids having triangular bases. 
 
[1] Join BD, BK, KA. 
 
 
 
 

[2] Thus the prism is divided into three pyramids, namely 
 one with base DEK and vertex B  (DEK*B for short) 
 one with base DKB and vertex A  (DKB*A for short) 
 one with base AKB and vertex C  (AKB*C for short) 
 
 
[3] Now DEB*K  =  DAB*K 

since they stand on equal bases (DEB and DAB each being half of parallelogram 
 ABED), and share a vertex, K  (Thm.9, Remarks). 

But DEB*K is the same as pyramid DEK*B 
and DAB*K is the same as pyramid DKB*A 
so DEK*B  =  DKB*A 

 
 
[4] And DAK*B  =  AKC*B 
 since they stand on equal bases (DAK and AKC each being half of parallelogram 
 ACKD), and share a vertex, B (Thm.9, Remarks). 
 But DAK*B is the same as pyramid DKB*A 
 and AKC*B is the same as pyramid AKB*C 
 so DKB*A  =  AKB*C 
 
 
[5] Thus DEK*B  =  AKB*C  (Steps 3 and 4) 
 And so the three pyramids into which the whole prism is divided are equal to each 
other. 
 
Q.E.D. 
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THEOREM 11 Remarks: 
 
 
1. Accordingly, any triangular pyramid is one third 
of a triangular prism sharing its base and under the same 
height.  Using the same diagram above, consider pyramid 
ABC*K, standing on base ABC.  This pyramid is part of 
the prism contained by ABC and DEK.  But imagine 
some other prism, Prism X, also standing on base ABC, 
whose top triangle is somewhere else in the plane of DEK 
(just shift DEK over a bit within the same plane, and you 
get such a prism).  So Prism X shares base ABC with 
prism DEK, and also has the same height as it.  Then it 
must be equal to it.  For if we double triangle ABC into a 
parallelogram, and complete the parallelepipeds on it, 
prism DEK and Prism X are half of these parallelepipeds, 
which are clearly equal to each other (Ch.9, Thm.23). 
 
But pyramid ABC*K is one third of prism DEK (by this Theorem). 
So pyramid ABC*K is one third of Prism X, too. 
 
 
 
2. More generally, though, any pyramid on any polygon as its base is one third of 
the prism sharing that same polygon base and under the same height. 
 Take any pyramid, say on base ABCDE.  Divide its base into triangles.  Thus the 
pyramid, too, is divided into three pyramids, one on each triangular part of the base.  But 
a prism standing on base ABCDE will likewise be divided into three prisms, one on each 
triangular part of the base. 
 So if the prism has the same height as the pyramid, each triangular pyramid will 
also have the same height as each triangular prism.  And therefore, by the above Remark, 
each triangular pyramid will be one third of the triangular prism sharing its base, and thus 
all the triangular pyramids will be a third of all the triangular prisms, i.e. the whole 
pyramid on ABCDE is one third of the whole prism on that base and under the same 
height. 
 
 
 
3. Since pyramids under the same height, regardless of what kind of bases they stand 
on, are to each other as their bases (Thm.10), and since the prisms standing on their bases 
and under the same heights are as those pyramids (being triples of them), it follows also 
that Prisms standing under the same height are to each other as their bases. 
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THEOREM 12:  Any cone is one third the cylinder sharing its base and height. 
 

Let circle ABCD be the base of a cone, and also of 
a cylinder having the same height (we are talking, 
recall, about right cylinders and cones).  I say that 
the cone is exactly one third the volume of the 
cylinder. 
 
[1] Inscribe a square ABCD in the base circle, 
and by bisecting the arcs inscribe a regular octagon 
AGBKCLDE. 
 
 

[2] As we saw in Theorem 5, each successive polygon (made by bisecting more arcs) 
takes up more than half of what remained of the circle from the previous polygon, since, 
for example, rADE is more than half of the segment of the circle contained by AD and 
arc DEA. 
 
[3] But since prisms under the same height are as their bases, therefore the right 
prism on rADE is half the right prism on rectangle DMPA, each one having the height 
of the cylinder.  And since the portion of the cylinder standing on the segment contained 
by AD and arc DEA is inside the right prism standing on rectangle DMPA, therefore it is 
less than that prism.  Therefore the prism on rADE is more than half that portion of the 
cylinder.  Thus the prisms standing on ABCD, AGBKCLDE, etc., constitute a series of 
prisms each taking more than half of what was leftover of the cylinder by the previous 
prism, and so this series of prisms approaches the volume of the cylinder (Thm.1 
Remarks). 
 
[4] Again, since pyramids under the same height are as their bases, therefore the 
pyramid on rADE is half the pyramid on rectangle DMPA with that same vertex.  And 
since the portion of the cone standing on the segment in AD and arc DEA is inside the 
pyramid on rectangle DMPA, therefore it is less than that pyramid.  Therefore the 
pyramid on rADE is more than half that portion of the cone.  Thus the pyramids 
standing on ABCD, AGBKCLDE, etc., constitute a series of pyramids approaching the 
volume of the cone. 
 
[5]  But the pyramids on those polygon bases always have to the prisms on the same 
bases the ratio of 1 to 3 (since any pyramid is one third of the prism sharing its base and 
height).  Therefore also the magnitude approached by the pyramids has to the magnitude 
approached by the prisms the ratio of 1 to 3 (Thm.3).  That is,  the cone is one third of the 
cylinder. 
 
Q.E.D. 
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THEOREM 12 Remarks: 
 
 
If we take a cross-section of the cone and cylinder through their axis, 
we see that the cross-section of the cone is triangle AVC, and that of 
the cylinder is rectangle ARTC.  The cross-section of the cone is half 
that of the cylinder.  So 
 Base of Cone : Base of Cylinder  =  1 : 1 
 Cross-Section of Cone : Cross-Section of Cylinder  =  1 : 2 
 Volume of Cone : Volume of Cylinder  =  1 : 3 
 
 
 
 
THEOREM 13:  Cones of the same height are to each other as their bases. 
 

 
Consider two cones of the same height, one on 
base A, the other on base B. 
 
[1] Inscribe successive polygons in each as 
before, beginning with a square, then doubling 
the number of sides each time by bisecting the 
arcs of the circles. 

 
[2] Since the corresponding polygons in the two circles are always similar, therefore 
they always have the ratio of the squares on the diameters (Thm.4). 
 
[3] And since the pyramids on these similar polygons as bases, having the same 
height, are to each other as their similar bases (Thm.10), therefore they are also always in 
the ratio of the squares on the diameters (by Step 2). 
 
[4] Now we saw in Theorem 12 that the series of pyramids in each cone approaches 
the volume of the cone, and therefore the cones also have the ratio of the squares on the 
diameters (Thm.3). 
 
[5] But the squares on the diameters of the circles are in the same ratio as the circular 
bases themselves (Thm.5).  Therefore the cones are in the same ratio as their bases. 
 
Q.E.D. 
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THEOREM 12 Remarks: 
 
 
Since each cone is a third of the cylinder standing on its base and under the same height, 
it likewise follows that Cones of the same height are to each other as their bases. 
 
 
 
 
 
THEOREM 14:  If a cylinder is cut by a plane parallel to its bases, then the two 
resulting cylinders are to each other as their axes. 
 
 
 
 
 
 
 
Imagine a cylinder with axis AX, and suppose it is cut by a plane parallel to its bases, 
resulting in two cylinders, one with axis AO, another with axis OX.  I say that 
 cylinder AO : cylinder OX  =  AO : OX. 
 
 
[1] Take any multiple of cylinder AO (and thus of its axis), say double it, 

as cylinder BO. 
Take any multiple of cylinder OX (and thus of its axis), say triple it, 
as cylinder OZ. 

 
[2] Clearly, if cylinder BO = cylinder OZ 
 then  axis BO = axis OZ 
 
 and if  cylinder BO > cylinder OZ 
 then  axis BO > axis OZ 
 
 and if  cylinder BO < cylinder OZ 
 then  axis BO < axis OZ 
 
[3] Therefore, taking any multiples of cylinders AO and OX, they will always 
compare the same way as the corresponding multiples of their axes. 
 Therefore 
 
 cylinder AO : cylinder OX  =  AO : OX 
 
Q.E.D. 
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THEOREM 15:  Cylinders on equal bases are to one another as their heights. 
    Likewise for cones. 
 
 
 
 
 
 
 
 
 
 
 
 
Take any two cylinders on equal bases, one with axis (and thus height) AX, another with 
a greater axis, BZ.  I say that 
 
  cylinder AX : cylinder BZ  =  AX : BZ. 
 
 
[1] Cut off ZQ  =  AX. 
 Pass a plane through Q parallel to the bases of cylinder BZ, thus completing 
cylinder QZ. 
 
[2] Since cylinder QZ has the same height as cylinder AX, and their bases are equal 
circles, therefore cylinder QZ is congruent to cylinder AX. 
 
[3]  Cylinder QZ : Cylinder BZ  =  QZ : BZ  (Thm.14) 
 
[4] But Cylinder QZ  =  Cylinder AX    (Step 2) 

and QZ  =  AX      (Step 1) 
So let's substitute these in the last proportion from step 3: 
 
[5]  Cylinder AX : Cylinder BZ  =  AX : BZ 
 
Q.E.D. 
 
[6] As for cones, let AX and BZ be cones.  Then if we complete the cylinders on their 
bases and with heights AX and BZ, 
  Cone AX : Cone BZ  =  Cylinder AX : Cylinder BZ 
since the cones are each a third of the cylinders (Thm.12). 
 But cylinders are to each other as their axes (Step 5 above), and so 
  Cone AX : Cone BZ  =  AX : BZ. 
 
Q.E.D. 
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“HOOK”:  SPHERICAL RINGS. 
 
 
Take any pair of spheres, however unequal in size.  Next inscribe a right cylinder in the 
smaller of the two, as BCDE.  Excluding the “caps” of the sphere, such as BAE, and also 
the cylinder itself, what remains is a sort of ring with a bulging exterior face.  Next, 
inscribe a cylinder in the larger sphere, having the same height as that in the smaller (so 
that GH = BC).  Thus we will have formed a “ring” in the larger sphere, too.  Now the 
fun part:  The volumes of the two “rings” are the same. 
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DEFINITIONS 
 
 
 
 

1.  A PERFECT SOLID is a convex polyhedron whose solid angles are equal and whose 
faces are congruent regular polygons. 
 
 
2.  A TETRAHEDRON is a perfect solid contained by 4 equilateral triangles. 
 
 
3.  A CUBE is a perfect solid contained by 6 squares. 
 
 
4.  An OCTAHEDRON is a perfect solid contained by 8 equilateral triangles. 
 
 
5.  An ICOSAHEDRON is a perfect solid contained by 20 equilateral triangles. 
 
 
6.  A DODECAHEDRON is a perfect solid contained by 12 regular pentagons. 
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THEOREMS 
 
 
In this Chapter we will make the 5 perfect solids, prove that there are only 5 of them, and 
learn some of their relationships and properties.  We must begin with 7 preliminary Theo-
rems of plane geometry, however, which also happen to be of some interest in them-
selves. 
 
 
 
THEOREM 1:  If a line cut in mean and extreme ratio has added to it its greater 
segment, the result is a whole line cut in mean and extreme ratio whose greater segment 
is the original line. 

 
Let AB be a straight line cut in mean 
and extreme ratio at S, and let AS be 
its greater segment.  Extend it to Z so 
that ZA = AS.  I say that ZAB is also 
cut in mean and extreme ratio, and AB 
is its greater segment. 
 

[1] Clearly  £AB  =  AB(AS + BS)  (AS + BS = AB) 
 thus  £AB  =  AB ⋅ AS  +  AB ⋅ BS  (Ch.2, Thm.1) 
 
[2] But  AB : AS  =  AS : BS   (given) 
 so  AB ⋅ BS  =  £AS    
since the square on a mean proportional line equals the rectangle contained by the ex-
tremes  (Ch.6, Thm.12). 
 
[3] Thus  £AB  =  AB⋅AS  +  £AS  (Steps 1 & 2) 
 i.e.  £AB  =  AS(AB + AS)  (Ch.2, Thm.1) 
But since the side of a square is a mean proportional between the sides of any rectangle to 
which it is equal (Ch.6, Thm.12), thus 
 
   (AB + AS) : AB  =  AB : AS 
 
[4] But  AS  =  ZA    (we made it so) 
 thus  AB  +  ZA : AB  =  AB : ZA 
 i.e.  BZ : AB  =  AB : ZA 
 
That is, ZAB is cut in mean and extreme ratio at A, and AB is the greater segment. 
 
Q.E.D. 

Z A S B
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Remarks 
 
Conversely, if QRT is cut in 
mean and extreme ratio at R, and 
RT is the greater segment, and if 
we subtract the lesser segment 
QR from the greater RT, cutting 
it at S, then RST will also be cut 
in mean and extreme ratio.  That 
is, the original greater segment 
RT is now cut in the golden ratio at S, and RS, which was the original lesser segment, is 
the new greater segment.  To see it, we can just use the Theorem above.  Cut RT in the 
golden ratio at X so that RX is the greater segment of RT.  Then if we add RX to RT, RT 
will be the greater segment, and RX the lesser, by the above Theorem.  But RT is the 
greater segment and RQ is the lesser, since that is how the line is given.  Therefore RX = 
RQ.  And we cut off RS equal to RQ, so that RS = RX also.  Thus RS does in fact cut RT 
in the golden ratio, and it is the greater segment of RT, just as RX was. 
 
 
 
 
 
THEOREM 2:  In a regular pentagon, any diagonal is parallel to the opposite 
side, and the angle of the pentagon is one and one fifth of a right angle (or 108°). 

 
 
 
Given:  ABCDE is a regular pentagon. 
Prove:  BE is parallel to CD, and ∠ABC = 108°. 
 
 
 
 

 
[1] Because of the regularity of the figure, it is clear by Side-Angle-Side that 
  ΔBCD ≅ ΔEDC   (BD & CE are not drawn) 
 
[2] Thus these triangles are equal in area. 
 But they stand on the same base. 
 Therefore they are in the same parallels. (Ch.1, Thm.33, Remark 3) 
 Therefore BE is parallel to CD. 
 
[3] Let P be the center of the circumscribed circle.  Thus the 5 triangles such as APB 
are congruent (Side-Side-Side). 
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[4] Now the total angle-sum of these triangles is 10 right angles (i.e. 2 rights for each 
triangle times 5, the number of triangles).  If we subtract the angles around P, i.e. 4 right 
angles, the remainder is the sum of the pentagon's angles, namely 6 right angles. 
 Since the 5 angles of the pentagon are all equal, each one is a fifth of 6 right an-
gles, or one and one fifth of a right angle. 
 
[5] Since a right angle is 90°, therefore a fifth of a right angle is 18°, and so one right 
angle and a fifth is 108°. 
 Thus the angle of a regular pentagon is 108°. 
 
Q.E.D. 
 
 
 
 
 
 
 
THEOREM 3:  In a regular pentagon, if two diagonals cut each other, they cut 
each other in mean and extreme ratio, and their greater segments equal the side of the 
pentagon. 

 
 
Given:  Regular pentagon  ABCDE.  Diagonals AC 
and EB cut each other at S. 
 
Prove:  AC and EB are cut in the golden ratio at S, 
and    ES = EA. 
 
First, circumscribe a circle about ABCDE (Ch.4, 
Thm.7 Remarks). 
 
 

[1] Now, by the previous Theorem, EB║DC and AC║ED, so that DESC is a paral-
lelogram.  Thus 
  ∠5 = ∠4  (opp. angles in a parallelogram) 
 but ∠3 = ∠4  (vertical angles) 
 so ∠5 = ∠3 
 or ∠EAB = ∠3  (∠5 = ∠EAB since the pentagon is regular) 
 
[2] Notice ∠ABS is common to rEAB and rABS.  Also, ∠EAB = ∠3. 
 So two angles in rEAB are equal to two angles in rABS. 
 Therefore rEAB is similar to rABS  (Ch.6 Thm.4), 
 i.e. EB : BA = BA : BS 
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[3] Now since ∠1 and ∠6 are each at the circumference, standing on two of the 5 
equal arcs, therefore 
  ∠1 = ∠6  (Ch.3, Thm.21) 
 but ∠2 = ∠6  (since ES║DC) 
 so ∠1 = ∠2  (making rAES isosceles) 
 thus AE = ES 
 
[4] So AE = ES  (Step 3) 
 but AE = BA  (being sides of the regular pentagon) 
 so BA = ES 
Therefore, substituting ES for BA in our proportion from Step 2, we have 
 
 EB : ES = ES : BS 
 
That is, ESB is cut in mean and extreme ratio at S (Ch.6 Def.9), and ES is the greater 
segment.  And we saw in Step 3 that ES is equal to EA, the side of the pentagon.  Thus it 
is clear that in a regular pentagon, the side has to the diagonal the golden ratio. 
 
 
Q.E.D. 
 
 
 
 
 
 
THEOREM 4:  The sides of the hexagon and decagon inscribed in the same cir-
cle, when added together, make a whole straight line cut in mean and extreme ratio. 

 
 
 
Given:  Straight line BCD, with BC being a side 
of the regular decagon in circle ABC, CD being 
equal to the side of the regular hexagon in circle 
ABC (and thus it is equal to the radius, so that 
EC = CD, Ch.4 Thm.8). 
 
Prove:  BCD is cut in mean and extreme ratio at 
C. 
 
Take the center of the circle, E (Ch.3, Thm.1).  
Join EC, join EFD. 
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[1] Since ∠BEC is one central angle of the regular decagon, of which there are 10 in 
the whole decagon, and 5 in each semicircle, therefore ∠CEA contains 4 such angles. 
 Thus 4∠BEC = ∠CEA 
 but 2∠ECB = ∠CEA (∠CEA is exterior to isosceles triangle ECB) 
 so 2∠ECB = 4∠BEC 
 
[2] Thus ∠ECB = 2∠BEC (the halves of equals are equal) 
 but ∠ECB = 2∠CDE (∠ECB is exterior to isosceles triangle ECD) 
 thus 2∠BEC = 2∠CDE 
 
[3] So ∠BEC = ∠CDE (the halves of equals are equal) 
 i.e. ∠1 = ∠2 
 but ∠3 is common to ΔBEC and ΔEDB 
 thus ΔBEC is similar to ΔEDB (Ch.6, Thm.4) 
 
[4] So DB : BE  =  BE : BC  (ΔBEC is similar to ΔEDB) 
 i.e. DB : CD  =  CD : BC  (CD is equal to the radius BE) 
 i.e. BCD is cut in mean and extreme ratio at C, and CD, the side of the hexa-
gon, is the greater segment. 
 
Q.E.D. 
 
 
Remarks 
 
 
1.  Since  BC and CD are related as lesser and greater segments 
of a line cut in mean and extreme ratio, so too are BC and BE 
(since BE = CD).  Therefore if we subtract from the greater 
segment BE a part equal to the lesser segment BC (say BK), 
then BKE will also be cut in the golden ratio (by the Remark 
after the first Theorem of this Chapter), and BK, equal to BC (the side of the decagon), 
will be the greater segment.  Thus in any circle, the greater segment of the radius, when it 
is cut in mean and extreme ratio, is equal to the side of the inscribed regular decagon. 
 
2. Looking back at the diagram for the Theorem, one can see that CE bisects angle 
BED as follows. 
  CD = CE   (given) 
 so ∠CED = ∠2   (since rDCE is isosceles) 
 but ∠1 = ∠2   (Step 3 in the proof of the Theorem) 
 thus ∠CED = ∠1 
 i.e. CE bisects ∠BED, and thus CF is also an arc cut off by a side of the deca-
gon, and BC = CF. 
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THEOREM 5:  In one circle, the square on the side of the regular hexagon plus 
that on the side of the decagon equals the square on the side of the pentagon. 
 

 
Let ABCDE be a regular pentagon in a circle with 
center M.  Bisect arcs AB, CD at G, T.  Thus we 
get arcs of the decagon, and AG is a side of the 
decagon.  Bisect arc AG at L, join ML, cutting 
AB at F.  Join GB.  Now I say that the square on 
the side of pentagon ABCDE is equal to the 
square on the regular hexagon in circle M, plus 
the square on the side of the regular decagon, that 
is 
 
 £AB  =  £BM  +  £AG 
 

[1] ∠BMF (or ∠BML) is at the center and stands on  1 ½  decagon arcs.  Thus it is 
double an angle at the circumference standing on that same arc (Ch.3, Thm.20), and equal 
to an angle at the circumference standing on double that arc, i.e. standing on  1 ½  penta-
gon arcs.  But ∠BAM (or ∠BAT) stands on  1 ½  pentagon arcs, and thus 
  ∠BMF = ∠BAM. 
 
[2] But ∠ABM = ∠BAM   (since BM = MA) 
 thus rABM is similar to rBMF 
 so that AB : BM  =  BM : BF   (Ch.6, Thm.4) 
And since the square on a mean proportional line is equal to the rectangle contained by 
the extremes (Ch.6, Thm.12), therefore 
  AB · BF  =  £BM 
 
[3] Now rGMF ≅ rAMF   (Side-Angle-Side) 
 so GF = AF 
 thus ∠AGF = ∠GAF 
 but ∠GAF = ∠GBA   (since AG = GB in rAGB) 
 so rAGF is similar to rAGB  (Ch.6, Thm.4) 
 thus AB : AG  =  AG : AF 
 thus AB · AF  =  £AG   (Ch.6, Thm.12) 
 
[4] Now £AB  =  AB · BF + AB · AF  (Ch.2, Thm.1) 
So, replacing these rectangles with the squares shown equal to them in Steps 2 and 3, 
  £AB  =  £BM  +  £AG 
 
Q.E.D. 
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Remarks 
 
1.  From this fact, by the converse of the Pythagorean Theorem, it follows that BM and 
AG, if placed at a right angle to each other, will form a right triangle whose hypotenuse is 
equal to AB. 

 
2.  So if we cut the radius MC of a circle in mean and ex-
treme ratio at K, MK being the greater segment, and if 
ABCDE is a regular pentagon inscribed in the circle, then 
 MK = the side of the regular decagon in the circle  
(Thm.4, Remarks) 
 MC = the side of the regular hexagon 
and £MK + £MC = £AB  (by the present Theorem). 
 

3.  Also, since in one circle the side of the decagon is to the side of the hexagon in mean 
and extreme ratio, i.e. as the greater segment is to the whole (Thm.4, Remarks), and since 
the side of a regular pentagon is to its diagonal in mean and extreme ratio, i.e. as the 
greater segment is to the whole (Thm.3), therefore, in a single circle, 
 
 Side of decagon : Side of Hexagon  =  Side of Pentagon : Diagonal of Pentagon. 
 
 
THEOREM 6:  If an equilateral triangle is inscribed in a circle, the square on its 
side is three times the square on the radius. 

 
Imagine an equilateral triangle ABC in a circle with 
center D and radius DA. 
I say that  £AB  =  3 £DA. 
 
Extend AD to E.  Join BE. 
 
[1] Since arc BEC is one third of the circum-
ference, thus arc BE is one sixth of the circumfer-
ence, so BE is the side of the hexagon, and BE = 
DA. 

 
[2] Since AE is a diameter, thus ∠ABE is right (Ch.3, Thm.25), and so 
  £AB = £AE – £BE  (Pythagorean Theorem) 
 thus £AB = 4£DA – £BE (AE is bisected at D, so £AE = 4£DA) 
 thus £AB = 4£DA – £DA (BE = DA, Step 1) 
 
[3] i.e. £AB  =  3 £DA. 
 
 
Q.E.D. 
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Remarks 
 
 
1. Notice that DE is bisected at K.  Why? 
 Because BE = the radius of the circle (Step 1 in the proof above). 
 Thus  BE = BD = DE. 
 Thus  ΔBDE is an equilateral triangle. 
 Likewise ΔCDE is an equilateral triangle. 
 Thus  ΔBDC ≅ ΔBEC by Side-Side-Side. 
 Thus  ∠DBC = ∠EBC. 
 Thus  ΔDBK ≅ ΔEBK by Side-Angle-Side. 
 Thus  DK = KE. 
 
 

2.  It is impossible to make a 1-2-3 triangle in terms of the 
lengths of the sides, since the sides of lengths 1 and 2 would 
not, added together, be greater than the side of length 3 (see 
Ch.1 Thm.17).  But it is possible to make a triangle the 
squares on whose sides have the ratios of 1, 2, 3.  How?  Let 
equilateral ΔABC be inscribed in a circle with radius BD.  
On AB as diameter, describe a semicircle, and place BG in it 
equal to BD.  Join AG.  Thus ∠AGB is a right angle. 
 

 So  £BG + £AG = £AB 
 But  £AB = 3 £BD  (by the present Theorem) 
 So  £BG + £AG = 3 £BD 
 Thus  £AG = 3 £BD – £BG 
 i.e.  £AG = 2 £BG  (since £BD = £BG) 
 but  £AB = 3 £BG  (since BG = radius BD). 
So if we call £BG "1" square unit of area, then we must call £AG "2," and we must call 
£AB "3." 
 Notice, also, that since £AG = 2 £BG, it follows that AG is equal to the diago-
nal of the square on BG.  So we could have made ΔAGB that way, namely by placing the 
side and diagonal of a square at right angles to each other, and joining the hypotenuse.  
But now we know something else about this 1-2-3 triangle, namely that if its hypotenuse 
is equal to the side of an equilateral triangle inscribed in a circle, then its shorter leg is 
equal to the radius of that circle. 
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THEOREM 7:  The square on the diagonal of a regular pentagon, plus the 
square on its side, equals five times the square on the radius of the circumscribing circle. 

 
 
 
 
Take a regular pentagon AGBKC, with AB 
one of its diagonals, and let D be the center of 
the circumscribing circle.  I say that  £BA + 
£AC  =  5£BD. 
 
 
 
 
 

[1] Join BD, extend it to E.  Since AGBKC is a regular pentagon, thus diameter BDE 
bisects AC at F, and so DF is perpendicular to AC (Ch.3, Thm.3). 
 Join EA.  Thus EA is the side of the decagon. 
 
[2] Now BE = 2DE 
 so £BE = 4£DE 
 
[3] But £BE = £BA + £AE    (∠BAE is right) 
 so £BE + £DE  =  £BA + £AE + £DE (+ £DE on both sides) 
 
[4] But £BE = 4£DE     (Step 2) 
 so 4£DE + £DE  =  £BA + £AE + £DE 
 i.e. 5£DE = £BA + £AE + £DE 
 
[5] But the square on the side of the decagon plus that on the side of the hexagon 
equals the square on the side of the pentagon, 
 i.e. £AE + £DE = £AC    (Thm.5) 
 
[6] So 5£DE = £BA + £AC   (Steps 4 & 5) 
 
 or £BA + £AC = 5£BD   (DE = BD) 
 
 
 
Q.E.D. 
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Remarks 
 
 
For the sake of brevity, let's use some shorthand in this remark: 
 
 R  =  the radius of a circumscribing circle. 
 E  =  the side of the equilateral triangle inscribed in it 
 P  =  the side of the regular pentagon inscribed in it 
 D  =  the diagonal of the regular pentagon inscribed in it 
 
(a) Now £E  =  3 £R   (Thm.6) 

so 5 £E  = 15 £R  (multiplying both sides by 5) 
 
(b) But £P + £D  =  5 £R  (the present Theorem) 

so 3 £P + 3 £D  =  15 £R (multiplying both sides by 3) 
 
(c) Thus 3 £P + 3 £D  =  5 £E (Steps a & b) 
 
Or, spelled out in words, Three times the square on the side of the regular pentagon plus 
three times the square on its diagonal is equal to 5 times the square on the side of the 
equilateral triangle inscribed in the same circle. 
 
 
 
 
 
THEOREM 8:  How to construct a tetrahedron, and contain it in a sphere. 
 

 
 
 
[1] Draw an equilateral triangle ABC 
in the base plane.  Circumscribe a circle 
around it (Ch.4, Thm.4).  Take its center 
M.  Join MA, MB, MC. 
 
 
[2] Set up MP perpendicular to the 
base plane. 
 Thus angles PMA, PMB, PMC 
are all right angles. 
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[3] In the plane PMA, using A as your center and AB as your radius, draw a circle, 
cutting MP at V.  (Since AB is greater than AM, your radius will hit MP at some point V 
above M). 
 So VA = AB. 
 
 
[4] Join VB, VC. 
 Since ∠VMA = ∠VMB (both are right) 
 and MA = MB  (both are radii of the base circle around ABC) 
 and VM is common 
 thus ΔVMA ≅ ΔVMB (Side Angle Side) 
 so VA = VB 
 
 
[5] Likewise we can show that VA = VC. 
 So VA = AB  (Step 3) 
 and VA = VB = VC (Step 4) 
 so the lines VA, VB, VC, AB, BC, CA are all equal to each other. 
So the 4 triangular faces of the pyramid are actually 4 congruent equilateral triangles, and 
therefore we have made a tetrahedron.  Now to contain it in a sphere ... 
 
 
[6] Bisect AV at K. 
 In plane AVM, draw KL perpendicular to AV, hitting VM at L. 
 Thus ΔLVK ≅ ΔLAK (Side Angle Side) 
 so LV = LA. 
 
 
[7] But ∠LMA = ∠LMC (both are right) 
 and MA = MC  (both are radii of the base circle around ABC) 
 and LM is common 
 thus ΔLAM ≅ ΔLCM (Side Angle Side) 
 so LA = LC 
 and LC = LB likewise. 
 
 
[8] Therefore  LV = LA = LB = LC (Steps 6 – 7).  So L is the center of the sphere 
containing the tetrahedron, and VL is the radius of it. 
 
 
Q.E.F. 
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Remarks 
 
1.  If it wasn't clear by itself, what I mean by “the sphere containing the tetrahedron” is 
the sphere whose surface passes through the 4 corners of the tetrahedron. 
 

2. To get a good look at this thing, it's an excellent 
idea to make it in three dimensions.  A good material 
for three dimensional models is the manila that file-
folders are made out of.  Reproduce the accompanying 
diagram of an equilateral triangle divided into four 
equilateral triangles onto a piece of manila.  Make your 
version bigger than the little diagram.  Cut it out, and 
then fold along the three sides of the middle equilateral 
triangle.  Raise up the three outer equilateral triangles 
all to one point, tape the edges together and … you 
have a tetrahedron. 

 
 
 
 
THEOREM 9:  If a tetrahedron is contained in a sphere, the square on the diam-
eter is one and a half times the square on the tetrahedron’s side. 
 
 
Begin with the same construction as before, in 
Theorem 8. 
 
 
[1] Now since both are right, 
 ∠VKL = ∠VMA  
and ∠AVM is common 
 so rVKL is similar to rVMA 
 so VL : VK  =  VA : VM 
 thus £VL : £VK  =  £VA : £VM 
 
[2] But VA is the side of an equilateral triangle, and the radius of the circle around it 
is equal to MA.  Therefore 

 £VA = 3£MA  (Thm.6) 
 
[3] Now £VA – £MA = £VM (Pythagorean Theorem) 
 so 3£MA – £MA = £VM (£VA = 3£MA, Step 2) 
 or 2£MA = £VM 
 
[4] Since £VA = 3£MA  (Step 2) 
 and £VM = 2£MA  (Step 3) 
 thus £VA : £VM  =  3 : 2 

V

P

K

B

C

A

L

M



 344 

 
[5] Thus £VL : £VK  =  3 : 2  (Steps 1 & 4) 
 so 4£VL : 4£VK  =  3 : 2 
i.e. the square on 2VL (the diameter of the containing sphere) is to the square on 2VK 
(the side of the tetrahedron) as 3 to 2. 
 
Therefore the square on the diameter of the containing sphere is one and a half times the 
square on the side of the tetrahedron. 
 
Q.E.D. 
 
 
 
 
Remarks 
 
In Step 1 we assumed that if four straight lines are proportional, then the squares on them 
are also proportional.  Let's prove that.  Suppose A, B, C, D are four straight lines, and 
   A : B  =  C : D 
Then I say that  £A : £B  =  £C : £D. 
 
(a) First, make a 3rd proportional straight line, X, to A & B, so that 

 A : B  =  B : X. (Ch.6, Thm.9) 
Thus A : X is the ratio double of A to B, and therefore 
 £A : £B  =  A : X (Ch.6, Thm.15). 
Again, make a 3rd proportional straight line, Z, to C & D, so that 
 C : D  =  D : Z  (Ch.6, Thm.9) 
Thus £C : £D  =  C : Z (Ch.6, Thm.15). 

 
(b) Now A : B  =  C : D  (given) 
 but A : B  =  B : X  (Step a) 
 so C : D  =  B : X 
 
(c) Now C : D  =  B : X  (Step b) 
 but C : D  =  D : Z  (Step a) 
 so B : X  =  D : Z 
 
(d) Now B : X  =  D : Z  (Step c) 
 but B : A  =  D : C  (inverse ratios of given proportion) 
 so A : X  =  C : Z  (Ch.5, Thm.16) 
 thus £A : £B  =  £C : £D, 
 since these squares are as  A : X  and as  C : Z  by Step (a). 
 
 Q.E.D. 
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THEOREM 10:  How to construct an octahedron, and prove the square on the 
diameter of the containing sphere is two times the square on the side of the octahedron. 
 

 
 
 
 
[1] Make a square ABCD. 
 Join AC and BD, making X the 
center of the circle circumscribing the 
square. 
 
 
[2] Set up XV perpendicular to the 
plane of ABCD, cutting off XV = XA. 
 
 
 

[3] So ∠VXA = ∠AXB (both are right) 
 and VX = XA  (we made it so in Step 2) 
 and XA = XB  (Step 1) 
 so ΔVXA ≅ ΔAXB (SAS) 
 so VA = AB 
 
 
[4] Likewise VB, VC, VD are all equal to AB. 
 Therefore the four faces of the pyramid are equal equilateral triangles. 
So, if we make another pyramid R just like pyramid V on the other side of base ABCD, 
we will have a solid VR contained by 8 equal equilateral triangles, having 6 solid angles 
each made of 4 plane angles of 60°.  Thus we have our octahedron. 
 
 
[5] And since  VX = XA = XR,  therefore X is the center of the sphere containing it, 
and AC is the diameter. 
 
 
[6] And since AC is the diagonal of square ABCD, therefore 
  £AC = 2£AB 
and so the square on the diameter of the containing sphere is two times the square on the 
side of the octahedron. 
 
 
Q.E.D. 
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Remarks 
 
 
1.  You can make this solid figure out of manila using the accom-
panying pattern. 
 
 
 
 
 
 
2.  Notice that the octahedron is just two identical pyramids joined at their common 
square base. 
 

3.   If we put two tetrahedrons together, would we 
get a new perfect solid?  It would be a solid con-
tained by 6 equal equilateral triangles, as in figure 
ABCDE, but not all 5 of its solid angles would be 
identical.  Compare the solid angle at B to the one at 
A, for example.  The solid angle at B is made of 3 
faces (∠ABD, ∠DBC, ∠CBA), and the one at A is 
made of 4 faces (∠EAC, ∠CAB, ∠BAD, ∠DAE).  
Not only that, but the angle at A is “squished,” since 
∠BAE is much greater than ∠CAD, making solid 
angle A narrower in one direction and wider in an-
other.  Thus it would not be possible for a solid, 

made with angle A, to be of uniform convexity.  Thus solid A is different from the angle 
of the octahedron, because each angle of the octahedron stands on a square, and (in the 
figure for Thm.10) ∠DVB = ∠AVC, since both are right angles (which is easily seen 
since all triangles such as AXV are right isosceles).  Hence the solid angle of the octahe-
dron is uniform. 
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THEOREM 11:  How to construct a cube, and prove the square on the contain-
ing sphere's diameter is three times the square face of the cube. 
 

 
[1] Make a square ABCD in the base 
plane. 
 
[2] Set up BF perpendicular to the plane 
ABCD (Ch.9, Thm.7). 
 Complete the squares ABFE and 
BCGF (Ch.1, Thm.35). 
 Drawing parallels, complete the paral-
lelepiped contained by these 3 squares, and 
you have a cube. 

 
[3] Join EC, CA. 
 
[4] Now EC = AG (being the diagonals of rectangle EACG) 
 and AG = BH (being the diagonals of rectangle ABGH) 
 and BH = DF (being the diagonals of rectangle BDHF) 
 Thus all four diagonals of the cube are equal to each other, namely 
  EC = AG = BH = DF. 

 
[5] Now bisect EF & AB, HG & DC, and 
pass a plane through these midpoints. 
 Bisect EH & FG, AD & BC, and pass 
a plane through these midpoints. 
 Call the intersection of these 2 planes 
ML.  Each of the 4 diagonals of the cube is 
bisected by K, the midpoint of ML (Ch.9, 
Thm.27).  Therefore the 4 diagonals of the 
cube all pass through K, and K is equidistant 
from the 8 corners of the cube. 
 

Therefore K is the center of the containing sphere, and EC is its diameter. 
 
[6] In right triangle EAC, 
  £EC = £EA + £AC  (Pythagorean Theorem) 
 but £AC = 2£AB  (since AC is the diagonal of £AB) 
 i.e. £AC = 2£EA  (since AB = EA) 
 thus £EC = £EA + 2£EA 
 i.e. £EC = 3£EA 
 
[7] So the square on the sphere's diameter is three times the square on the side of the 
cube, which is one face of the cube.  Q.E.D. 
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Remarks 
 
 
To make a model of a cube is easy enough.  As with the tetra-
hedron, copy the accompanying pattern of squares, cut it out, 
and fold up along the dotted lines, joining edges with tape.  
Now you have a cube. 
 
 
 
 
 
THEOREM 12:  How to make an icosahedron. 
 
 
The icosahedron is a bit more complicated, so we are going to build it in separate stages. 
 STAGE ONE:  we will build the top and bottom "caps" of the icosahedron, each 
being a pyramid built on a regular pentagon as base with 5 equilateral triangles as walls. 
 STAGE TWO:  we will build the midsection or “drum” of the icosahedron, con-
tained by two pentagons and 10 equilateral triangles. 
 STAGE THREE:  we will put these 3 parts together, assembling our icosahedron. 
 
 

STAGE ONE:  The "caps" of the icosahedron 
 
 

[1] Draw a circle with center M, inscribe 
regular pentagon ABCDE (Ch.4, Thm.7). 
 Draw MV perpendicular to the plane of 
the pentagon. 
 Cut off MV equal to the side of the dec-
agon (Ch.4, Thm.9) inscribed in the circle cir-
cumscribing pentagon ABCDE.  Of course, we 
already know that MA, being the radius of that 
circle, is equal to the side of the hexagon in-
scribed in it. 

 
[2] Since MA is the side of the hexagon, and VM is the side of the decagon, and since 
MA and VM are drawn at right angles to each other, it follows that their hypotenuse, VA, 
is equal to the side of the pentagon in the circle, namely AB  (this Chapter, Thm.5). 
 So VA = AB. 
 
[3] But MB, MC, MD, ME are also sides of the hexagon (i.e. radii of the same circle), 
and therefore the hypotenuses VB, VC, VD, VE are also all equal to AB, the side of the 
pentagon. 
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[4] Therefore ABV, BCV, CDV, DEV, EAV are all equal equilateral triangles (SSS). 
And that is one of the "caps" to the icosahedron.  We will need one for the top, and one 
for the bottom. 
 
 

STAGE TWO:  The "drum" of the icosahedron. 
 

 
[5] Using the circle circumscribing 
ABCDE, and using the radius of that cir-
cle (MA) as a height, complete a cylin-
der with circle ABCDE as the top of it. 
 
[6] In the base circle of this cylinder, 
first draw a pentagon WXYUI identical 
to ABCDE and with each of its sides 
parallel to each of the sides of ABCDE.  
Thus ABXW is a rectangle, and AW and 
BX lie on the cylinder's surface, parallel 

and equal to its axis, and perpendicular to the circles of the cylinder. 
 
[7] Bisect arc WX at G. 
 Thus GX = side of the decagon in the base circle. 
 But BX = height of the cylinder = radius of the base circle (Step 5) 
 i.e. BX = side of the hexagon in the base circle. 
But BX is perpendicular to GX, since BX is perpendicular to the whole base plane (Step 
6; see Ch.9, Thm.3).  And therefore BXG is a right triangle, whose legs BX and GX are 
equal, respectively, to the side of the hexagon in the base circle, and the side of the deca-
gon in the base circle.  Therefore the hypotenuse BG is equal to the side of the pentagon 
in the base circle (this Chapter, Thm.5). 
 i.e. BG = AB. 
Likewise AG = AB.  Thus ABG is an equilateral triangle. 

 
[8] Now, bisect arc XY at H, arc YU at K, arc UI at 
L, arc IW at N.  Obviously GHKLN is another regular 
pentagon, with its sides equal to WX or AB.  It will also 
follow, just as in Step 7, that  
 ΔBGH, ΔBHC, ΔCHK, ΔCKD, ΔDKL, ΔDLE, 
ΔELN, ΔENA, ΔANG  are all equilateral triangles, each 
having sides equal to AB. 
 
[9] Thus we have a solid contained by two identical 

regular pentagons, namely ABCDE and GHKLN, and by 10 equilateral triangles.  The 
pentagons are in parallel planes, but the sides of the bottom pentagon are not parallel to 
those of the top one (but rather to its diagonals). 
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STAGE THREE:  Assembly of the icosahedron. 

 
 
 

[10] We have made a "cap" in Stage One, 
and added beneath it a "drum" in Stage Two.  
Now just add another "cap" identical to the 
one made in Stage One underneath the 
drum, with vertex Q. 
 Thus we have a complete solid con-
tained by 20 equal and equilateral triangles, 
all having a side equal to AB, the side of the 
pentagon with which we began.  And every 
solid angle on it is formed by 5 plane angles, 
each of 60° (the angle of the equilateral tri-
angle).  Thus the icosahedron is made. 
 
 

Q.E.F. 
 
 
 

 
 
 
 
 
Remarks 
 
The accompanying pattern can be used to make an icosahe-
dron.  Draw your own larger version of it.  Then cut it out, 
and fold along the lines.  Tip:  triangles 1 through 5 will 
make one "cap," just as triangles 16 through 20 will make 
the other "cap."  Triangles 6 through 15 will make the 
"drum." 
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THEOREM 13:  How to contain an icosahedron in a sphere. 
 
 
 
Now let’s see how to wrap a sphere around our icosa-
hedron.  First “imagine away” all the edges of it, re-
taining just the 12 vertices ABCDE and GHKLN and 
V and Q.  That simplifies things! 
 
[1] Now, join VQ and bisect it at S. 
 I say that point S is the same distance from 
every vertex of the icosahedron. 
 Choose any vertex, C.   I say SC = SV. 
 
[2] Clearly, if M is the center of circle ABCDE, 
and J is the center of circle GHKLN, then MJ is the 
axis of the cylinder, and VQ lies in line with it.  And 
because our “caps” are of identical heights, 
 thus VJ = MQ. 
 
[3] Also, VQ, being in line with the axis of the 
cylinder, is perpendicular to the planes of the circles, 
and therefore to every line in them that it cuts.  Thus 
VQ is at right angles to MC. 
 
 

 
[4] Since VM = side of decagon in circle ABCDE  (made thus in Step 1 of Thm.12) 
 and MJ = side of hexagon in circle ABCDE  (made thus in Step 5 of Thm.12) 
 thus VMJ is cut in mean and extreme ratio at M  (Thm.4 of this Chapter) 
 i.e. VJ : JM  =  JM : MV 
 
[5] i.e. MQ : JM  =  JM : MV  (VJ = MQ, Step 2) 
 but JM  =  MC   (height of cylinder = radius) 
 so MQ : MC  =  MC : MV 
 
[6] So  MC  is a mean proportional between  MQ and MV. 
 But MC is also at right angles to VQ  (Step 3). 
Therefore V, C, Q all lie on the circle having diameter VQ and thus center S (by Chapter 
6 Thm.10).  Therefore 
  SC = SV 
Similarly we can prove that SB, SH, SL etc. are all equal to SV. 
 Therefore S is equidistant from every vertex of the icosahedron, and therefore it is 
the center of the sphere containing the icosahedron. 
 
Q.E.F. 
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Remarks 
 

1.  Containing the icosahedron in a sphere helps us to 
see its uniform convexity.  It is also helpful, in under-
standing the figure’s radial symmetry, to notice that 
every vertex in it can be regarded as the top of a “cap” 
with a regular pentagon as base.  e.g. H can be seen as 
the top of a “cap,” QGBCK being a regular pentagon.  
Let’s prove this quickly.  Since S is the center of the 
sphere, SB = SG, and since they are sides of the ico-
sahedron, BH = GH, and SH is common.  Thus 
rSBH ≅ rSGH.  So if we drop a perpendicular to 
SH from B, and another from G, it is clear they will 
hit SH at the same point, call it F.  Likewise the per-

pendiculars to SH drawn from C, K, and Q will all land on F.  But all the perpendiculars 
to SH through F lie in one plane (Ch.9, Thm.3 Remarks).  Therefore Q, G, B, C, K all lie 
in one plane together, and thus define a pentagon.  That it is equilateral is already clear, 
since QG etc. are all edges of the icosahedron.  And since a plane through a sphere cuts 
out a circle, therefore the plane common to Q, G, B, C, K cuts out a circle on the surface 
of the sphere containing the icosahedron, and therefore these 5 points all lie on one circle.  
Now the equal sides of pentagon QGBCK each cut off equal arcs of this circle (Ch.3, 
Thm.23), making it clear that QGBCK is also equiangular. 
 
 
2.  Notice that the diameter of the containing sphere is VQ, 
 and VQ = VM + JQ + MJ 
 or VQ = 2VM + MJ  (VM = JQ) 
i.e. the diameter of the containing sphere is equal to twice the side of the decagon in pen-
tagon ABCDE plus the side of the hexagon. 
 
 

 
 
3.  Let's compare the radius of the circle around the icosahedron's 
pentagon (MC) to the diameter of the containing sphere (VQ).  
Recall, first, that we made the height of the icosahedron's midsec-
tion equal to the radius of the circle around the pentagon, i.e. MJ 
= MC.  And since S bisects MJ, it follows that MS is half of MC. 
 
 
 
 
 

 
 
 

C

H

Q

G

B

S F

K

V

C

Q

J

S

M



 353 

 Now £SC = £MS + £MC (Pythagorean Theorem) 
 so £SC = £(½ MC) + £MC (MS is equal to half of MC) 
 so £SC =  ¼ £MC + £MC, 
since the square on half of MC is one quarter of the square on the whole of MC. 

 Thus £SC = 
4
5
£MC  (adding) 

 or 4 £SC = 5 £MC  (multiplying both sides by 4) 
 i.e. 4 £SV = 5 £MC  (SV = SC, being radii of the sphere) 
 or £VQ = 5 £MC  (since VQ = 2SV) 
So the square on the diameter of the containing sphere is equal to five times the square on 
the radius of the circle around the icosahedron's pentagon. 
 
 
 
 
THEOREM 14:  How to make a dodecahedron. 
 
 

 
 
[1] Since the angle of a regular pentagon is 108° (Thm.2), therefore 3 of these is still 
less than 4 right angles (i.e. less than 360°).  So we can make a solid angle out of three of 
them (Ch.9, Thm.20).  Let it be done:  ∠EAB, ∠BAN, ∠NAE are each 108°, the angle of 
a regular pentagon, and they contain a solid angle at A. 
 
[2] Cut the legs off equally, and complete the regular pentagons in each of our 3 an-
gles, namely ABCDE, ABGHN, ANKLE (Ch.4, Thm.7 Remarks) 
 
[3] Now EC is parallel to NG (since each is parallel to AB by Thm.2) 
 but EC = NG  (being diagonals in congruent pentagons) 
 Thus the lines joining their endpoints are also equal and parallel (Ch.1, Thm.30), 
 i.e. EN and CG are equal and parallel. 
 
[4] Thus rGBC ≅ rNAE (Side-Side-Side) 
 and so ∠GBC = 108°. 
 By the same reasoning again, we can show that 
  ∠KNH = 108° 
 and ∠LED = 108° 
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[5] Complete new pentagons in these angles, namely GBCMF, KNHSR, LEDPO. 
 
[6] Now I say that points S, H, G, F are all in one plane. 
 
 For, by reasoning similar to that in Step 3, 
  SG║LE  (since SG║KA, and KA║LE) 
 and GH║LD  (since GH║NB, and NB║LD) 
Therefore the plane of intersecting lines SG and GH is parallel to the plane of intersecting 
lines LE and LD (Ch.9, Thm.11).  That is, plane SGH is parallel to plane LED. 
 
 Again, reasoning in the same way, 
  FH║DE  (since FH║CA, and CA║DE) 
 and GH║LD  (already shown just above) 
Therefore the plane of intersecting lines FH and GH is parallel to the plane of intersecting 
lines DE and LD  (Ch.9, Thm.11).  That is, plane FGH is parallel to plane LED. 
 
 But there can be only one plane through straight line GH parallel to the plane of 
LED (Ch.9, Thm.2 Remark).  Therefore the planes of SGH and FGH, both parallel to the 
plane of LED and both passing through GH, are in fact the same plane.  Thus S, H, G, F 
all lie in one plane parallel to the plane of LEDPO. 
 And SH = HG = GF, since they are sides of our pentagons, 
 And ∠SHG = ∠HGF = 108° (by the same reasoning as in Step 4), 
So we are free to complete the pentagon in SHGF, namely SHGFT. 
 

[7] Likewise  T, F, M, Q are now all in one 
plane, and we can complete a pentagon 
TFMQU.  Again, by the same argument, R, K, 
L, O are all in one plane, and we can complete 
pentagon RKLOX. 
 
[8] By reasoning similar to that in Step 6, 
we can prove now that points D, C, M, Q, P are 
all in one plane.  Therefore DCMQP is a penta-
gon.  And since PD = DC = CM = MQ (all be-
ing sides of our other congruent pentagons), and 
since ∠PDC = ∠DCM = ∠CMQ = 108° (by the 

same reasoning used in Step 4), it follows that if we only join PQ, DCMQP is yet another 
regular pentagon. 
 
[9] Likewise XOPQU is a regular pentagon (reasoning the same way as in Step 8). 
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[10] Now RS is parallel to KH (in pentagon KNHSR) 
 and KH is parallel to EB (since KE = BH, & both parallel to AN) 
 so RS is parallel to EB 
 but EB is parallel to DC (in pentagon ABCDE) 
 so RS is parallel to DC 
and likewise every side of RSTUX is parallel to a side of ABCDE.  Therefore RSTUX, 
like ABCDE, is a regular pentagon (and it is in a plane parallel to ABCDE). 
 
[11] Therefore we have made a polyhedron contained by 12 equal regular pentagons, 
all of whose solid angles are made of 3 plane angles each equal to 108° (or the angle of 
the regular pentagon).  Therefore we have made a dodecahedron. 
 
Q.E.F. 
 
 
 
Remarks 
 
1.  To make a model of a dodecahedron, reproduce and cut out 
the accompanying figure (preferably enlarged) twice.  Fold 
each up into an open "cup," and place the two together to form 
a dodecahedron. 
 
 
2.  In Step 8 I said that DCMQP are all in one plane, and that this can be proved similarly 
to the reasoning in Step 6.  Since it is complicated, you might want to see it all done out.  
Well, all right then!  Here goes. 
 
 First PD is parallel to OE (in PDELO) 
 next OE is parallel to RN (since EN = OR, & each is parallel to KL) 
 so PD is parallel to RN 
 
 and DC is parallel to EB (in ABCDE) 
 but EB is parallel to KH (since EK = BH, & each is parallel to AN) 
 so DC is parallel to KH 
 
So PD, DC are parallel to RN, KH.  But RN, KH intersect in the plane of pentagon 
KNHSR.  Therefore PDC are in a plane parallel to the plane of KNHSR (Ch.9, Thm.11). 
 
 Now QM is parallel to UF (in QMFTU) 
 and UF is parallel to RH (since HF = RU, & each is parallel to ST) 
 So QM is parallel to RH 
 
 And MC is parallel to BF (in CMFGB) 
 and BF is parallel to NS (since NB = FS, & each is parallel to HG) 
 so MC is parallel to NS 
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So QM, MC are parallel to RH, NS.  But RH, NS intersect in the plane of pentagon 
KNHSR.  Therefore QMC are in a plane parallel to the plane of KNHSR. 
 Since PDC and CMQ are all in a plane parallel to KNHSR, and only one plane 
through C is parallel to the plane KNHSR, therefore D, C, M, Q, P are all in one plane. 
 
 
 
THEOREM 15:  There is a cube hidden in every dodecahedron. 
 

 
 
 
Take the dodecahedron we just made, and 
join EC, CG, GN, NE. 
I say that ECGN is a square. 
 
 
 
 
 
 

[1] Bisect EC at L, AB at K, NG at V.  Join LK, KV, VL. 
 
 

[2] From the symmetry of the regular pentagon, it is 
obvious that 
  NAKV ≅ GBKV 
 so ∠AKV = ∠BKV 
Thus ∠AKV is right (since ∠AKV & ∠BKV are equal 
and adjacent).  Again, ∠AKL is right by a similar ar-
gument. 
 

[3] Thus AK is at right angles to both KL and KV, and therefore 
AK is perpendicular to the plane of LKV (Ch.9, Thm.3). 

But NV is parallel to AK. 
Thus NV is also perpendicular to the plane of LKV (Ch.9, Thm.4). 

 So ∠NVL is a right angle (Ch.9, Def.1) 
 
[4] But LV is parallel to EN (since EL = NV, and they are parallel) 
 so ∠ENV is also a right angle (Ch.1, Thm.25). 
 i.e. ∠ENG is right. 
And since ECGN is a parallelogram (for EC = NG and they are parallel), it is now clear 
that it is also a rectangle.  But since its sides are all diagonals of congruent regular penta-
gons, its sides are also equal.  Therefore ECGN is a square. 
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[5] Likewise NGTR is a square for all the same reasons, and it is equal to ECGN, 
since they share a common side NG. 
 And thus, in fact, where two faces of the dodecahedron meet, such as at AB or 
SH, they meet above a square.   Since there are 6 pairs of faces on the dodecahedron, 
therefore there are 6 equal squares that can be traced out along its surface by joining the 
diagonals of its pentagons, and these 6 squares each share a side with four others, i.e. they 
form a cube. 
 
Q.E.D. 
 
 
 
 
Remarks 
 
 
With equal reason, ACFH is a square, and 
if we pair off the faces differently, we get 
another cube.  There are, in total, five cu-
bes hiding in the dodecahedron, namely 
one for every diagonal in pentagon 
ABCDE. 
 
 
 
 
 
THEOREM 16:  The diameter of the sphere containing the dodecahedron is the 
diagonal of the cube hidden in it. 

 
 
Consider the dodecahedron we have already 
made.  We saw in Theorem 15 that every diago-
nal in pentagon ABCDE is the side of a cube 
hidden in the dodecahedron. 
 
 
[1]  Thus RC is a diagonal of such a cube, with 
AC as its side.  But LF is also a diagonal in it, 
and they bisect each other (Ch.9, Thm.27). 
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[2]  But LF is also a diagonal of the cube with BD as a side, and SD is another diagonal 
of that cube.  Therefore LF and SD also bisect each other (Ch.9, Thm.27). 
 
[3]  And since LF has only one midpoint, which is also the midpoint of RC (Step 1), it 
follows that RC, LF, SD all bisect each other. 
 

[4]  Continuing in this way, we will find that 
all the diagonals of all five cubes share the 
same midpoint.  Call it J.  Thus J is equidistant 
from all the corners of the cubes, i.e. from all 
the vertices of the dodecahedron.  Therefore J 
is the center of the sphere containing our do-
decahedron, and the diameter of that sphere is 
any diagonal of one of the hidden cubes. 
 
Q.E.D. 
 
 

 
 
 
THEOREM 17:  There are only 5 perfect solids. 
 
 
[1] The fewest number of sides a face of a perfect solid can have is 3 sides, i.e. an 
equilateral triangle.  For there is no rectilineal plane figure with 2 sides or 1. 
 
[2] But the most is 5 sides, i.e. a regular pentagon.  For the angle of a regular hexa-
gon, having 6 sides, is 120° (double the angle of an equilateral triangle).  And the fewest 
number of faces which could form a solid angle is 3.  But 3 of these angles of the hexa-
gon would add up to 360°, or 4 rights, and no solid angle can be made out of plane angles 
that add up to 4 rights (Ch.9, Thm.17).  So no solid angle can be made out of 3 regular 
hexagons, and much less could any be made out of more than 3 regular hexagons. 
 And any regular polygon of more than 6 sides would have an angle more than 
120°.  And so no solid angle could be formed out any number of such angles, either.  So 
the greatest number of sides that can be found on the face of a perfect solid is 5. 
 
[3] Therefore a perfect solid can be formed only out of 
  (a)  Equilateral triangles 

or (b)  Squares 
or (c)  Regular pentagons 

 
[4] The fewest number of equilateral triangles that form a solid angle is 3, and this is 
the angle of the TETRAHEDRON. 
 
[5] The next is 4, and 4 equilateral triangles form the angle of the OCTAHEDRON. 
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[6] The next is 5, and 5 equilateral triangles form the angle of the ICOSAHEDRON. 
 But it is not possible to form a solid angle out of 6 or more equilateral triangles, 
since 6 × 60° = 360°, or four rights. 
 
[7] The fewest number of squares that form a solid angle is 3, and this is the angle of 
the CUBE.  But 4 or more right angles cannot form a solid angle, since 4 × 90° = 360°, or 
four rights. 
 
[8] The fewest number of pentagons that form a solid angle is 3, and this is the angle 
of the DODECAHEDRON.  But 4 or more cannot form a solid angle, since the angle of 
the regular pentagon is 108°, and 4 × 108° = 432°, which is more than four rights. 
 
[9] Therefore these 5 are the only possible perfect solids. 
 
Q.E.D. 
 
 
 
Remarks 
 
It is astonishing that when we limit ourselves to the use of only straight lines and circles, 
we cannot make all the regular polygons in the world (we cannot, for example, make a 9-
sided regular polygon with only straight lines and circles), but we can make all the per-
fect solids! 
 
 
 
 
 
 
 
THEOREM 18:  A comparison of the five perfect solids regarding the number of 
their vertices, edges, and faces. 
 
For once, we will not need to prove anything, but only count.  If you count the number of 
vertices, edges, and faces in each solid, you can verify the entries in this table: 
 
 
FIGURE VERTICES EDGES FACES 
Tetrahedron 4 6 4 
Cube 8 12 6 
Octahedron 6 12 8 
Dodecahedron 20 30 12 
Icosahedron 12 30 20 
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Notice that the cube and the octahedron have the same numbers, but in reverse order, and 
the dodecahedron and icosahedron also form a symmetry that way.  The tetrahedron’s 
numbers are symmetrical by themselves. 
 This symmetry has an interesting consequence.  In one way, we got a cube out of 
a dodecahedron in Theorem 15.  In another way, using the symmetries above, we can also 
get an octahedron out of a cube.  If we find the centers of the circles circumscribed about 
each square face of the cube, the 6 resulting “centers” of the square faces are also the 6 
vertices of an octahedron.  This is clear from the uniformity with which those six points 
are spread out from each other. 
 This works in reverse, too.  Consider the eight faces of the octahedron, which are 
equilateral triangles.  If we find the “centers” of these triangles, namely the centers of the 
circles circumscribed about them, we get 8 points spread apart in a uniform way, i.e. we 
get the 8 vertices of a cube. 
 If we find the 4 centers of the 4 equilateral triangular faces of the tetrahedron, of 
course we get the 4 vertices of another smaller tetrahedron. 
 If we take the 20 centers of the equilateral triangular faces of the icosahedron, we 
get 20 points uniformly spread out, i.e. we get the 20 vertices of a dodecahedron.  And if 
we take the 12 pentagonal faces of the dodecahedron, finding the center of the circum-
scribed circle about each one, we get 12 points uniformly spread out, i.e. we get the 12 
vertices of an icosahedron. 

 We can also get a tetrahedron out of a cube in much 
the same way as we found a cube hidden in a dodecahe-
dron.  Pick a vertex T on a cube.  Across the three squares 
meeting at T, draw their diagonals from T, namely TA, TB, 
TC.  And AB, BC, CA are three more diagonals on the re-
maining square faces.  Now since the squares are all equal, 
therefore these six diagonals are all equal, and therefore 
they contain four equal equilateral triangles.  Therefore 
ABCT is a tetrahedron.  The other four vertices of the cube 
are the vertices of another tetrahedron. 
  
We can also get an octahedron out of a tetrahedron.  Bisect 
the six sides of a tetrahedron, EGHK, at L, M, N, O, P, Q.  
Joining these six midpoints across each face of the tetrahe-
dron, it is easy to see we have made eight equal equilateral 
triangles, and therefore L, M, N, O, P, Q are the vertices of 
an octahedron. 
 One last note.  The Swiss mathematician Leonhard 
Euler (1707 – 83) showed that if V is the number of verti-
ces in a polyhedron, F the number of its faces, and E the 
number of its edges, then   V + F  =  E + 2.  You can veri-
fy this in the case of the perfect solids with the table above. 
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THEOREM 19:  If an icosahedron and a dodecahedron are contained in the 
same sphere, the circle circumscribing the pentagonal face of the dodecahedron is equal 
to the circle circumscribing the triangular face of the icosahedron. 
 
 
 

 
Given: ABCDE is the face of a dodecahedron. 
 GHK is the face of an icosahedron. 
 MR is the diameter of the sphere con-
taining both perfect solids. 
 
 
Prove: The circles around ABCDE and GHK 
are equal. 
 

 
 
 
[1] Join EC.  So EC is the side of the cube inscribed in the sphere (Thms.15 - 16). 
 Therefore £MR = 3£EC   (Thm.11) 
 
[2] Let PS be the radius of the circle around “the pentagon” of the icosahedron, that 
is, the pentagonal base of one of its “caps,” which is a pentagon with side equal to GK. 
 Therefore £MR = 5£PS   (Thm.13, Remark 2) 
 
[3] Thus  5£PS = 3£EC   (Steps 1 & 2) 
 
[4] Now cut PS in the golden ratio at T, with PT the greater segment (Ch.6, Thm.22). 
 Since the diagonal of a regular pentagon is to its side as a whole line is to the 
greater segment of itself when it is cut in mean and extreme ratio (Thm.3 Conclusion) 
 Thus  EC : CD  =  SP : PT 
 Therefore £EC : £CD  =  £SP : £PT  (Ch.11 Thm.9, Remark) 
 So  3£EC : 3£CD  =  5£SP : 5£PT (Ch.5, Thm.12) 
 
[5] Now, taking the last proportion from Step 4, we can add the antecedents to the 
consequents and still have a proportion (Ch.5, Thm.14, Remark 2).  That is, 

 3£EC  :  3£EC + 3£CD  =  5£SP  :  5£SP + 5£PT 
 
[6] But in Step 3, we saw that 5£PS = 3£EC.  So in the proportion of Step 5, we can 
replace 3£EC with 5£PS.  Let's do it: 
   5£SP  :  3£EC + 3£CD  =  5£SP  :  5£SP + 5£PT 
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[7] Now PS is the radius of the circle in which GK is a side of the regular pentagon 
(that is how we made PS, in Step 2).  And PS is therefore the side of the hexagon in that 
circle.  And since PT is the greater segment of PS when it is cut in the golden ratio, PT is 
the side of the decagon in that same circle (Thm.4 Remarks). 

Therefore £PT + £SP  =  £GK  (Thm.5) 
 or  5£PT + 5£SP  = 5£GK  (both sides × 5) 
 
[8] Using this to simplify the proportion from Step 6, we get 
   5£SP  :  3£EC + 3£CD  =  5£SP  :  5£GK 
 And, looking at this new proportion, it is obvious that 
   3£EC + 3£CD  =  5£GK 
 
[9] Now, in one and the same circle, 3 times the square on the diagonal of the in-
scribed pentagon plus 3 times the square on the side of that pentagon equals 5 times the 
square on the inscribed equilateral triangle  (Ch.11, Thm.7 Remarks).  But EC is the di-
agonal of a pentagon, and CD is its side, so if Z is the side of the equilateral triangle in-
scribed in circle ABCDE, then 
   3£EC + 3£CD  =  5£Z 
But we have just shown that 
   3£EC + 3£CD  =  5£GK  (Step 8) 
And therefore it follows that 
   GK =  Z 
That is, GK is equal to the side of the equilateral triangle inscribed in circle ABCDE.  But 
GK is the side of the equilateral triangle inscribed in circle GKH.  Therefore circles 
ABCDE and GKH must be equal. 
 
 
Q.E.D. 
 
 
 
 
 
THEOREM 20:  When the five solids are all inscribed in the same sphere, their 
order, from longest edge-length to shortest, is:  tetrahedron, octahedron, cube, icosahe-
dron, dodecahedron. 
 
 
For the sake of brevity, let's use a little shorthand: 
 Diam = the diameter of the containing sphere 
 Tet = the edge of the Tetrahedron 
 Oct = the edge of the Octahedron 
 Cube = the edge of the Cube 
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[1] Now £Diam = 
2
3
£Tet  (Thm.9) 

 So ⅔ £Diam = £Tet  (double both, then one third both) 
 
[2] But £Diam = 2 £Oct  (Thm.10) 
 So ½ £Diam = £Oct 
 
[3] So, since the square on the side of the tetrahedron is two thirds the square on the 
diameter (Step 1), whereas the square on the side of the octahedron is only half the square 
on the diameter (Step 2), it follows that 
  £Tet > £Oct 
 thus Tet > Oct 
i.e. the side of the Tetrahedron is greater than that of the Octahedron. 
 
[4] Now £Diam = 3 £Cube  (Thm.11) 
Therefore it is clear that the square on the side of the cube is only one third the square on 
the diameter of the sphere, and so the side of the Tetrahedron is greater than that of the 
Cube. 

 
[5] And we know by Theorems 15 and 16 
that the diagonal of any pentagonal face on the 
dodecahedron is the side of the cube inscribed in 
the same sphere with the dodecahedron.  And 
we know from Theorem 17 that if we draw a 
circle around a pentagonal face of the dodeca-
hedron, the side of the equilateral triangle in-
scribed in that circle is the side of the icosahe-
dron inscribed in the same sphere with that do-
decahedron. 

 
 Let AGEHC be one pentagonal face of our dodecahedron.  Draw a circle around 
it, with center K, and inscribe equilateral triangle ABL in it.  Join KA, KG, KB, KE. 
 Thus AE, being a diagonal of the dodecahedron’s pentagonal face, is the side of 
the cube inscribed in our sphere, and AB is the side of the icosahedron. 
 Since ∠AKB stands on one third of the circumference from the center of the cir-
cle, therefore ∠AKB = 120°.  But ∠AKE stands on two fifths of the circumference from 
the center of the circle, and therefore ∠AKE = 144°.  And yet both stand on less than a 
semi-circumference, and therefore it follows that 
  AE > AB 
i.e.  the side of the Cube is greater than the side of the Icosahedron. 
 
[6] But ∠AKG is only one fifth of 360°, i.e. 72°, whereas ∠AKB is 120°.  Therefore 
  AB > AG 
i.e. the side of the Icosahedron is greater than the side of the Dodecahedron. 
 
Q.E.D. 
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Remarks 
 
The order of the 5 solids in this Theorem also happens to put them in order of  (1)  in-
creasing surface area, and  (2)  increasing volume, when all are inscribed in the same 
sphere.  Two more interesting Theorems, whose proofs I leave to the reader, are these: 
 
(a)  When inscribed all in the same sphere, the surface of the Icosahedron is to that of the 
Dodecahedron as the edge of the Cube is to the edge of the Icosahedron. 
 
(b)  When inscribed both in the same sphere, the volumes of the Dodecahedron and Ico-
sahedron have the same ratio as their surface areas. 
 
 
 
 
“HOOK”:  A SQUARE SECTION OF A TETRAHEDRON. 
 
Given a tetrahedron ABCV, can you see how to cut it with a plane so that the section is a 
square? 
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