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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 1 
 
 
 
 
 

INTRODUCTION 
 
 
 
In the first astronomy sequence presented on this site, we saw what it means to call 
astronomy a “liberal art.” That course took us through the principal contributions of Ptolemy, 
Copernicus, and Kepler. We are now at the next step in the journey: Isaac Newton. This 
course is a tour through some of the central material in his Principia Mathematica 
Philosophiae Naturalis, or “Mathematical Principles of Natural Philosophy.” Although we 
will be learning plenty about astronomy from Newton, the very title of his work shows that it 
is not restricted to astronomy. It is nothing less than classical physics in its first form. This 
prompts the question: “Is physics a liberal art?” 
 There is one sense in which mathematical physics is not a liberal art. Sometimes this 
phrase means “one of the seven traditional liberal arts,” that is, one of the Trivium or 
Quadrivium. Mathematical physics is not simply identical with any one of these. But the 
reasons for that are accidental and historical rather than essential. Despite early intimations 
of mathematical physics such as we find in Archimedes, the science was not really 
developed as a whole until Galileo; even in his Two New Sciences mathematical physics 
exists only in its most nascent and embryonic form. The seven traditional liberal arts, on the 
other hand, come down to us from Plato and before. Among these, the one most similar to 
mathematical physics is obviously astronomy. Although the principles of mathematical 
physics apply to the heavens, as we shall see, they also apply to terrestrial phenomena—to 
sound, light, magnetism, and on and on. We cannot, then, simply reduce mathematical 
physics to astronomy. That would be to reduce the whole to the part. On the other hand, 
mathematical physics does make models of things for the sake of understanding them, which 
was the main reason why astronomy was called an “art.” Mathematical physics can also 
bring to light many things worth understanding for their own sake, which is the main reason 
astronomy can be called “liberal.” 
 The mistaken dichotomy of the ancients between terrestrial and celestial materials 
and natures is also a factor. Aristotle and Ptolemy, for example, believed that from the Moon 
upward celestial bodies were immortal, indestructible things constituted of entirely different 
stuff from the materials of which earthly bodies were made. But that turned out to be wrong. 
Jupiter is not made of any elements other than those which could be found here on Earth. 
Newton himself, we shall see, will still be anxious to train us out of the notion that the 
heavens are fundamentally “other.” Once we accept this, we are ready to see that the physical 
laws governing motions here on Earth apply just as well to the heavenly bodies, and we are 
prepared to understand their motions in light of physical causes similar to those we find 
operating on sticks and stones. That would have been an unthinkable thought to the ancients. 



 

 2 
 

Kepler was the first to pave the way to this new astronomical thinking—he thought the 
motions of the heavenly bodies were due to a power which was magnetic in nature. At any 
rate, if it is right that the heavens and the earth do not operate on fundamentally distinct 
natural principles, then astronomy turns out to be nothing but an application of physics to the 
universe in its large-scale parts—whether the scale is that of suns and planets, or of galaxies 
and super-clusters and the expansion of all space. The liberal art of astronomy, in other 
words, is one part of a larger liberal art, mathematical physics. Mathematical physics is 
nevertheless still essentially astronomical. That is, it is essentially about the universe, since 
its purpose is to discover the mathematically expressible natural laws that govern all bodies, 
not just some. 
 A word or two now about the nature of this course should be helpful to anyone 
wishing to pursue it. 
 Our author is Isaac Newton. We shall say more about him when we begin the course 
proper. 
 Our text is Principia, whose full title I mentioned earlier. The work is divided into 
three books (more on this later). It is a good idea for the reader to have a copy of the whole 
text handy, since we will be reading only a slim selection from it in this course, and I will not 
always quote in full even those texts I will be commenting on. We will pursue the main 
principles of the book and their principal application, that is, we will be tracing the main 
steps in Newton’s long argument for universal gravitation. Consequently we will skip the 
entirety of Book 2 of Principia, and most of Books 1 and 3. It is good to see just how small a 
portion of Newton’s book we will be reading together, to get a sense of the sheer magnitude 
of his work. Physicists and mathematicians continue to study it today, and to discover things 
in it that no one has understood, probably, since Newton himself. It is also good to have a 
copy handy for those times when Newton refers to things outside our selection, in case the 
reader wishes to refer to these. 
 Our translator is Ronald J. Richard, my friend and former colleague, who has 
accurately rendered into English the portions of Newton’s Principia which we will study 
together, and who has generously given me permission to quote his translation at length. If 
you have another translation, that is good, too. You can see how different translators render 
Newton’s Latin. I will frequently cite the text of the Richard translation in full, and 
sometimes mention the Latin, in order to see the exact words of Newton we are trying to 
understand. 
 Our mode will be to proceed slowly and carefully, often by asking questions about 
the text and answering them one at a time. The reading to be discussed on a given class day 
will be listed at the heading of the notes for that class. Probably it is a good idea for you to 
read the assignment in Newton first, and then read the class notes commenting on the reading 
afterward, to make my questions and comments more intelligible. 
 There are several prerequisites to this course. The first of these is elementary 
geometry, as presented, say, in Euclid’s Elements, or else as presented on this website. 
Another is elementary astronomy, as presented on this website (the course on Ptolemy, 
Copernicus, and Kepler). A further prerequisite is algebraic geometry, as one finds it in the 
geometry of Descartes—but I will try to supplement the basics of algebraic geometry in our 
next class, that is, Class 2. Still another prerequisite is a familiarity with the basics of conic 
sections, as found, for example, in the first three books of Conics by Apollonius of Perga. 
For those unfamiliar with his work, I have supplied my own (so far quite unpolished!) notes 
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on his book here on this site. Knowledge of calculus is not a prerequisite, since we will be 
developing the principles of the calculus with Newton, who is one of its principal 
discoverers. 
 That brings us to the fruit we should hope to gather from this course. One of these is 
to learn the calculus from the ground up. It is rarely taught that way, since in most cases the 
emphasis is on smooth calculation—“getting the right answer,” rather than understanding the 
philosophical principles underlying the techniques. Here the focus is on understanding the 
underlying principles. Another fruit we shall reach for is seeing the next phase in the story of 
astronomy that began with Ptolemy, and progressed through Copernicus and Brahe and 
Kepler. Still another is to catch a glimpse of an important phase in the history of science. In a 
way, we will be witnessing the very birth of modern physics. Galileo got the ball rolling, to 
be sure, but it was only in Newton’s Principia that the main principles were set down 
explicitly and in order, and the main elements of the method codified, and an abundance of 
results discovered, and the fertility of the science abundantly and convincingly demonstrated. 
Finally, one of the main sights to see will be the amazing argument showing that the same 
tendency making a stone plummet is also holding the Moon in its orbit—and it is also 
holding all planets in their orbits around the sun, and shaping and influencing all things in 
the universe. 
 Finally, a word of caution. Modern physics retains many things from Newton, 
although it has altered some, and added much. What vocabulary and notation it retains often 
comes with some subtle difference from Newton’s original ideas. We cannot assume that 
when we see “force” or “mass,” for example, it means exactly what we find it means in a 
current physics textbook. We must read what Newton himself actually says, and we must 
read him very carefully. 
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 2 
 
 
 
 
 

CRASH COURSE 
IN THE BASIC OPERATIONS OF ALGEBRAIC GEOMETRY 

 
 
In Newton’s Principia we find him sometimes compounding ratios like the ancients, other 
times multiplying fractions and irrationals using notations and operational concepts not used 
by the ancients, but introduced by later thinkers such as Descartes. To make these more 
modern techniques accessible to anyone unfamiliar with them, I have placed this explanation 
here at the outset of the course. Please refer to it if the meaning of any algebraic notation or 
operation later on is obscure to you. 
 
 
With Euclid’s numbers (integers), we can do the following: 
 
ADD    6 + 3 = 9 
 
SUBTRACT   6 – 3 = 3 
 
MULTIPLY   6 × 3 = 18 
 
DIVIDE   6 ÷ 3 = 2 
 
SQUARE   62 = 36 
 
CUBE    63 = 216 
 
TAKE THE nth POWER 6n  
 
TAKE A SQUARE ROOT √4 = 2 
 
TAKE A CUBE ROOT 51253 =  
 
TAKE AN nth ROOT  321877 =  
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But notice there are many limitations to these operations. We cannot perform each operation 
given any numbers at all. For example: 
 
• We cannot subtract a greater number from a lesser one, given Euclidean numbers, which 
are pure numbers with no “direction” associated with them. So “3 – 6” is meaningless and 
impossible. 
 
• We cannot divide a number by a number which does not measure it exactly, or not without 
having an answer that involves a remainder. So “5 ÷ 3” is “1 remainder 2.” 
 
• We cannot take the square root of a non-square number, or in general any nth root of a 
number which is not the nth power of an integer. For example, √2 means nothing if 2 is a 
Euclidean number. Even a fraction, like ½ , means nothing in Euclidean numbers, since his 
numbers are pure multitudes, not multitudes of continuously divisible things like straight 
lines. 
 
If we think now not of pure numbers, as Euclid did in his Elements, but instead of numbered 
continuous quantities like straight lines, numbered by a unit arbitrarily chosen (but used 
consistently), then we find we can define operations which will give us answers every time. 
(For now, we will not worry about taking square roots of negatives, which pertains to 
complex algebra, which is after Newton.) This is desirable also because geometry and 
physics and other disciplines are studying continuous quantities, not discrete ones, and yet 
we find that operations upon them analogous to those on pure numbers are important parts of 
equations expressing intelligible relationships among them. 
 
Perhaps you wondered exactly what √2 meant when you were in high school. I certainly did. 
I was told it is an infinite and non-repeating decimal. But if it is infinite, we can never “have 
it all.” We can never put down a finite expression and say there, that’s “the square root of 
two.” How do we even know that it exists? Can we ever say anything exactly true about it? 
And how do we operate on it? How do we add √2 and √3 ? It would take literally forever to 
express either one, and hence it would take forever to add them. Are we stuck with mere 
approximations? And what would it mean to multiply these by each other? What does √2 × 
√3 mean? What do I do with √2 to get the answer? Do I “take it √3 times” ? What could that 
possibly mean? 
 
If we now use our numbered continua, like straight lines, instead of pure numbers, we can 
define operations to go with these various notations. We will use straight lines for our 
continua, although we could use any other continuous quantities, such as lengths of time or 
speeds or areas. 
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DEFINITION OF ADDITION 
 
This is not difficult. If A and B are two straight lines, and U is our chosen unit line, we “add” 
A and B by placing them end to end so as to form a new straight line composed of both. 
 If A is 5 times U, 
 and B is 3 times U, 
 then A + B is of course 8 times U. 
No problem. 
 
 
 
DEFINITION OF SUBTRACTION 
 
If A and B are two straight lines, A being the greater, then we “subtract” B from A by cutting 
off a part of A equal to B. The remainder of A is the difference, or A – B. 
 If A is 5 times U, 
 and B is 3 times U, 
 then A – B is of course 2 times U. 
 
But what if we want to subtract the greater from the lesser? Then we must specify opposite 
directions as “positive” and “negative.” Let’s say “toward the right” is positive, and so 
“toward the left” is negative. And let A and B both be “positive,” or “toward the right,” each 

having a direction assigned to them. And let A be 
greater. Each line is now like an arrow, having both a 
magnitude and a direction, going from its tail toward its 
tip. To subtract A from B, now, place the tail of A on 
the tip of B, and reverse the direction of A, making it 
negative. The remainder is a “negative” line equal in 
length to the difference between A and B. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

A

B

A

BA - B
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DEFINITION OF MULTIPLICATION 
 
When we multiply two numbers, we add one of them to itself as many times as there are 
units in the other. Accordingly, the two original numbers and their product are in a 
proportion starting from the unit and ending with the product. 
 
For example:  3 × 5 = 15 
 
that is,   5 + 5 + 5 = 15 
 
just as   1 + 1 + 1 = 3 
 
thus   1 : 3 = 5 : 15 
 
 
But continuous quantities like 
straight lines can also be in 
proportions. So if we are given 
any two straight lines, A and B, 
and we take their fourth 
proportional from the unit line 
U we have chosen, then this 
fourth proportional line is the 
“product” of the two given 
lines, i.e. it is A × B or A · B. 
 
That is,  P = A × B 
where  U : A = B : P 
 
 
Notice that, unlike with numbers, it is possible for the product of two lines to be smaller than 
them, because a given line can be smaller than the unit line, while no number can be smaller 

than 1. If A or B are both fractions of the unit, like 
2
1  and  

4
1 , then the product will be smaller than them. 

 
 
 
 
because  
 
 
 
 
 

8
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4
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2
1
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4
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2
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U A B
U

B

A

P = A  x  B
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DEFINITION OF DIVISION 
 
When we divide two numbers, we divide one of them (the “dividend”) into as many equal 
parts as there are units in the other (the “divisor”). The number expressing one of the equal 
parts the dividend has been divided into is called the “quotient.” Hence the two original 
numbers and their quotient are in a proportion, that is, the unit is to the divisor as the quotient 
is to the dividend. 
 
For example  15 ÷ 3 = 5 
that is,   5 is the part which divides 15 
   into as many parts as there are units in 3. 
i.e.   5 + 5 + 5 = 15 
just as   1 + 1 + 1 = 3 
thus   1   :   3   =   5   :   15 
i.e.   unit : divisor = quotient : dividend 
 
But continuous quantities like 
straight lines can also be in 
proportions. So if we are given 
any two straight lines, A and B 
(like 15 and 3), and we wish to 
divide A by B, then we must 
find the fourth proportional to 
the divisor, the dividend, and 
the unit, in that order. 
 
That is Q = A ÷ B 
where  B : A = U : Q 
 
 
Notice that, unlike with numbers, it is possible for the quotient of two lines to be greater than 
them, because a given line can be smaller than the unit. For example, 
 
if A = ½, and B = ⅓, then the quotient is  .  
 
 
 
 
 
since 
 
 
 
 

2
3

2
3

3
1

2
1
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2
3:1

2
1:

3
1

=

U A B

U

B A

BAQ ÷=
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DEFINITION OF SQUARING 
 
To “square” any number is just to multiply it by itself. Obviously, then, to “square” a straight 
line will mean to multiply it by itself. Thus A2 means the straight line which is a fourth 
proportional to the unit and A, i.e. 
 
  1 : A  =  A : A2  
 
And note that  A2 is not a square figure, but a straight 
line. And it could be smaller than A, if A is a fraction 
of 1. For example, 
 
  1 : ½ = ½ : ¼  
 
 
 
 
 
 
 
DEFINITION OF CUBING 
 
 
To “cube” any number is just to multiply it by 
its square. Obviously, then, to “cube” a straight 
line will mean to multiply it by its square, i.e. 
 
  1 : A = A2 : A3  
 
And note that A3 is not a cube figure, but a 
straight line. 
 
And it is clear that A4 will mean the fourth proportional such that 
 
  1 : A = A3 : A4  
 
and so on, for higher powers of A. 
 
 
DEFINITION OF SQUARE ROOT 
 
 
To take the “square root” of a square number is just to find the number which, when 
multiplied by itself, produces the given square number. But that means the square root will 
always be a mean proportional between the unit and the given square number. 
 

U

A

A

A2

U

A

A

A32
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For example,  4 is the square root of 16 
since   4 × 4 = 16 
thus   1 : 4 = 4 : 16 
 
But continuous quantities like straight lines can also have 
mean proportionals. So if we are given a straight line A, and 
we find the mean proportional between it and the unit line, 
this mean proportional is the “square root” of A, or √A. The 
geometric construction for this is to place the unit and A in 
one straight line, end to end, then draw a semicircle on their 
sum as diameter, and set up a perpendicular to the diameter 
from the point where A and U meet. 
 
 
DEFINITION OF CUBE ROOT 
 
 
To take the “cube root” of a cube number is just to find the number which, when cubed, 
produces the given number. But that means the cube root will always be the first of two 
mean proportionals between the unit and the given cube number. 
 
For example,  2 is the cube root of 8 
since   2 × 2 × 2 = 8 
thus   1 : 2 = 2 : 4 = 4 : 8 
 
So 2 is the first of the two mean proportionals in the continuous proportion between 1 and 8. 
But continuous quantities like straight lines can also have two mean proportionals between 
them. So if we are given a straight line like A, and we find the two mean proportionals 
between it and the unit line, the first of these will be the “cube root” of A, or 3 A . 
 
And it is clear that n A  will mean the first of (n - 1) mean proportionals between A and the 
unit line. 
 
Now the meanings of the following expressions should be clear: 
 
 √2 
  

√2 × √3 
 
 √2 ÷ √3 
 
  
 
 
 

3

2

2
3

75( )
13

U A
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 2 
 
 
 
 
 

CRASH COURSE 
IN THE BASIC OPERATIONS OF ALGEBRAIC GEOMETRY 

 
 
In Newton’s Principia we find him sometimes compounding ratios like the ancients, other 
times multiplying fractions and irrationals using notations and operational concepts not used 
by the ancients, but introduced by later thinkers such as Descartes. To make these more 
modern techniques accessible to anyone unfamiliar with them, I have placed this explanation 
here at the outset of the course. Please refer to it if the meaning of any algebraic notation or 
operation later on is obscure to you. 
 
 
With Euclid’s numbers (integers), we can do the following: 
 
ADD    6 + 3 = 9 
 
SUBTRACT   6 – 3 = 3 
 
MULTIPLY   6 × 3 = 18 
 
DIVIDE   6 ÷ 3 = 2 
 
SQUARE   62 = 36 
 
CUBE    63 = 216 
 
TAKE THE nth POWER 6n  
 
TAKE A SQUARE ROOT √4 = 2 
 
TAKE A CUBE ROOT 51253 =  
 
TAKE AN nth ROOT  321877 =  
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But notice there are many limitations to these operations. We cannot perform each operation 
given any numbers at all. For example: 
 
• We cannot subtract a greater number from a lesser one, given Euclidean numbers, which 
are pure numbers with no “direction” associated with them. So “3 – 6” is meaningless and 
impossible. 
 
• We cannot divide a number by a number which does not measure it exactly, or not without 
having an answer that involves a remainder. So “5 ÷ 3” is “1 remainder 2.” 
 
• We cannot take the square root of a non-square number, or in general any nth root of a 
number which is not the nth power of an integer. For example, √2 means nothing if 2 is a 
Euclidean number. Even a fraction, like ½ , means nothing in Euclidean numbers, since his 
numbers are pure multitudes, not multitudes of continuously divisible things like straight 
lines. 
 
If we think now not of pure numbers, as Euclid did in his Elements, but instead of numbered 
continuous quantities like straight lines, numbered by a unit arbitrarily chosen (but used 
consistently), then we find we can define operations which will give us answers every time. 
(For now, we will not worry about taking square roots of negatives, which pertains to 
complex algebra, which is after Newton.) This is desirable also because geometry and 
physics and other disciplines are studying continuous quantities, not discrete ones, and yet 
we find that operations upon them analogous to those on pure numbers are important parts of 
equations expressing intelligible relationships among them. 
 
Perhaps you wondered exactly what √2 meant when you were in high school. I certainly did. 
I was told it is an infinite and non-repeating decimal. But if it is infinite, we can never “have 
it all.” We can never put down a finite expression and say there, that’s “the square root of 
two.” How do we even know that it exists? Can we ever say anything exactly true about it? 
And how do we operate on it? How do we add √2 and √3 ? It would take literally forever to 
express either one, and hence it would take forever to add them. Are we stuck with mere 
approximations? And what would it mean to multiply these by each other? What does √2 × 
√3 mean? What do I do with √2 to get the answer? Do I “take it √3 times” ? What could that 
possibly mean? 
 
If we now use our numbered continua, like straight lines, instead of pure numbers, we can 
define operations to go with these various notations. We will use straight lines for our 
continua, although we could use any other continuous quantities, such as lengths of time or 
speeds or areas. 
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DEFINITION OF ADDITION 
 
This is not difficult. If A and B are two straight lines, and U is our chosen unit line, we “add” 
A and B by placing them end to end so as to form a new straight line composed of both. 
 If A is 5 times U, 
 and B is 3 times U, 
 then A + B is of course 8 times U. 
No problem. 
 
 
 
DEFINITION OF SUBTRACTION 
 
If A and B are two straight lines, A being the greater, then we “subtract” B from A by cutting 
off a part of A equal to B. The remainder of A is the difference, or A – B. 
 If A is 5 times U, 
 and B is 3 times U, 
 then A – B is of course 2 times U. 
 
But what if we want to subtract the greater from the lesser? Then we must specify opposite 
directions as “positive” and “negative.” Let’s say “toward the right” is positive, and so 
“toward the left” is negative. And let A and B both be “positive,” or “toward the right,” each 

having a direction assigned to them. And let A be 
greater. Each line is now like an arrow, having both a 
magnitude and a direction, going from its tail toward its 
tip. To subtract A from B, now, place the tail of A on 
the tip of B, and reverse the direction of A, making it 
negative. The remainder is a “negative” line equal in 
length to the difference between A and B. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

A

B

A
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DEFINITION OF MULTIPLICATION 
 
When we multiply two numbers, we add one of them to itself as many times as there are 
units in the other. Accordingly, the two original numbers and their product are in a 
proportion starting from the unit and ending with the product. 
 
For example:  3 × 5 = 15 
 
that is,   5 + 5 + 5 = 15 
 
just as   1 + 1 + 1 = 3 
 
thus   1 : 3 = 5 : 15 
 
 
But continuous quantities like 
straight lines can also be in 
proportions. So if we are given 
any two straight lines, A and B, 
and we take their fourth 
proportional from the unit line 
U we have chosen, then this 
fourth proportional line is the 
“product” of the two given 
lines, i.e. it is A × B or A · B. 
 
That is,  P = A × B 
where  U : A = B : P 
 
 
Notice that, unlike with numbers, it is possible for the product of two lines to be smaller than 
them, because a given line can be smaller than the unit line, while no number can be smaller 

than 1. If A or B are both fractions of the unit, like 
2
1  and  

4
1 , then the product will be smaller than them. 
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DEFINITION OF DIVISION 
 
When we divide two numbers, we divide one of them (the “dividend”) into as many equal 
parts as there are units in the other (the “divisor”). The number expressing one of the equal 
parts the dividend has been divided into is called the “quotient.” Hence the two original 
numbers and their quotient are in a proportion, that is, the unit is to the divisor as the quotient 
is to the dividend. 
 
For example  15 ÷ 3 = 5 
that is,   5 is the part which divides 15 
   into as many parts as there are units in 3. 
i.e.   5 + 5 + 5 = 15 
just as   1 + 1 + 1 = 3 
thus   1   :   3   =   5   :   15 
i.e.   unit : divisor = quotient : dividend 
 
But continuous quantities like 
straight lines can also be in 
proportions. So if we are given 
any two straight lines, A and B 
(like 15 and 3), and we wish to 
divide A by B, then we must 
find the fourth proportional to 
the divisor, the dividend, and 
the unit, in that order. 
 
That is Q = A ÷ B 
where  B : A = U : Q 
 
 
Notice that, unlike with numbers, it is possible for the quotient of two lines to be greater than 
them, because a given line can be smaller than the unit. For example, 
 
if A = ½, and B = ⅓, then the quotient is  .  
 
 
 
 
 
since 
 
 
 
 

2
3

2
3

3
1

2
1

=÷

2
3:1

2
1:

3
1

=

U A B

U

B A

BAQ ÷=



 9 

DEFINITION OF SQUARING 
 
To “square” any number is just to multiply it by itself. Obviously, then, to “square” a straight 
line will mean to multiply it by itself. Thus A2 means the straight line which is a fourth 
proportional to the unit and A, i.e. 
 
  1 : A  =  A : A2  
 
And note that  A2 is not a square figure, but a straight 
line. And it could be smaller than A, if A is a fraction 
of 1. For example, 
 
  1 : ½ = ½ : ¼  
 
 
 
 
 
 
 
DEFINITION OF CUBING 
 
 
To “cube” any number is just to multiply it by 
its square. Obviously, then, to “cube” a straight 
line will mean to multiply it by its square, i.e. 
 
  1 : A = A2 : A3  
 
And note that A3 is not a cube figure, but a 
straight line. 
 
And it is clear that A4 will mean the fourth proportional such that 
 
  1 : A = A3 : A4  
 
and so on, for higher powers of A. 
 
 
DEFINITION OF SQUARE ROOT 
 
 
To take the “square root” of a square number is just to find the number which, when 
multiplied by itself, produces the given square number. But that means the square root will 
always be a mean proportional between the unit and the given square number. 
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For example,  4 is the square root of 16 
since   4 × 4 = 16 
thus   1 : 4 = 4 : 16 
 
But continuous quantities like straight lines can also have 
mean proportionals. So if we are given a straight line A, and 
we find the mean proportional between it and the unit line, 
this mean proportional is the “square root” of A, or √A. The 
geometric construction for this is to place the unit and A in 
one straight line, end to end, then draw a semicircle on their 
sum as diameter, and set up a perpendicular to the diameter 
from the point where A and U meet. 
 
 
DEFINITION OF CUBE ROOT 
 
 
To take the “cube root” of a cube number is just to find the number which, when cubed, 
produces the given number. But that means the cube root will always be the first of two 
mean proportionals between the unit and the given cube number. 
 
For example,  2 is the cube root of 8 
since   2 × 2 × 2 = 8 
thus   1 : 2 = 2 : 4 = 4 : 8 
 
So 2 is the first of the two mean proportionals in the continuous proportion between 1 and 8. 
But continuous quantities like straight lines can also have two mean proportionals between 
them. So if we are given a straight line like A, and we find the two mean proportionals 
between it and the unit line, the first of these will be the “cube root” of A, or 3 A . 
 
And it is clear that n A  will mean the first of (n - 1) mean proportionals between A and the 
unit line. 
 
Now the meanings of the following expressions should be clear: 
 
 √2 
  

√2 × √3 
 
 √2 ÷ √3 
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 3 
 
 
 

A BRIEF BIO OF NEWTON; 
THE TITLE OF THE WORK; 

NEWTON’S PREFACE TO THE PRINCIPIA 
 
 

BRIEF BIOGRAPHY OF ISAAC NEWTON 
 
Isaac Newton was born in Woolsthorpe Manor in Woolsthorpe-by-Colsterworth, a hamlet in 
Lincolnshire county, December 25, 1642 (in the old dating system, before the Gregorian 
calendar had been adopted in England), the same year Galileo died. 
 His father, also named Isaac Newton, died three months before he was born 
(prematurely). His mother, Hanna Ayscough, remarried to a Reverend Barnabus Smith. 
Newton disliked this step-father intensely, and one of the sins Newton lists among those he 
committed before he was 19 was “Threatening my father and mother Smith to burn them and 
the house over them.” 
 Newton was too in love with study to marry, so he never did, although he was 
engaged to a Miss Storey when he was in his late teens. From ages 12-16, he was educated at 
The King’s School, Grantham. In June 1661, he was enrolled in Trinity College, Cambridge. 
 In 1665, he discovered the generalized binomial theorem, and obtained his degree. 
The university then temporarily closed due to the “Great Plague,” and during this time 
Newton went back home to Woolsthorpe where he privately developed the calculus and his 
theory of gravitation. This has come to be called his “annum mirabile,” his amazing year of 
rapid, prolific, momentous discovery. 
 In 1667 he returned to Trinity College as a fellow. As such, he was supposed to be 
ordained a priest eventually, which he wished to avoid (he was quite heterodox)—but there 
was no time-limit, so in his case they just postponed the ordination indefinitely. Later he was 
elected to the Lucasian Chair, which more strictly required ordination, but which he again 
avoided, this time by special permission from Charles II. 
 His work significantly advanced pretty much every branch of mathematics at his time 
(an impossible task to perform today). He and Leibniz independently discovered calculus, 
and each claimed the priority in discovery. This is a tangled historical question. Newton, 
together with other members of the Royal Society, accused Leibniz of plagiarism (which 
appears not to have been true). There was bitterness between these two minds right up to the 
death of Leibniz in 1716. 
 Newton did much work in optics. He split and re-composed white light with prisms, 
and developed the first functioning reflecting telescope, the “Newtonian,” in 1668. He 
developed a particle theory of light. He also had interests in alchemy. 
 He originally delayed publishing the Principia because he was afraid of criticism and 
controversy (which is to some extent evident in the Rules for Philosophizing at the end). He 
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wanted to be certain he had dotted all his i’s and crossed all his t’s, as it were. The Principia 
was published on July 5, 1687 with the encouragement of Edmond Halley. 
 The work drew criticism that Newton was postulating a force (gravity) capable of 
acting at a distance, even over great distances, and so he, like the ancients, was inventing an 
“occult quality.” In later editions, Newton made very clear that he was not making any 
claims about the nature of the cause of heaviness or gravity. He was saying only that all 
bodies were in fact heavy toward each other, whatever the cause of that tendency in them 
might be. In a later edition, he made these things very clear, as we shall see. 
 In the 1690s, Newton wrote biblical commentaries. He disputed the existence of the 
Trinity (in an unpublished manuscript sent to John Locke). He was a member of Parliament 
from 1689 to 1690. He also became Master of the Mint, and took charge of England’s 
recoining. 
 In 1705, Newton was knighted by Queen Anne during her visit to Trinity College. He 
was the first scientist ever to be knighted. 
 He died in his sleep in London on March 31, 1727 [or March 20, 1726 by England’s 
calendar prior to adoption of the Gregorian]. 
 After he died, Newton’s body was found to be loaded with mercury! No doubt he 
inhaled vaporized mercury in his alchemical researches. This probably explains his nervous 
breakdowns and increasing eccentricity as he got older. 
 Praise for Newton is abundant and great. He himself wrote of himself (in a letter to 
Robert Hooke in Feb. 1676) “If I have seen further it is by standing on the shoulders of 
giants.” (The saying is not his own invention, but was attributed to Bernard of Chartres by 
John of Salisbury in the twelfth century.) Similarly he wrote in a memoir “I do not know 
what I may appear to the world, but to myself I seem to have been only like a boy playing on 
the sea-shore, and diverting myself in now and then finding a smoother pebble or a prettier 
shell than ordinary, whilst the great ocean of truth lay all undiscovered before me.” 
 Newton’s Monument (1731) is in Westminster Abbey, near his tomb. 
 Apparently Newton himself used to say that he was inspired to develop his theory of 
gravity by watching an apple fall from a tree. 
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THE TEXT OF NEWTON’S PREFACE TO PRINCIPIA  
 
 
 
 

PREFACE 
OF THE AUTHOR 

TO 
THE READER 

(Ron J. Richard Translation) 
 
 
Since the ancients specially prized mechanics in the investigation of natural things (our 
authority is Pappus), and the moderns, foregoing substantial forms and occult qualities, have 
undertaken to subject the phenomena of nature to mathematical laws, it seemed right to 
cultivate mathematics in this treatise, insofar as it relates to philosophy. In fact, the ancients 
organized mechanics by a two-fold division: rational, which accurately proceeds by 
demonstration, and practical. All the manual arts aim at the practical, from which assuredly 
the name mechanics is derived. Since, however, artificers usually work insufficiently 
accurately, it comes to be that all mechanics is so distinguished from geometry, that whatever 
might be accurate is referred to geometry, whatever might be less accurate to mechanics. But 
still the errors are not of the art but of the artificers. He who works less accurately is an 
imperfect mechanic, and if anyone could work most accurately he would be the most perfect 
mechanic of all. For, the description of right lines and circles, upon which geometry is 
founded, pertains to mechanics. Geometry does not teach how to describe these lines, but 
requires [postulat] them. For, it requires that the beginner, before he reaches the threshold of 
geometry, should learn how to describe the same accurately; then, it teaches how problems 
are solved by these operations. To describe right lines and circles are problems, but not 
geometrical ones. From mechanics is required the solution of these problems, in geometry is 
taught the use of these solutions. Moreover, geometry glories in that from so few principles 
brought in from elsewhere it produces so many things. Therefore, geometry is founded on 
mechanical practice, and is nothing other than that part of universal mechanics which 
accurately proposes and demonstrates the art of measuring. Since, however, the manual arts 
are chiefly involved with moving bodies, it comes to be that geometry is commonly referred 
to magnitude, mechanics to motion. In this sense rational mechanics will be the science, 
accurately proposed and demonstrated, of the motions which result from any forces 
whatsoever, and of the forces which are required for any motions whatsoever. This part of 
mechanics was cultivated by the ancients looking at the five powers with respect to manual 
arts, who scarcely considered heaviness {gravity} (since it is not a manual power) otherwise 
than for moving weights by those powers. We, however, having regard not to the arts but to 
philosophy, and writing not about manual but about natural powers, treat especially those 
things which relate to heaviness {gravity}, lightness {levity}, elastic force, resistance of 
fluids, and like forces whether attractive or impulsive. And for the sake of those things, we 
put these forward as our mathematical principles of philosophy. For, the whole burden of 
philosophy is seen to be involved in this, that from the phenomena of motions we might 
investigate the forces of nature, then from these forces we might demonstrate the remaining 
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phenomena. And the general propositions which we have treated systematically in the First 
and Second Books look to this point. In the Third Book, on the other hand, we have put forth 
an example of this thing by means of the explication of the system of the world. For there, by 
means of propositions mathematically demonstrated in the prior Books, the forces of 
heaviness {gravity} by which bodies tend to the Sun and the individual planets are derived 
from celestial phenomena. Then, from these forces, by means of propositions likewise 
mathematical, are deduced the motions of the planets, comets, Moon, and sea. If only we 
were able to derive generally the other phenomena of nature by arguing in the same way 
from mechanical principles. For many things move me to suspect it to be possible for all 
these things to depend on certain forces, by which the particles of bodies, by causes not yet 
known, are either mutually impelled towards each other and cohere according to regular 
figures, or are driven away and recede from each other: those forces being unknown, 
philosophers have hitherto probed nature in vain. I expect, however, that either for this mode 
of philosophizing, or for some truer one, these principles we have laid down will supply 
some light. 
 In publishing this work, that man most acute and erudite in all kinds of literature, 
Edmund Halley, rendered assistance not only by correcting typographical errors and 
attending to the engraving of the figures, but also was the author of the undertaking of this 
publication. For, when he had obtained from me the demonstration of the figure of the 
celestial orbits, he did not cease to solicit communication of the same to the Royal Society, 
which thereafter, by their encouragement and benign auspices, effected my beginning to 
think of letting out the same into the light. But after I had addressed the inequalities of the 
Moon’s motion, and thereafter began to attempt other things which looked to the laws and 
measures of heaviness {gravity} and of other forces, and the figures described by bodies 
attracted according to whatever given laws, to the motions of several bodies among 
themselves, to the motions of bodies in resisting media, to the forces, densities, and motions 
of media, to the orbits of comets, and to similar things, I resolved to postpone the publication 
to a different time, so that other cases might be examined and I might present them to the 
public all together. What relates to lunar motion (it being imperfect) I have brought together 
in the corollaries to Proposition 66, lest I be constrained to propose and demonstrate 
separately the individual things by a method more prolix than accords with the worth of the 
subject matter, and to interrupt the series of the remaining propositions. Some things 
discovered later I chose to insert in less suitable places rather than change the numbering of 
propositions and citations. I earnestly beseech that all might be read candidly, and that 
defects in material so difficult might not be so much reprehended as investigated and 
benignly made good by new endeavors of the readers. 
 
Given at Cambridge, from the College 
of The Most Holy Trinity, May 8, 1686. 
 

IS. NEWTON 
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NOTES ON NEWTON’S PREFACE TO THE FIRST EDITION 

 
 
 
This preface is an introduction to the whole of the Principia, and, in a way, to the whole of 
modern mathematical physics. Leaving aside the publishing information and editorial 
information in the last paragraph, this preface consists of five principal parts: 
 
(1) The MODE of the Principia, and of modern physics generally. 
(2) The TAXIS, i.e. the place or situation of the Principia in the larger scheme of human 
knowledge. 
(3) The SKOPOS, i.e. the goal or end of the Principia, and of modern physics generally. 
(4) The significance of the TITLE. 
(5) The DIVISIO TEXTUS, that is, the break-down of the Principia into its main parts. 
 
Newton’s understanding of the distinction of the disciplines is hardly traditional, and it has 
not exactly become widely accepted. But it is interesting, and to some extent helpful for 
understanding Newton’s project as he himself saw it. Certainly it is useful to understand his 
goal—Item (3)—and the main parts and order of the Principia—Item (4). For the sake of 
completeness, however, I will offer here some comments on all the components of the 
Preface. 
 
 

(1) THE MODE OF THE PRINCIPIA 
 
“The moderns, foregoing substantial forms and occult qualities, have undertaken to subject 
the phenomena of nature to mathematical laws.” 
 The mode will be to apply mathematics, and to seek out mathematical regularities 
and intelligibilities in the natural behavior of bodies—as opposed to having recourse to 
“occult qualities.” People accused Newton of introducing another occult quality, or hidden 
causal power, GRAVITY, but he insists that he does no such thing. He only characterizes the 
kind of movement toward each other that all bodies exhibit, and shows that there is such a 
movement or tendency. He nowhere pretends to discover its cause. 
 Newton remarks on the modern rejection of substantial forms and occult qualities. He 
does not merely note it, but agrees with it, it seems, since he says later in this preface that, 
ignorant of certain “forces,” philosophers have “hitherto probed nature in vain.” His aim is to 
subject the phenomena of nature to the “laws” of mathematics, as far as possible, and in so 
doing he speaks as though his discipline were a kind of “mechanics.” 
 
 

(2) THE SITUATION OF THE PRINCIPIA 
 
Newton identifies the place of his science, or the nature of his science, in six steps: 
 (a) He introduces an ancient division (rational vs. practical mechanics), which he 
accepts, and his science is one member of this division. 
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 (b) He introduces another division which is commonly made, and which he rejects–– 
i.e. the distinction between geometry vs. mechanics as exact vs. inexact. 
 (c) He introduces a third division commonly made, i.e. geometry concerns 
magnitude, and mechanics concerns motion. 
 (d) He gathers the elements of the distinctions he accepts, and concludes that 
“rational mechanics” is a science exactly demonstrating motions from forces, and forces 
from motions. 
 (e) He distinguishes the study of manual forces (“art”) from the study of natural 
forces (“science” or “philosophy,” he says both), and places the Principia under the latter, 
i.e. it is a science of natural forces. 
 (f) He says at the outset that we are not studying math for its own sake, but insofar as 
it is useful for the study of understanding natural forces. 
 
 
 
(a) ANCIENT DIVISION 
 
 MECHANICS 
  RATIONAL = Proceeds by demonstration; exact. 
  PRACTICAL = Done by hand; inexact. 
 
(b) MISGUIDED DIVISION 
 
 GEOMETRY = exact 
 MECHANICS = inexact 
 
This thinking comes about because “mechanics” first applied to manual arts, and what is 
done by hand is inaccurate (vs. what is done in the mind). But if someone COULD make 
perfect straight lines and circles etc., he would be the most perfect mechanic. The 
inexactness is in the artist, not in the art itself; so this is not a distinction of arts. “Exact” and 
“inexact” distinguish the capacity of the artist only, not the arts. 
 [“Mechanics” comes from the Greek MECHANAOMAI, like the Latin “machinari,” 
which mean to make by art, to put together, to construct, to build, to contrive, to devise. 
Among the first “machinists” were the theatrical machinists and builders and makers of 
military engines. And a MECHOS was a “means, expedient, remedy,” a way of getting this 
or that on stage or off of it, quickly. Cf. apparatus, “what has been prepared for something.”] 
 Again, geometry presupposes accurate description of straight lines and circles, and 
does not produce those results. Producing those is the work of mechanics. (Cf. Descartes’ 
“machines.”) So it is not proper to distinguish between mechanics and geometry as the 
inexact and the exact, since the exact science of geometry depends upon the prior science of 
mechanics. 
 [Mechanics is prior to geometry, according to Newton! Is he thinking of forming 
circles with compasses, and straight lines with straight-edges? Probably not, since that is not 
exact. He is thinking more of the Divine Mechanic, who produces things exactly in the world 
and by natural motions. Mechanics shows us how to make the lines and surfaces which 
geometry needs (e.g. straight lines, circular lines, etc.). We should think of something like 



 17 

Descartes’ “machines” for drawing various curves. That is mechanical drawing—and that is 
prior to geometry according to Newton. It seems he does not think of geometry as abstract, 
but concrete, studying things actually drawn (albeit perfectly accurately, if done by a perfect 
mechanic). This fits with his speaking of geometry as an art of measurement. This is very 
English, and very much the thought of a physicist. Einstein, too, thinks geometry is about 
physical space (What other space is there? he might ask), and hence whether Euclid’s 
geometry is true or not depends on the properties of straight lines in physical space, i.e. on 
the properties of light rays in a vacuum.] 
 Since geometry is based upon the products of mechanics, and is about them, it is 
really just a part of “mechanics” taken generally, i.e. it is a part of “universal mechanics,” 
differing from other parts of mechanics by concerning itself specifically with measurement. 
 
 
(c) THIRD DIVISION 
 
 GEOMETRY = about magnitude 
 MECHANICS = about motion 
 
He says this distinction comes about because manual arts (which people tend to identify with 
“mechanics”) are concerned with moving things––“Move this over there” (engineering) 
problems. Geometry is just about how big things are, relative sizes, proportions, etc., how to 
measure them. 
 He accepts this, though, and defines mechanics by its concern for motion. 
 
 
(d) GATHERING THE DEFINITION OF “RATIONAL MECHANICS” 
 
“Rational mechanics” is the science of exactly demonstrating motions from forces, and 
forces from motions. 
 “Science” comes from (e) below, where he will say we are pursuing philosophy, not 
art. 
 “Exact” comes from (a) and (b). 
 “Demonstrating” comes from (a) (we use our reason, not our hands) 
 “Motions” comes from (c) 
 “Forces” comes out of the blue, seemingly. 
 
Despite its importance, Newton nowhere in the Principia (to my knowledge) defines “force” 
generally, but only certain measures of force, and different types of force. 
 In his unpublished De Gravitatione et Aequipondio Fluidorum, Definition 5 reads: 
 

Vis est motus et quietis causale principium. Estque vel externum quod in 
aliquod corpus impressum motum ejus vel generat vel destruit, vel aliquo 
saltem modo mutat, vel est internum principium quo motus vel quies corpori 
indita conservatur, et quodlibet ens in suo statu perseverare conatur & 
impeditum reluctatur. 
 



 18 

Force is a causal principle of motion and of rest. And it is either an external 
one, which, impressed upon some body, produces or destroys, or in some 
way changes its motion, or it is an internal principle by which the motion or 
rest of a body is conserved, and any being is inclined to persevere in its state 
and resists impediment. 

 
I think two elements at least enter into the definition of “force” as he intends it. He gives a 
hint at one of these when he says “forces, whether attractive or impulsive” (bottom of xvii). 
A “force” is a cause of motion, whether by pushing or pulling. 
 Another element becomes clear once he begins to define the different types of force, 
and especially once he proposes the composition and analysis of forces. A force is or has a 
vector quantity, a magnitude with some direction. This fits with his talk, here in the Preface, 
about subjecting the phenomena of nature to mathematics, and in particular to geometry. 
Pure number theory does not involve continuous magnitude, and does not involve direction. 
 So “mechanics” seems to mean a science of motion as produced by forces, i.e. by 
certain vector quantities, and hence it is an essentially geometrical study of motion. 
 There is some connection, too, between the meanings or connotations of “mechanics” 
and “force.” Something mechanical is put together from the outside, with parts compelled to 
function in some whole which have no interest or inclination of their own to function in such 
a whole. Their functions or movements within that whole are not natural, then, but forced. 
 If “force” implies violence or compulsion (contrary to inclination), and “natural” 
implies agreement with or proceeding from some inner inclination, then “natural force” 
almost sounds oxymoronic. Certainly for something to be natural and for it to be forced 
involves a contradiction, if one is looking to the same thing. But at least a power of acting 
upon (and even forcing) other things can be natural to the possessor of that power. But since 
Newton is not interested in studying “occult qualities” like the natures of things, his 
understanding of “force” does not seem to mean violent, but only some cause productive of 
motion. And his understanding of “natural” is merely as opposed to man-made. 
 So MECHANICS seems to mean the science by which one can determine the 
resultant motion from given quantified forces (e.g. accelerations), and, conversely, by which 
one can determine the forces given the resultant motion. 
 
 NOTE: What are the “five powers” of the manual arts? He probably means the lever, 
pulley, wedge, wheel, inclined plane. 
 
 
(e) MANUAL vs. NATURAL, ART vs. SCIENCE. 
 
 MECHANICAL ART = about manual forces 
 
 MECHANICAL SCIENCE = about natural forces 
 
The ancients mainly used natural forces, but did not do much to quantify them, or to learn 
their quantitative properties and effects, e.g. heaviness. It is true that Archimedes discovered 
the law of the lever, and certain laws concerning buoyancy and the like. 
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(f) NOT MATH FOR ITS OWN SAKE. 
 
 This is not mathematics for its own sake, but for the understanding of natural forces. 
So the principles contained herein are not principles of mathematics only, but of natural 
phenomena. But they are the mathematical principles of natural things, vs. the occult 
qualities producing them. 
 
 
 

(3) THE GOAL OF THE PRINCIPIA 
 
 What is the job of natural philosophy according to Newton? 
 To find out the [primary] forces of nature by analyzing the motions we see, and then 
from those simple natural forces to demonstrate (i.e. predict or explain) all other natural 
phenomena. So we begin by analysis (and discovery), and then proceed to synthesis (and 
demonstration)—we reason back to simple causes, then reason forward again to all possible 
effects. 
 
 
 

(4) THE TITLE OF THE PRINCIPIA 
 
The title of Newton’s famous book is Principia Mathematica Philosophiae Naturalis, or 
“Natural Philosophy’s Mathematical Principles.” 
 Even by Newton’s time, there was no clear distinction between “science” and 
“philosophy,” in the way people try to draw one today. 
 But it differs from the first part of natural philosophy by having recourse to 
mathematics and to very particular forms of sense experience or observation. Although the 
main conclusion reached, namely the universal acceleration of all bodies towards one another 
according to an inverse square law, is “universal,” it is not founded mainly upon universal 
experience, nor is it reasoned out from common conceptions of motion. 
 
 
 
 
 

(5) THE DIVISION OF THE PRINCIPIA 
 
 The book has two parts: 
 (1) “The Motion of Bodies” (Books 1-2) 
 (2) “The System of the World” (Book 3) 
 The first part (i.e. the first two books) is about finding the basic laws of motion and 
proving the derivative laws from them. 
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 The second part (i.e. the Third Book) exemplifies, in the case of the structure of the 
universe and the motions of celestial bodies, how we can derive actual motions of bodies 
from our laws. 
 QUESTION: Do Books 1 and 2 prove the truth of the results in book 3? Or do the 
results in Book 3, by their agreement with observation, prove the truth of the results in Books 
1 and 2? In other words, just how “mathematical” is our mode of proceeding in the 
Principia? Do we begin from self-evident things, and deduce the truth of their necessary 
consequences? Or do we lay down certain hypotheses, and confirm them by the agreement 
between their consequences and the data of experience? 
 Cf. Euclid: the axioms and definitions are self-evident, but we learn their illuminating 
power as we progress. To be able to construct the universe from Newton’s laws of motion is 
a significant piece of evidence that they give true insight into nature. 
 
 
 
 
THE NEWTONIAN SUSPICION. 
 Newton ends his preface by remarking on his suspicion. He suspects that all the 
phenomena of nature depend on pushes and pulls among particles, and could be derived 
from such forces. 
 He says all philosophical investigation into nature “hitherto” has been in vain because 
no one has discovered such forces (or particles). This implies that “substantial forms” and 
the like offered no genuine insight into nature. This is a facile dismissal of Aristotle and his 
understanding of nature as explained in his Physics. But it is more for his positive 
contributions than for his dismissals of ancient philosophy that Newton is famous, and so I 
will refrain from commenting on his attitude toward ancient philosophy. 
 
 
 
 
 
 
 



 11 

THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 3 
 
 
 

A BRIEF BIO OF NEWTON; 
THE TITLE OF THE WORK; 

NEWTON’S PREFACE TO THE PRINCIPIA 
 
 

BRIEF BIOGRAPHY OF ISAAC NEWTON 
 
Isaac Newton was born in Woolsthorpe Manor in Woolsthorpe-by-Colsterworth, a hamlet in 
Lincolnshire county, December 25, 1642 (in the old dating system, before the Gregorian 
calendar had been adopted in England), the same year Galileo died. 
 His father, also named Isaac Newton, died three months before he was born 
(prematurely). His mother, Hanna Ayscough, remarried to a Reverend Barnabus Smith. 
Newton disliked this step-father intensely, and one of the sins Newton lists among those he 
committed before he was 19 was “Threatening my father and mother Smith to burn them and 
the house over them.” 
 Newton was too in love with study to marry, so he never did, although he was 
engaged to a Miss Storey when he was in his late teens. From ages 12-16, he was educated at 
The King’s School, Grantham. In June 1661, he was enrolled in Trinity College, Cambridge. 
 In 1665, he discovered the generalized binomial theorem, and obtained his degree. 
The university then temporarily closed due to the “Great Plague,” and during this time 
Newton went back home to Woolsthorpe where he privately developed the calculus and his 
theory of gravitation. This has come to be called his “annum mirabile,” his amazing year of 
rapid, prolific, momentous discovery. 
 In 1667 he returned to Trinity College as a fellow. As such, he was supposed to be 
ordained a priest eventually, which he wished to avoid (he was quite heterodox)—but there 
was no time-limit, so in his case they just postponed the ordination indefinitely. Later he was 
elected to the Lucasian Chair, which more strictly required ordination, but which he again 
avoided, this time by special permission from Charles II. 
 His work significantly advanced pretty much every branch of mathematics at his time 
(an impossible task to perform today). He and Leibniz independently discovered calculus, 
and each claimed the priority in discovery. This is a tangled historical question. Newton, 
together with other members of the Royal Society, accused Leibniz of plagiarism (which 
appears not to have been true). There was bitterness between these two minds right up to the 
death of Leibniz in 1716. 
 Newton did much work in optics. He split and re-composed white light with prisms, 
and developed the first functioning reflecting telescope, the “Newtonian,” in 1668. He 
developed a particle theory of light. He also had interests in alchemy. 
 He originally delayed publishing the Principia because he was afraid of criticism and 
controversy (which is to some extent evident in the Rules for Philosophizing at the end). He 
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wanted to be certain he had dotted all his i’s and crossed all his t’s, as it were. The Principia 
was published on July 5, 1687 with the encouragement of Edmond Halley. 
 The work drew criticism that Newton was postulating a force (gravity) capable of 
acting at a distance, even over great distances, and so he, like the ancients, was inventing an 
“occult quality.” In later editions, Newton made very clear that he was not making any 
claims about the nature of the cause of heaviness or gravity. He was saying only that all 
bodies were in fact heavy toward each other, whatever the cause of that tendency in them 
might be. In a later edition, he made these things very clear, as we shall see. 
 In the 1690s, Newton wrote biblical commentaries. He disputed the existence of the 
Trinity (in an unpublished manuscript sent to John Locke). He was a member of Parliament 
from 1689 to 1690. He also became Master of the Mint, and took charge of England’s 
recoining. 
 In 1705, Newton was knighted by Queen Anne during her visit to Trinity College. He 
was the first scientist ever to be knighted. 
 He died in his sleep in London on March 31, 1727 [or March 20, 1726 by England’s 
calendar prior to adoption of the Gregorian]. 
 After he died, Newton’s body was found to be loaded with mercury! No doubt he 
inhaled vaporized mercury in his alchemical researches. This probably explains his nervous 
breakdowns and increasing eccentricity as he got older. 
 Praise for Newton is abundant and great. He himself wrote of himself (in a letter to 
Robert Hooke in Feb. 1676) “If I have seen further it is by standing on the shoulders of 
giants.” (The saying is not his own invention, but was attributed to Bernard of Chartres by 
John of Salisbury in the twelfth century.) Similarly he wrote in a memoir “I do not know 
what I may appear to the world, but to myself I seem to have been only like a boy playing on 
the sea-shore, and diverting myself in now and then finding a smoother pebble or a prettier 
shell than ordinary, whilst the great ocean of truth lay all undiscovered before me.” 
 Newton’s Monument (1731) is in Westminster Abbey, near his tomb. 
 Apparently Newton himself used to say that he was inspired to develop his theory of 
gravity by watching an apple fall from a tree. 
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THE TEXT OF NEWTON’S PREFACE TO PRINCIPIA  
 
 
 
 

PREFACE 
OF THE AUTHOR 

TO 
THE READER 

(Ron J. Richard Translation) 
 
 
Since the ancients specially prized mechanics in the investigation of natural things (our 
authority is Pappus), and the moderns, foregoing substantial forms and occult qualities, have 
undertaken to subject the phenomena of nature to mathematical laws, it seemed right to 
cultivate mathematics in this treatise, insofar as it relates to philosophy. In fact, the ancients 
organized mechanics by a two-fold division: rational, which accurately proceeds by 
demonstration, and practical. All the manual arts aim at the practical, from which assuredly 
the name mechanics is derived. Since, however, artificers usually work insufficiently 
accurately, it comes to be that all mechanics is so distinguished from geometry, that whatever 
might be accurate is referred to geometry, whatever might be less accurate to mechanics. But 
still the errors are not of the art but of the artificers. He who works less accurately is an 
imperfect mechanic, and if anyone could work most accurately he would be the most perfect 
mechanic of all. For, the description of right lines and circles, upon which geometry is 
founded, pertains to mechanics. Geometry does not teach how to describe these lines, but 
requires [postulat] them. For, it requires that the beginner, before he reaches the threshold of 
geometry, should learn how to describe the same accurately; then, it teaches how problems 
are solved by these operations. To describe right lines and circles are problems, but not 
geometrical ones. From mechanics is required the solution of these problems, in geometry is 
taught the use of these solutions. Moreover, geometry glories in that from so few principles 
brought in from elsewhere it produces so many things. Therefore, geometry is founded on 
mechanical practice, and is nothing other than that part of universal mechanics which 
accurately proposes and demonstrates the art of measuring. Since, however, the manual arts 
are chiefly involved with moving bodies, it comes to be that geometry is commonly referred 
to magnitude, mechanics to motion. In this sense rational mechanics will be the science, 
accurately proposed and demonstrated, of the motions which result from any forces 
whatsoever, and of the forces which are required for any motions whatsoever. This part of 
mechanics was cultivated by the ancients looking at the five powers with respect to manual 
arts, who scarcely considered heaviness {gravity} (since it is not a manual power) otherwise 
than for moving weights by those powers. We, however, having regard not to the arts but to 
philosophy, and writing not about manual but about natural powers, treat especially those 
things which relate to heaviness {gravity}, lightness {levity}, elastic force, resistance of 
fluids, and like forces whether attractive or impulsive. And for the sake of those things, we 
put these forward as our mathematical principles of philosophy. For, the whole burden of 
philosophy is seen to be involved in this, that from the phenomena of motions we might 
investigate the forces of nature, then from these forces we might demonstrate the remaining 
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phenomena. And the general propositions which we have treated systematically in the First 
and Second Books look to this point. In the Third Book, on the other hand, we have put forth 
an example of this thing by means of the explication of the system of the world. For there, by 
means of propositions mathematically demonstrated in the prior Books, the forces of 
heaviness {gravity} by which bodies tend to the Sun and the individual planets are derived 
from celestial phenomena. Then, from these forces, by means of propositions likewise 
mathematical, are deduced the motions of the planets, comets, Moon, and sea. If only we 
were able to derive generally the other phenomena of nature by arguing in the same way 
from mechanical principles. For many things move me to suspect it to be possible for all 
these things to depend on certain forces, by which the particles of bodies, by causes not yet 
known, are either mutually impelled towards each other and cohere according to regular 
figures, or are driven away and recede from each other: those forces being unknown, 
philosophers have hitherto probed nature in vain. I expect, however, that either for this mode 
of philosophizing, or for some truer one, these principles we have laid down will supply 
some light. 
 In publishing this work, that man most acute and erudite in all kinds of literature, 
Edmund Halley, rendered assistance not only by correcting typographical errors and 
attending to the engraving of the figures, but also was the author of the undertaking of this 
publication. For, when he had obtained from me the demonstration of the figure of the 
celestial orbits, he did not cease to solicit communication of the same to the Royal Society, 
which thereafter, by their encouragement and benign auspices, effected my beginning to 
think of letting out the same into the light. But after I had addressed the inequalities of the 
Moon’s motion, and thereafter began to attempt other things which looked to the laws and 
measures of heaviness {gravity} and of other forces, and the figures described by bodies 
attracted according to whatever given laws, to the motions of several bodies among 
themselves, to the motions of bodies in resisting media, to the forces, densities, and motions 
of media, to the orbits of comets, and to similar things, I resolved to postpone the publication 
to a different time, so that other cases might be examined and I might present them to the 
public all together. What relates to lunar motion (it being imperfect) I have brought together 
in the corollaries to Proposition 66, lest I be constrained to propose and demonstrate 
separately the individual things by a method more prolix than accords with the worth of the 
subject matter, and to interrupt the series of the remaining propositions. Some things 
discovered later I chose to insert in less suitable places rather than change the numbering of 
propositions and citations. I earnestly beseech that all might be read candidly, and that 
defects in material so difficult might not be so much reprehended as investigated and 
benignly made good by new endeavors of the readers. 
 
Given at Cambridge, from the College 
of The Most Holy Trinity, May 8, 1686. 
 

IS. NEWTON 
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NOTES ON NEWTON’S PREFACE TO THE FIRST EDITION 

 
 
 
This preface is an introduction to the whole of the Principia, and, in a way, to the whole of 
modern mathematical physics. Leaving aside the publishing information and editorial 
information in the last paragraph, this preface consists of five principal parts: 
 
(1) The MODE of the Principia, and of modern physics generally. 
(2) The TAXIS, i.e. the place or situation of the Principia in the larger scheme of human 
knowledge. 
(3) The SKOPOS, i.e. the goal or end of the Principia, and of modern physics generally. 
(4) The significance of the TITLE. 
(5) The DIVISIO TEXTUS, that is, the break-down of the Principia into its main parts. 
 
Newton’s understanding of the distinction of the disciplines is hardly traditional, and it has 
not exactly become widely accepted. But it is interesting, and to some extent helpful for 
understanding Newton’s project as he himself saw it. Certainly it is useful to understand his 
goal—Item (3)—and the main parts and order of the Principia—Item (4). For the sake of 
completeness, however, I will offer here some comments on all the components of the 
Preface. 
 
 

(1) THE MODE OF THE PRINCIPIA 
 
“The moderns, foregoing substantial forms and occult qualities, have undertaken to subject 
the phenomena of nature to mathematical laws.” 
 The mode will be to apply mathematics, and to seek out mathematical regularities 
and intelligibilities in the natural behavior of bodies—as opposed to having recourse to 
“occult qualities.” People accused Newton of introducing another occult quality, or hidden 
causal power, GRAVITY, but he insists that he does no such thing. He only characterizes the 
kind of movement toward each other that all bodies exhibit, and shows that there is such a 
movement or tendency. He nowhere pretends to discover its cause. 
 Newton remarks on the modern rejection of substantial forms and occult qualities. He 
does not merely note it, but agrees with it, it seems, since he says later in this preface that, 
ignorant of certain “forces,” philosophers have “hitherto probed nature in vain.” His aim is to 
subject the phenomena of nature to the “laws” of mathematics, as far as possible, and in so 
doing he speaks as though his discipline were a kind of “mechanics.” 
 
 

(2) THE SITUATION OF THE PRINCIPIA 
 
Newton identifies the place of his science, or the nature of his science, in six steps: 
 (a) He introduces an ancient division (rational vs. practical mechanics), which he 
accepts, and his science is one member of this division. 
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 (b) He introduces another division which is commonly made, and which he rejects–– 
i.e. the distinction between geometry vs. mechanics as exact vs. inexact. 
 (c) He introduces a third division commonly made, i.e. geometry concerns 
magnitude, and mechanics concerns motion. 
 (d) He gathers the elements of the distinctions he accepts, and concludes that 
“rational mechanics” is a science exactly demonstrating motions from forces, and forces 
from motions. 
 (e) He distinguishes the study of manual forces (“art”) from the study of natural 
forces (“science” or “philosophy,” he says both), and places the Principia under the latter, 
i.e. it is a science of natural forces. 
 (f) He says at the outset that we are not studying math for its own sake, but insofar as 
it is useful for the study of understanding natural forces. 
 
 
 
(a) ANCIENT DIVISION 
 
 MECHANICS 
  RATIONAL = Proceeds by demonstration; exact. 
  PRACTICAL = Done by hand; inexact. 
 
(b) MISGUIDED DIVISION 
 
 GEOMETRY = exact 
 MECHANICS = inexact 
 
This thinking comes about because “mechanics” first applied to manual arts, and what is 
done by hand is inaccurate (vs. what is done in the mind). But if someone COULD make 
perfect straight lines and circles etc., he would be the most perfect mechanic. The 
inexactness is in the artist, not in the art itself; so this is not a distinction of arts. “Exact” and 
“inexact” distinguish the capacity of the artist only, not the arts. 
 [“Mechanics” comes from the Greek MECHANAOMAI, like the Latin “machinari,” 
which mean to make by art, to put together, to construct, to build, to contrive, to devise. 
Among the first “machinists” were the theatrical machinists and builders and makers of 
military engines. And a MECHOS was a “means, expedient, remedy,” a way of getting this 
or that on stage or off of it, quickly. Cf. apparatus, “what has been prepared for something.”] 
 Again, geometry presupposes accurate description of straight lines and circles, and 
does not produce those results. Producing those is the work of mechanics. (Cf. Descartes’ 
“machines.”) So it is not proper to distinguish between mechanics and geometry as the 
inexact and the exact, since the exact science of geometry depends upon the prior science of 
mechanics. 
 [Mechanics is prior to geometry, according to Newton! Is he thinking of forming 
circles with compasses, and straight lines with straight-edges? Probably not, since that is not 
exact. He is thinking more of the Divine Mechanic, who produces things exactly in the world 
and by natural motions. Mechanics shows us how to make the lines and surfaces which 
geometry needs (e.g. straight lines, circular lines, etc.). We should think of something like 
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Descartes’ “machines” for drawing various curves. That is mechanical drawing—and that is 
prior to geometry according to Newton. It seems he does not think of geometry as abstract, 
but concrete, studying things actually drawn (albeit perfectly accurately, if done by a perfect 
mechanic). This fits with his speaking of geometry as an art of measurement. This is very 
English, and very much the thought of a physicist. Einstein, too, thinks geometry is about 
physical space (What other space is there? he might ask), and hence whether Euclid’s 
geometry is true or not depends on the properties of straight lines in physical space, i.e. on 
the properties of light rays in a vacuum.] 
 Since geometry is based upon the products of mechanics, and is about them, it is 
really just a part of “mechanics” taken generally, i.e. it is a part of “universal mechanics,” 
differing from other parts of mechanics by concerning itself specifically with measurement. 
 
 
(c) THIRD DIVISION 
 
 GEOMETRY = about magnitude 
 MECHANICS = about motion 
 
He says this distinction comes about because manual arts (which people tend to identify with 
“mechanics”) are concerned with moving things––“Move this over there” (engineering) 
problems. Geometry is just about how big things are, relative sizes, proportions, etc., how to 
measure them. 
 He accepts this, though, and defines mechanics by its concern for motion. 
 
 
(d) GATHERING THE DEFINITION OF “RATIONAL MECHANICS” 
 
“Rational mechanics” is the science of exactly demonstrating motions from forces, and 
forces from motions. 
 “Science” comes from (e) below, where he will say we are pursuing philosophy, not 
art. 
 “Exact” comes from (a) and (b). 
 “Demonstrating” comes from (a) (we use our reason, not our hands) 
 “Motions” comes from (c) 
 “Forces” comes out of the blue, seemingly. 
 
Despite its importance, Newton nowhere in the Principia (to my knowledge) defines “force” 
generally, but only certain measures of force, and different types of force. 
 In his unpublished De Gravitatione et Aequipondio Fluidorum, Definition 5 reads: 
 

Vis est motus et quietis causale principium. Estque vel externum quod in 
aliquod corpus impressum motum ejus vel generat vel destruit, vel aliquo 
saltem modo mutat, vel est internum principium quo motus vel quies corpori 
indita conservatur, et quodlibet ens in suo statu perseverare conatur & 
impeditum reluctatur. 
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Force is a causal principle of motion and of rest. And it is either an external 
one, which, impressed upon some body, produces or destroys, or in some 
way changes its motion, or it is an internal principle by which the motion or 
rest of a body is conserved, and any being is inclined to persevere in its state 
and resists impediment. 

 
I think two elements at least enter into the definition of “force” as he intends it. He gives a 
hint at one of these when he says “forces, whether attractive or impulsive” (bottom of xvii). 
A “force” is a cause of motion, whether by pushing or pulling. 
 Another element becomes clear once he begins to define the different types of force, 
and especially once he proposes the composition and analysis of forces. A force is or has a 
vector quantity, a magnitude with some direction. This fits with his talk, here in the Preface, 
about subjecting the phenomena of nature to mathematics, and in particular to geometry. 
Pure number theory does not involve continuous magnitude, and does not involve direction. 
 So “mechanics” seems to mean a science of motion as produced by forces, i.e. by 
certain vector quantities, and hence it is an essentially geometrical study of motion. 
 There is some connection, too, between the meanings or connotations of “mechanics” 
and “force.” Something mechanical is put together from the outside, with parts compelled to 
function in some whole which have no interest or inclination of their own to function in such 
a whole. Their functions or movements within that whole are not natural, then, but forced. 
 If “force” implies violence or compulsion (contrary to inclination), and “natural” 
implies agreement with or proceeding from some inner inclination, then “natural force” 
almost sounds oxymoronic. Certainly for something to be natural and for it to be forced 
involves a contradiction, if one is looking to the same thing. But at least a power of acting 
upon (and even forcing) other things can be natural to the possessor of that power. But since 
Newton is not interested in studying “occult qualities” like the natures of things, his 
understanding of “force” does not seem to mean violent, but only some cause productive of 
motion. And his understanding of “natural” is merely as opposed to man-made. 
 So MECHANICS seems to mean the science by which one can determine the 
resultant motion from given quantified forces (e.g. accelerations), and, conversely, by which 
one can determine the forces given the resultant motion. 
 
 NOTE: What are the “five powers” of the manual arts? He probably means the lever, 
pulley, wedge, wheel, inclined plane. 
 
 
(e) MANUAL vs. NATURAL, ART vs. SCIENCE. 
 
 MECHANICAL ART = about manual forces 
 
 MECHANICAL SCIENCE = about natural forces 
 
The ancients mainly used natural forces, but did not do much to quantify them, or to learn 
their quantitative properties and effects, e.g. heaviness. It is true that Archimedes discovered 
the law of the lever, and certain laws concerning buoyancy and the like. 
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(f) NOT MATH FOR ITS OWN SAKE. 
 
 This is not mathematics for its own sake, but for the understanding of natural forces. 
So the principles contained herein are not principles of mathematics only, but of natural 
phenomena. But they are the mathematical principles of natural things, vs. the occult 
qualities producing them. 
 
 
 

(3) THE GOAL OF THE PRINCIPIA 
 
 What is the job of natural philosophy according to Newton? 
 To find out the [primary] forces of nature by analyzing the motions we see, and then 
from those simple natural forces to demonstrate (i.e. predict or explain) all other natural 
phenomena. So we begin by analysis (and discovery), and then proceed to synthesis (and 
demonstration)—we reason back to simple causes, then reason forward again to all possible 
effects. 
 
 
 

(4) THE TITLE OF THE PRINCIPIA 
 
The title of Newton’s famous book is Principia Mathematica Philosophiae Naturalis, or 
“Natural Philosophy’s Mathematical Principles.” 
 Even by Newton’s time, there was no clear distinction between “science” and 
“philosophy,” in the way people try to draw one today. 
 But it differs from the first part of natural philosophy by having recourse to 
mathematics and to very particular forms of sense experience or observation. Although the 
main conclusion reached, namely the universal acceleration of all bodies towards one another 
according to an inverse square law, is “universal,” it is not founded mainly upon universal 
experience, nor is it reasoned out from common conceptions of motion. 
 
 
 
 
 

(5) THE DIVISION OF THE PRINCIPIA 
 
 The book has two parts: 
 (1) “The Motion of Bodies” (Books 1-2) 
 (2) “The System of the World” (Book 3) 
 The first part (i.e. the first two books) is about finding the basic laws of motion and 
proving the derivative laws from them. 
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 The second part (i.e. the Third Book) exemplifies, in the case of the structure of the 
universe and the motions of celestial bodies, how we can derive actual motions of bodies 
from our laws. 
 QUESTION: Do Books 1 and 2 prove the truth of the results in book 3? Or do the 
results in Book 3, by their agreement with observation, prove the truth of the results in Books 
1 and 2? In other words, just how “mathematical” is our mode of proceeding in the 
Principia? Do we begin from self-evident things, and deduce the truth of their necessary 
consequences? Or do we lay down certain hypotheses, and confirm them by the agreement 
between their consequences and the data of experience? 
 Cf. Euclid: the axioms and definitions are self-evident, but we learn their illuminating 
power as we progress. To be able to construct the universe from Newton’s laws of motion is 
a significant piece of evidence that they give true insight into nature. 
 
 
 
 
THE NEWTONIAN SUSPICION. 
 Newton ends his preface by remarking on his suspicion. He suspects that all the 
phenomena of nature depend on pushes and pulls among particles, and could be derived 
from such forces. 
 He says all philosophical investigation into nature “hitherto” has been in vain because 
no one has discovered such forces (or particles). This implies that “substantial forms” and 
the like offered no genuine insight into nature. This is a facile dismissal of Aristotle and his 
understanding of nature as explained in his Physics. But it is more for his positive 
contributions than for his dismissals of ancient philosophy that Newton is famous, and so I 
will refrain from commenting on his attitude toward ancient philosophy. 
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 4 
 

 
DEFINITIONS 1 – 4 

 
 
 
 
Newton begins his Principia with eight definitions, followed by a Scholium—a reflection on 
the significance or application or details of the preceding material, in this case the 
definitions. The terms he defines are these: 
 
Definition 1 = Quantity of Matter (also called “Mass”) 
Definition 2 = Quantity of Motion (also called “Momentum”) 
Definition 3 = Innate Force of Matter (also called “Inertia”) 
Definition 4 = Impressed Force 
Definition 5 = Centripetal Force 
Definition 6 = Absolute Quantity of Centripetal Force 
Definition 7 = Accelerative Quantity of Centripetal Force 
Definition 8 = Motive Quantity of Centripetal Force 
 
In this class, we will be looking at the first four of these definitions. 
Here is Newton’s text for the first definition: 
 
 
 

DEFINITION 1 
 

“QUANTITY OF MATTER” or “MASS.” 
 

 Quantity of matter is the measure of the same having arisen from its 
density and size conjointly. 
 Air with the density doubled, in double the space as well, becomes 
quadrupled; in triple, sextupled. The same is to be understood of snow and dust 
condensed by compression or liquefaction. And alike is the account of all bodies 
which, by whatever causes, are diversely condensed. Nevertheless, I take no account 
here of a medium, if there be such, which freely pervades the interstices of the parts. 
Now, in the following, I generally comprehend this quantity under the name body 
or mass. It is known by means of the weight of each body; for, as will be shown 
later, by experiments on pendulums most accurately set up, I have found it to be 
proportional to the weight.  
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NOTES: 
 
 (i) For Descartes, who wrote on physics before Newton, “quantity of matter” simply 
was volume. But Newton is concerned about empty space or a medium which has no 
resistance to acceleration; that does not deserve to be called “body” or “matter,” in his view. 
It is of no physical significance. 
 (1) “Quantity of matter” is renamed “mass” later in this definition. And the standard 
notation for “mass” is the symbol m. 
 (2) “Size” appears to mean “volume,” since that is the size of a body. 
 (3) “Density” cannot mean “mass per volume” here! That would be circular: m = 
(m/v)v, which is to bring in volume for nothing. So what does “density” mean in this 
definition? 
 What about “weight per volume”? He says at the end of the definition that weight is 
indicative of mass, or proportional to mass, and that this is shown by experiments on 
pendulums: but this implies that mass is not defined by weight. Again, a body could 
theoretically have mass but have no weight at all, and hence no weight per volume. And the 
weight of a body can change depending on its location, but not its mass. 
 Rather, “density” here seems to mean how closely packed together the bits of matter 
are, and so he takes “no account here of the medium” in between all the little bits, meaning 
he does not count interpenetrating void (which has no mass) in the quantity of matter for a 
given body. Imagine a sponge or Swiss cheese. In other words, “density” means a ratio of 
“body-volume to void-volume” in a given object. When this is ratio or percentage is 
multiplied by the gross volume (which is the sum of body-volume and void-volume), the 
result is pure body-volume, i.e. pure quantity of matter (vs. quantity of space), i.e. the mass. 
Hence “mass” or “quantity of matter,” for Newton, is the same as TRUE VOLUME, or 
body-volume vs. space-volume. 
 This understanding of the definition is confirmed in BOOK 3 PROPOSITION 6 
COROLLARY 4, where “density” is defined as inertia-per-volume, or shove-resistance-per-
volume. He simply assumes that shove-resistance is proportional to body-volume. More on 
this below. 
 (4) For example: suppose you have a sponge that is 2” X 5” X 7,” so that the total 
volume is 70 cubic inches. Suppose, further, that the ratio of “sponge-to-air” within that 
volume is 1 : 8. Then that is our “density.” If we multiply the fraction 1/8 by the total 
volume, we get 8.75 cubic inches of “pure sponge.” But this is using “air” instead of “empty 
space,” which is a very different thing. How do we ascertain how much empty space there is 
in a body, in between all its particles? 
 (5) Newton’s examples of “snow” and “dust” which can be condensed by 
compression or condensation (“liquefaction”) indicate that the thinks of all matter as 
particulate, with void in between. Newton is in fact an atomist, and probably thinks that all 
the ultimate particles are the same; hence the mass of a body could be reduced to a number 
of unit volumes. But alas, that is beyond him, as he notes in his Preface, although he will 
certainly assume (or perhaps even prove) the homogeneity of matter so far as resistance to 
acceleration goes. This is why he says “Alike is the account of all bodies.” Whether matter 
comes in ultimate particles or not, he presumes that equal volumes of body or matter 
(excluding empty space) are equally resistant to acceleration. Hence RESISTANCE TO 
ACCELERATION IS PROPORTIONAL TO BODY-VOLUME or MASS. There is no such 
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thing as two equal volumes of matter with unequal resistance to acceleration. If two volumes 
of matter unequally resist acceleration, that is because one of them has more empty space in 
it than the other, and hence one of them contains more matter than the other. So he does 
away with the distinction between “heavy” and “light” bodies which the ancients introduced, 
and between terrestrial bodies and celestial ones. All bodies are sluggish, and resistant to 
acceleration. The ancients thought that some bodies like to move in circles, namely the 
celestial bodies. Again, all bodies have weight in proportion to their mass (and their 
proximity to other massive bodies). The ancients thought some bodies were “light,” that is, 
they simply liked to go up, and had no downward tendency or weight. 
 (6) But now resistance to acceleration is MEASURABLE. Hence the ratios of 
quantities of matter can be determined. Not only can we measure resistance to acceleration, 
but we can show that RESISTANCE TO ACCELERATION IS PROPORTIONAL TO 
WEIGHT. He mentions the experiments with pendulums here which he describes in more 
detail in Book 3 Proposition 6 (which we will read much later). 
 (7) So the whole cause for differences in weight among bodies of equal gross-volume 
is that there is more empty space (between the atoms) in some than in others. Equal volumes 
of gold and water have unequal weights not because gold “has a stronger tendency down,” 
but because in those equal volumes, there is “more stuff” in the volume of gold—more of the 
same homogeneous matter, more body, and less empty space in between the bits of it. 
 (8) This frees Newton from ascribing inexplicably different qualities to different bits 
of matter. Matter is one in kind, the same throughout all the universe, differing only in 
arrangement (and maybe shape) and relative position of its particles, and in their velocities, 
etc. He can explain the seemingly qualitative difference of “bodies of different weights” by 
saying all body is alike, but you have more of it here than there. In this, he is very much like 
Descartes. 
 (9) “Having arisen from ... conjointly” means compounding ratios. So 
 
 m1 : m2 = (den1 : den2) comp. (total-vol1 : total-vol2). 
 
But for purposes of MEASUREMENT, since we cannot measure the “densities” in any clear 
way (how do we get all the void out, and get a body perfectly compressed with no empty 
space in it? We would have a black hole!), we cannot determine the ratio of the masses by 
beginning with this formula. So instead we will eventually prove that the masses are 
proportional to the weights (on the assumption that body-volume is proportional to resistance 
to acceleration), and then we are given w1 : w2 , and thus we are given m1 : m2. Can we 
determine these “masses” absolutely, i.e. get “true pure-body volumes” out of them, in units 
of volume? Not in any obvious way. We can measure the two total-volumes easily enough, 
and then by compounding the inverse of these with the known ratio of the masses we will 
know the ratio of the densities. But that will give us neither density absolutely, and hence we 
cannot find the masses absolutely just by these means. 
 (10) The modern idea of “mass” is simply shove-resistance. Newton’s idea is that 
“mass” means volume-of-pure-body, and that the amount of shove-resistance is simply a 
function of volume. 
 (11) Newton’s examples are of air. Suppose we have two masses of air, m1 and m2 . 
And let m2 have double the density of m1, and also let it occupy double the total-volume. 
Then 
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 m1 : m2 = (1 : 2) c (1 : 2) = 1 : 4 
 
If instead we suppose that m2 has double the density of m1 and occupies triple the total-
volume, then 
 
 m1 : m2 = (1 : 2) c (1 : 3) = 1 : 6 
 
 
 
 
 
Here, now, is Newton’s text for Definition 2: 
 
 
 

DEFINITION 2 
 

“QUANTITY OF MOTION” (or “MOMENTUM”) 
 

 Quantity of motion is the measure of the same having arisen from the 
velocity and quantity of matter conjointly. 
 The motion of the whole is the sum of the motions in the individual parts; 
and so in a body twice as large, with equal velocity, it is doubled, and with double 
the velocity, quadrupled.  

 
 
 
NOTES: 
 
 
 (1) Like Descartes before him, Newton speaks of both “quantity of matter” and 
“quantity of motion.” So Newton draws from Descartes in a positive way, and is not just a 
reactionary. 
 (2) Like Descartes, Newton believes in both the conservation of matter and the 
conservation of momentum (at least in certain systems, with certain rules about how the 
bodies interact). Descartes’ idea was that God made so much matter, and so much motion, 
and is too economical to come back and make more as an after-thought, and too attentive to 
let any pass out of existence. 
 (3) The “quantity of motion,” as here defined, is also called “Momentum,” and is 
symbolized P. 
 (4) Why define the quantity of motion by the mass of the body rather than the 
weight? Because the weight differs in different places, as we will learn, whereas mass is 
always the same regardless of its location or speed (at least for Newton). Also, it is the mass, 
not the weight, that determines “how much motion” or momentum a thing has when moving 
(e.g.) sideways. That will not be affected by the absence of gravity; picture a huge I-beam far 
out in space. A thing can have zero weight, but still a great deal of momentum. If two I-
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beams in space were moving toward each other with me in between, even if they were 
effectively weightless, they would crush me with their momentum. 
 (5) If v stands for velocity, then the “conjointly” again implies a compounding of 
ratios: 
  p1 : p2 = (m1 : m2) comp (v1 : v2) 
or   p = mv 
or  Momentum = (mass)(velocity) 
 
 (6) “Velocity” is a vector quantity, speed with direction, and hence momentum is, 
too. The quantity of motion is therefore also a vector quantity, a directional quantity (vs. a 
scalar). Similarly “2” is scalar, but “negative 2” and “positive 2” are vectors. 
 (7) Also, this quantity has an additive property, that is, the vector sums of the motions 
of the parts should be equal to the quantity of motion of the whole. 
 (8) QUESTION: Is momentum, or this “quantity of motion,” a natural quantity, or a 
mere human convention? Is it like “length,” for example, or is it like inventing a unit of 
“aardvarks per furlong”? What if we multiply the brightness of a body’s color by the speed 
of the body, and then divide it by the temperature of the body? Does that give us a natural 
quantity? No. 
 But momentum seems to be something real, somehow. First, nature conserves 
momentum, not mere speed, nor even mere velocity. It conserves the total amount of mv in a 
closed system. (Really, what is conserved is energy, but let’s not get ahead of ourselves.) 
Second, if we measure motion by how effective it is, by what it can do to things, then the 
total motion is not just the speed, but also the number of things with that speed. If we are to 
measure the effectiveness of a stampede to do damage, for example, we need to know not 
only how fast the animals are moving, but how big each one is and how many there are. So, 
speaking roughly, “how many things are moving” × “how fast” = “total motion.” This is 
what Newton is getting at when he says “the motion of the whole is the sum of the motions 
of the individual parts.” And this fits with his atomism; the real mobiles are ultimate 
particles. What we see with our eyes are really crowds of things. 
  Also, nature seems to obey quantitative rules with respect to this, e.g. the five-ball 
pendulum on a CEO’s desk. If two of the ball bearings are allowed to drop and smack one 
end, two spring away at the opposite end, and with the same speed (about). If three, then 
three, and so on. 
 (9) His examples: if we have two bodies, m1 and m2 whose masses are as 1 : 2, and 
whose speeds are equal, then 
 
 p1 : p2 = (1 : 2) c (1 : 1) = 1 : 2 
 
but if m2 also has double the velocity, then 
 
 p1 : p2 = (1 : 2) c (1 : 2) = 1 : 4 
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Here, now, is Newton’s Third Definition: 
 
 
 
 

DEFINITION 3 
 

“VIS INSITA” or “INNATE FORCE OF MATTER” or “VIS INERTIAE” 
 

 Innate force of matter is the power of resisting, by which any body 
whatever, as much as [the quantity of matter which] is in it {quantum in se est}, 
perseveres in its state either of resting, or of moving uniformly in a straight line. 
 This force is always proportional to the body, and does not differ in 
anything from the inactivity {inertia} of the mass, except in the mode of conceiving 
it. On account of the inertia of matter it happens that every body is dislodged from 
its state, either of resting or of moving, with difficulty. Whence innate force can be 
called by the most significant name, “force of inertia.” But a body exercises this 
force only during a changing of its state brought about by another force impressed 
on it; and the exercise of the former is, under diverse viewpoints, either resistance 
or impetus: resistance, insofar as the body, in order to conserve its state, opposes 
the force impressed; impetus, insofar as the same body, by yielding with difficulty to 
the force of resistance of an obstacle, endeavors to change the state of that obstacle. 
The public attributes resistance to resting things and impetus to moving things; but 
motion and rest, as conceived by the public, are distinguished from each other only 
by viewpoint {relatively}; nor are they always truly resting which are viewed by the 
public as resting.  

 
 
 (1) “Innate force of matter”: the language makes it seem as though he is bringing out 
an inherent property of matter. 
 (2) “any body whatever”: terrestrial, celestial, you name it. They all have it, and they 
have it equally, in equal parts (body-volumes). 
 (3) Why “power of resisting” vs. “act of resisting”? Because it only shows itself 
when something tries to move the body (when it was at rest) or to stop the body (when it was 
moving), or to try to speed it up, or slow it down, or change its direction. And this is 
sluggishness or laziness—an unwillingness to do anything other than what it was doing. That 
power of resisting is always there, but it is exercised only when something tries to change its 
“state.” 
 (4) Motion is here called a “state.” As with Descartes, for Newton the significant 
thing does not seem to be motion, but the change from not moving to moving (or vice versa, 
or from one speed or direction to another), the change of state. It is only uniform motion that 
is here called a “state,” i.e. moving at constant velocity in a straight line is a way of 
“standing” or “staying.” He has a tendency to speak of such motion as though it were not 
really a motion at all. Certainly it has more in common with rest than accelerated motion has 
in common with rest, but he seems to go further than this, and say that such motion has more 
in common with rest than it has in common with accelerated motion. 
 (5) “Quantum in se est” implies that this power of resisting is proportional to the 
“quantity of matter,” the mass. And he brings this out by mentioning “mass” in the 
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explanation. The innate force of matter is nothing else than “the inactivity of the mass,” i.e. 
of the quantity of matter. This also excludes the idea that bodies of different natures can have 
different resistances to acceleration despite the equality of their quantities—rather, the only 
cause of diverse resistance to acceleration is diverse quantity.  
 (6) So “force of inertia” means “force of inertness,” or “force of sluggishness” or “of 
laziness.” He says it is not a positive power in a body, but is just the inactivity of the mass––
its sluggishness. (Just as my son’s laziness and slowness to do what I say is not a positive 
power in him.) In earlier works, Newton spoke of “vis insita” more as though it were a 
positive power. 
 (7) He distinguishes between two “viewpoints” or ways of conceiving the exercise of 
the “force of inertia”: [a] it is resistance insofar as the body opposes some impressed force, 
endeavoring to maintain its state (whether of motion or rest), [b] it is impetus insofar as the 
body, by yielding with difficulty to a resisting obstacle, endeavors to change the state of that 
obstacle (whether of motion or rest). 
 (8) He rejects the common distinction which says that “resistance” is what resting 
things have, and “impetus” is what moving things have. The public way of thinking about 
what is moving and what is resting is all defined relatively (i.e. they have no grasp of 
absolute space; and the earth is actually moving, contrary to many everyday expressions). 
 
 QUESTION: Is it obvious he is defining a real thing, that this “vis insita” exists? 
Maybe since this is just a definition, we should hold off the discussion of whether there is 
such a thing as inertia, as here defined, until the First Law of Motion. 
 
 QUESTION: Is INERTIA the same as WEIGHT? No. “Weight” is “downward” only. 
Inertia is in any direction at all. And things have little or no weight in space, far from other 
bodies, but maintain the same inertia. And it is much easier to push a car horizontally than to 
lift it vertically. 
 
 QUESTION: Is INERTIA the same as MOMENTUM? No. A body will have 
different momentums with different speeds, but the inertia of a body is the same at any 
speed, and even at rest. 
 Presumably, the inertial resistance offered by a body when you speed it up from 5 
mph to 6 mph would be the same as the resistance it offers when you speed it up from 9 mph 
to 10 mph, or to slow it down from 10 mph to 9, or from 6 mph to 5. 
 
 QUESTION: How should one MEASURE the quantity of innate force? He does not 
here define its quantity, but only says what it is, and what it belongs to. But as soon as he 
says “quantum in se est,” he implies that the quantity of this resistance is proportional to the 
quantity of the matter, i.e. to the mass. 
 But one cannot measure the mass except by measuring the resistance to acceleration, 
as we said above. How is that done? One can measure how far a spring is compressed by m1 
moving at 5 mph, and then how far the same spring is compressed by m2 moving at 5 mph. 
Assuming uniformity in what it takes to compress the spring every inch, one has a direct 
measure of the resistance to being slowed in each of these bodies. That would not be 
accurate, of course, but it gives an idea in principle. Newton will develop a more accurate 
measure with his pendulums in Book 3 Proposition 6. 
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Here, now, is Newton’s Fourth Definition: 
 
 
 

DEFINITION 4 
 

“IMPRESSED FORCE” 
 

 Impressed force is the action exercised upon a body in order to change its 
state either of resting or of moving uniformly in a straight line. 
 This force consists solely in the action, and does not remain in the body 
after the action. For a body perseveres in every new state by the sole force of 
inertia. Now, impressed force is of diverse origins, such as from percussion, from 
pressure, from centripetal force.  

 
 (1) Note that this sort of force is not a quantity, although it has a quantity, or can be 
quantified. He does not quantify this sort of force here, but he will quantify centripetal force 
in three different ways, in the definitions to follow. More on that later. 
 (2) “Impressed force” is defined as a principle or cause not of motion, but of change 
of state. One might wonder whether there is such a thing as a “change from rest to motion” 
or “from motion to rest.” There is perhaps a kind of imprecision here, philosophically, which 
Newton is not very much concerned with. Really there is no such thing as a “change from 
rest to motion,” as though that were some kind of process in things. So nothing is a cause of 
that change, since that change is not real. Still, there is a cause of accelerated motion, and 
this is what Newton is interested in. He would say there is a cause of accelerated motion, but 
not of uniform motion in a straight line which meets with no resistance. 
 (3) Is he thinking of an impressed force as a species of cause? An agency? A quality? 
He is not very clear. He is not interested in the nature of the cause producing an acceleration. 
He is interested more in its effect, the acceleration, and in quantifying the force through the 
quantity of that effect. 
 (4) There is something fitting in saying that only “change of state” requires a cause, 
and in calling that cause “force.” At any rate, we seem to be looking at things which are not 
permitted to remain as they would prefer to be, if left to themselves, and hence they must be 
forced. That makes more sense than calling the tendency of a thing to keep doing its thing an 
“innate force”—but really the innate force of matter is thought of as a “force” only because it 
acts like one in reaction to other things, e.g. in putting up resistance, or in colliding with 
something else. 
 (5) “In order to” does not imply final causation in any strong sense, e.g. toward a 
good or toward something fitting to the body. It just means the natural effect of the 
impressed force is to change the state of the body. 
 (6) As oppose to the “innate force of matter,” an impressed force is an action rather 
than a power. It is a temporary impulse, and does not abide in a body. It is not like an 
“indelibly impressed impetus,” as one reads about in Galileo’s Two New Sciences. 
 (7) Impressed forces have origins, but the origin does not inherently characterize the 
impressed force itself (similarly the shape in a piece of clay got there by some cause, but that 
is exterior to the nature of the shape itself). 
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 (8) The three origins he mentions are: percussion (a brief knock), pressure (a 
sustained push or pull), and “centripetal” force, which is of special importance in nature, and 
in the Principia. So the action of impressed force can either be sudden, and then over with, 
or else be sustained and kept up (and maybe also varied in strength and direction), but still it 
is an action which can come to an end, and which is continuously derived from something 
exterior, as opposed to a permanent impression made upon a body. 
 
 QUESTION: Newton does not define “force” in general, but only particular forces, 
and it is not clear that they are called “force” univocally. Is there one definition of “force” in 
general for him? One common feature in every meaning is “change of state.” 
 But an “impressed force” is what results in a change of state. 
 And the “innate force of matter” is what resists a change of state. 
 
 On the other hand, by its “innate force” a body might impress a force upon another 
body, either by running into it, or by being run into by it. So it is common to everything 
called a “force” that it can be the cause of a change of state in a body. 
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 5 
 

 
DEFINITION 5 

 
 
 
Here, now, is the text of Newton’s Fifth Definition: 
 

 
 

DEFINITION 5 
 

“CENTRIPETAL FORCE” 
 

Centripetal force is that by which bodies are drawn, impelled, or one way or 
another tend, from all directions, toward some point as to a center. 

 
Of this kind is heaviness {gravity}, by which bodies tend towards the center 
of the Earth; magnetic force, by which iron makes for a magnet; and that 
force, whatever it may be, by which planets are constantly drawn aside from 
rectilinear motion, and compelled to revolve in curved lines. A stone, whirled 
about in a sling, endeavors to go away from the hand that whirls it; and by 
the endeavor distends the sling, and that the more strongly the faster it 
revolves; and, as soon as it is let go, flies away. The force contrary to that 
endeavor, by which the sling constantly draws aside the stone towards the 
hand and retains it in orbit, since it is directed towards the hand as if the 
center of the orbit, I call centripetal. And alike is the account for all bodies 
which are borne on curves. They all endeavor to recede from the centers of 
the orbits; and unless some force contrary to this endeavor be present, by 
which they are confined and restrained in the orbits, and which I therefore 
call centripetal, they would fly off in right lines with uniform motion. A 
projectile, if abandoned by the force of heaviness {gravity}, would not be 
deflected towards the Earth, but would depart in a right line into the heavens; 
and that with uniform motion, if only the resistance of air be taken away. By 
its heaviness {gravity} it is drawn aside from a rectilinear course, and 
constantly turned towards the Earth, and that either more or less according to 
its heaviness {gravity} and velocity of motion. The less be its heaviness 
{gravity} for the quantity of matter, or the greater the velocity with which it 
is projected, the less will it deviate from a rectilinear course and the farther 
will it proceed. If a lead ball projected by the force of gunpowder from the 
peak of some mountain with a given velocity according to a horizontal line 
would proceed in a curved line to a distance of two miles before it descended 
to Earth, with double the velocity it would proceed twice the distance, and 
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with ten times the velocity ten times the distance, if only the resistance of air 
be taken away. And by augmenting the velocity it would be possible to 
augment at will the distance to which it could be projected, and to diminish 
the curvature of the line which it would describe, so that it would at length 
fall at a distance of ten or thirty or ninety degrees, or even go around the 
whole Earth, or at last depart into the heavens and, by its motion of departing, 
proceed in infinitum. And by the same reasoning, as a projectile can be turned 
in its orbit by the force of heaviness {gravity} and circle the whole Earth, so 
can the Moon, by the force of heaviness {gravity}, if only it be heavy, or by 
whatever other force by which it is urged towards the Earth, be always drawn 
back from a rectilinear course towards the Earth, and turned into its orbit; and 
without such a force the Moon cannot be restrained in its orbit. This force, if 
it be less than what is just right, would not sufficiently turn the Moon from a 
rectilinear course; if more than what is just right, it would turn it too much, 
and would draw it down from its orbit toward the Earth. For, it is required 
that it be of just the right magnitude; and it is for mathematicians to find the 
force by which a body can be exactly restrained in any given orbit 
whatsoever with a given velocity, and conversely to find the curvilinear path 
into which a body, departing from any given place whatever with a given 
velocity, is turned by a given force. Now the quantity of this centripetal force 
is of three kinds: absolute, accelerative, and motive. 

 
 
 
 
NOTES 
 
 
 
 
(1) The word “centripetal” means “center-seeking.” 
 
(2) Centripetal force is a type of impressed force. 
 
(3) The words “or one way or another tend” in the definition imply that the nature of the 
cause of the force is irrelevant to his considerations—irrelevant, for example, to what kind of 
curve the body will trace out, and how fast it will move at each point along that curve. 
 
(4) The phrase “toward some point as to a center” allows the possibility that the seat of the 
force is not at the center. For example, a ball rolling in a circular track; the forces acting on it 
are from the walls of the track itself, there is no force acting on it from the center. 
Nonetheless, the forces from the walls are pushing it toward that center, and so we have here 
an instance of a “centripetal force.” 
 
(5) He begins his lengthy explanatory text with the words “of this kind is heaviness.” That is 
clear, since things by their heaviness tend to the center of the earth, to a definite point. The 
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explanatory text is like an advertisement for what he will show later on in the book, namely 
that the Moon is heavy, and it, and the other planets, all stay in their orbits, as opposed to 
flying off in tangents to their orbits by their inertia, because they are heavy towards the 
bodies at the centers of their orbits. 
 
(6) “. . . alike is the account of all bodies which are borne on curves.” This is reminiscent of 
his definition of mass, where he also says “alike is the account of all bodies.” This removes 
qualitative differences as a reason for the curves, and makes “more of the same stuff” the 
reason. The explanatory text also makes explicit what Definition 3 (inertia) implied, namely 
that no body moves unforced in a curved path. The “vis insita,” the innate force of matter, 
would keep a body only in one motion: uniform and in a straight line in one direction. Hence 
all curved motion is in a sense unnatural and forced upon matter from without. 
 
(7) “Alike is the account of all bodies which are borne on curves.” Does the curve have to be 
a circle, since the force is “center-seeking”? No. And the “center” does not have to be the 
geometric center of a curve, nor does the curved path have to be a closed curve. 
 
(8) The examples Newton draws to our attention in the explanatory text are these: 
 a. heaviness, toward center of earth 
 b. magnetism, toward center of magnet 
 c. planets, “whatever” may be the force which draws them aside 
 d. sling and stone 
 e. all bodies moving around curves 
 f. projectiles (like a lead ball fired from a gun) 
 g. the Moon in its orbit 
 
 a. b. c. are “natural” in the sense that they are not manmade (although they are 
“forced” in the sense that there is a force on matter from something outside matter). These 
examples show that centripetal force is something occurring in the world, and on a large 
scale, and is therefore important for understanding the world. 
 d. is “artificial,” a stone in a sling. This example shows the indifference between 
manmade things and non-manmade things with regard to forces and their results. Also such 
an example is easier for us to consider, and convinces us that the stone would indeed fly off 
in a straight line along the tangent if the string were cut or released. Hence we become 
convinced by this, together with the idea of the inertial force, that the only reason things fall 
back toward a center rather than fly off in a straight line is that some force is exerted on them 
continually. 
 e. Hence the phrase “all bodies” is mentioned next: “alike is the account for all 
bodies.” There are no bodies which naturally move in some kind of curve. 
 f. The projectiles lead us by the hand to what would happen if we fired that ball just 
fast enough so that its inertial motion made it continually “miss” the earth as it fell back 
toward it. We see that weight makes the thing fall back down toward the Earth, but its 
inertial speed makes it fly out away from the Earth along the tangent. If these two 
components could be balanced just so, the ball would orbit the Earth in a circle forever. 
 g. And the projectiles lead us by the hand to thinking of the Moon as a projectile. 
(See how the motions of the heavens are being brought down to earth!) And what is the force 
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drawing the Moon aside from its inertial path? Maybe heaviness, he suggests, but that is not 
clear yet. We might still be attached to the idea that the Moon is a “celestial body” with no 
weight. But it must have some sort of tendency toward the Earth, if we believe in Newton’s 
First Law (although that law has yet to be laid down in Newton’s text)! 
 
(9) Notice that centripetal force (and also impressed force, of which it is a type) has a 
quantity (as we see in the next three definitions). Hence it cannot be a quantity itself. 
Gravity, for instance, is a center-seeking force, but it varies in its strength as one moves 
toward or away from that center (according to an inverse square law). 
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 6 
 

 
DEFINITIONS 6 - 8 

 
 
 
 
Here, now, is Newton’s Sixth Definition: 
 
 
 

DEFINITION 6 
 

“ABSOLUTE QUANTITY OF CENTRIPETAL FORCE” 
 

Absolute quantity of centripetal force is the measure of the same, greater or 
less in proportion to the efficacy of the cause propagating it from the center 
through the regions around it. 
 As for example, magnetic force, according to the bulk or intensity of 
the strength of the magnet, is greater in one magnet, less in another. 

 
 
 
NOTES: 
 
 
 (1) He now goes on, in Definitions 6, 7, and 8, to distinguish three ways of 
quantifying a centripetal force. There is something a bit over-specific about this, since there 
is nothing special about centripetal forces in particular such that we would want to quantify 
them by accelerations, masses, etc––e.g. the modern formula F = ma is not about centripetal 
force in particular. 
 (2) He defines this way of quantifying centripetal force, the “absolute quantity” of a 
centripetal force, as proportional to the cause which emanates or distributes that force from 
the center, or to the spaces around that center. 
 (3) He gives no direct way of measuring the intensity of that cause, but presumably 
the intensity would be proportional to the acceleration it could produce in a given body at a 
given distance. Force is defined as a cause of accelerated motion, so it must be proportional 
to its effect. And in Definition 7 below, he will quantify force again, and do so with 
reference to acceleration. In 6 he is comparing accelerations to two magnets at one distance, 
for example, and in 7 he is comparing accelerations to one magnet at two distances. 
 (4) To be more explicit: If magnet A and magnet B are of the same size, but A 
produces a greater acceleration in the same paper-clip at the same distance than B does, then 
A is more intense than B. 
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 (5) But the magnets might also have different sizes. So let C and D have the same 
intensity, i.e. the same “density” of magnetic-power-per-unit-volume, but suppose C is twice 
the size of D. Then C will be able to produce twice the acceleration in the same paper-clip at 
the same distance as D can produce in it. 
 (6) And if the magnets vary in both size and intensity, then the absolute quantity of 
the force will arise from the size and intensity conjointly. A bit like the definition of 
“quantity of matter.” 
 (7) Why call this “absolute”? Because we are now comparing the forces produced 
toward two centers (e.g. two magnets) on the same body and at the same distance. This 
enables us to compare the two sources, since we have leveled the playing-field by seeing 
how they compare when given the same job to do: to move this paper-clip at a certain 
distance away. 
 (8) He defines this measure of force with reference to a “cause propagating it from 
the center through the regions around it.” Is he, then, talking about causes after all? Only 
mathematically. He is, as it were, comparing the “force fields” around two magnets (for 
instance), looking to the accelerations produced in them at equal distances from the center 
and upon the same body. 
 
 
 
On to Newton’s Seventh Definition, now: 
 
 
 

DEFINITION 7 
 

“ACCELERATIVE QUANTITY OF CENTRIPETAL FORCE” 
 

Accelerative quantity of centripetal force is the measure of it proportional to 
the velocity which it generates in a given time. 
 As for example the strength of the same magnet is greater at a lesser 
distance, less at a greater; or the tending downward force is greater in valleys, 
less on the peaks of high mountains, and even less (as will be shown later on) 
at greater distances from the globe of the Earth; at equal distances, however, 
it is the same in all directions, for the very reason that, when the resistance of 
air is taken away, it accelerates equally all falling bodies (heavy or light, big 
or small). 

 
 
NOTES: 
 
 (1) Here we are not comparing different magnets (for example), but only looking to 
the acceleration which a given magnet produces in some body. 
 (2) He exemplifies this with a magnet first, saying that it produces greater 
accelerations at lesser distances, lesser ones at greater distances. 
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 (3) He says the same is true of the “downward” acceleration of heavy bodies, which 
is greater in valleys than at the peaks of high mountains. This is not obvious or a matter of 
ordinary experience, and in fact runs contrary to Galileo’s assumptions. It was known in 
Newton’s time by the use of accurately made pendulum clocks: Make two identical 
pendulum clocks, and synchronize them. Bring one to the top of a high mountain; leave the 
other in the valley. Since the one at the peak is farther from the center of the Earth, the 
weight of its pendulum is accelerated downward less quickly, and so that clock slows, and 
gets behind the other one in the valley, as later comparison proves. 
 (4) It is not part of the definition of “centripetal force” to be stronger near the center. 
Later he will consider centripetal forces which increase with the distance. These may be 
fictional or artificial, but they are possible, at least to some extent. For example, a rubber-
band accelerates me more toward the nail it is wrapped around the more I stretch it. 
 (5) The accelerative quantity of centripetal force is nothing other than the actual 
acceleration it produces at a given moment. This can vary from one moment to the next—it 
can increase, for example, if a body is now further from, now closer to the center of the 
Earth. For much of the Principia, when Newton refers to a “force” as a quantified thing, he is 
thinking of it as quantified by this or that acceleration it produces (not the total resulting 
velocity, but the portion of it that was produced in a given time interval), nothing more. Only 
later in the Principia will the mass of the accelerated body become a significant measure of 
force. And this brings us to the next definition: 
 
 
 
 
 

DEFINITION 8 
 

“MOTIVE QUANTITY OF CENTRIPETAL FORCE” 
 

 Motive quantity of centripetal force is the measure of it proportional 
to the motion which it generates in a given time. 
 As for example greater weight is in a greater body, less in a lesser, 
and, in the same body, greater near the Earth, less in the heavens. This 
quantity is the centripetancy or propensity of the whole body towards the 
center, or (as I may accordingly say) the weight; and it is always known by a 
force contrary and equal to it, by which it is possible to impede the descent of 
a body. 
 For the sake of brevity, we can name these three quantities of forces, 
motive, accelerative, and absolute forces; and for the sake of distinction refer 
them to the bodies seeking the centers, to the places of the bodies, and to the 
centers of the forces: certainly the motive force to the body, as the endeavor 
of the whole towards the center composed of the endeavors of all the parts; 
and the accelerative force to the place of the body, as a certain efficacy, 
diffused from the center through the individual places around it, for moving 
the bodies which are in them; and the absolute force to the center, as 
endowed with some cause, without which the motive forces would not be 
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propagated through the regions around it, whether that cause be some central 
body (such as a magnet at the center of a magnetic force, or the Earth at the 
center of a tending downward {gravitating} force) or something else which is 
not apparent. This concept is mathematical only; for I am not now 
considering the physical causes and seats of the forces. 
 Therefore, the accelerative force is to the motive force as the speed is 
to the motion. For the quantity of motion arises from the speed and the 
quantity of matter conjointly. For, the sum of the actions of the accelerative 
force on each particle of the body is the motive force of the whole. Whence, 
near the surface of the Earth, where the accelerative heaviness {gravity} or 
the ending downward {gravitating} force in all bodies is the same, the motive 
heaviness {gravity} or weight is as the body; but, if it be raised into regions 
where the accelerative heaviness {gravity} becomes less, the weight will be 
equally diminished and will always be as the body and the accelerative 
heaviness {gravity} conjointly. Thus, in regions where the accelerative 
heaviness {gravity} is twice as small, the weight of a body twice or thrice 
smaller will be four times or six times smaller. 
 Furthermore, I name attractions and impulses in the same sense 
accelerative and motive. The words attraction, impulse, or whatever 
propensity towards a center, moreover, I employ indifferently and 
indiscriminately for one another, by considering these forces not physically 
but only mathematically. Whence, let the reader beware, that he should not, 
by these words, understand me to define anywhere either the species or the 
mode or cause of an action or its physical account, or to attribute true and 
physical forces to centers (which are mathematical points) if perhaps I shall 
have spoken of either centers as attracting, or forces as being centers. 

 
 
NOTES 
 
 (1) Here he quantifies centripetal force in another way. He says this way of 
quantifying it is to make it proportional to the momentum (i.e. the “quantity of motion,” 
which he defined earlier by velocity and mass) produced by the force within a given time. 
 So the force F is proportional to mv over t. 
 But a velocity over a given time is an acceleration, a. 
 Hence 
 
 F is proportional to ma. 
or f1 : f2 = (m1 : m2) comp. (a1 : a2) 
or F = ma 
 
 And this he says explicitly: “the motive force arises from the accelerative force and 
the same quantity of matter conjointly.” 
 (2) He exemplifies this with weight, saying the weight of a body is a motive 
centripetal force, and he adds again that it is greater at lesser distances, lesser at greater 
distances, from the center of the force. 



 

 45 

 (3) He adds that such a force is known (in quantity) by the quantity of an equal and 
contrary force just sufficient to hinder the body’s motion at a given place. (Think of a simple 
balance, balancing an unknown weight against a known one, or Millikan’s famous oil-drop 
experiment for determining the mass of an electron.) This is an interesting example of how 
opposites are known through each other. So “weight” is measured by the minimum quantity 
of impressed force required to keep the body from falling, as with a balance. 
 (4) Newton has already said “weight” is proportional to “mass.” Now he says that 
“weight” is proportional also to “accelerative force” (which is distance-dependent, i.e. the 
efficacy of a given force or center at a given distance from it). So, for a given body, since the 
accelerative force decreases as it is moved away from the center of the Earth, so too its 
weight. 
 (5) Newton will not invoke this concept of the quantity of force much until very late 
in what we will read of the Principia.  
 
 
 
 
 

NEWTON’S REFUSAL TO GET INTO CAUSES 
 
 
 
In the explanatory text following Definition 8, Newton says we can speak more briefly, and 
instead of saying “motive quantity of centripetal force,” just say “motive force,” and so on 
with the others. Also, he says we can think of the “motive force” as inhering in the center-
seeking body itself, its mass and its acceleration considered together, while we can think of 
the “accelerative force” as existing in the specific location of the body—the reason the body 
is accelerated so much toward the center of the Earth, for instance, rather than less or more, 
is that it is 5000 miles from the center of the Earth. And we can think of the “absolute force” 
as inhering in the center being sought by the body, e.g. a magnet.  
 
So he distinguishes the three kinds of quantities of centripetal force by their locations or 
subjects: 
 • “Motive” is in a whole body, and toward a center, e.g. in a stone toward the center 
of the earth. 
 • “Accelerative” is diffused in all the places around a center, acting upon bodies in 
those places. It is what the field does here, and there, etc. 
 • “Absolute” is in the center itself, by which it produces the accelerative force around 
itself. 
 But he says this is only “for the sake of distinction,” as though this were just a way of 
imagining these things, or speaking of them, so as not to mix them up, and is not to be taken 
as a statement about the way things are. He insists that this is for mathematical purposes, or 
as an aid to the imagination only, and that he is not really positing real causal powers in these 
things in accord with these ways of quantifying forces: 
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The words “attraction,” “impulse,” or whatever propensity toward a center, 
moreover, I employ indifferently and indiscriminately for one another, by 
considering these forces not physically but only mathematically. Whence, let 
the reader beware, that he should not, by these words, understand me to 
define anywhere either the species or mode or cause of an action or its 
physical account, or to attribute true and physical forces to centers (which are 
mathematical points) if perhaps I shall have spoken of either centers as 
attracting, or forces as being centers.  

 
He is not denying that there are real causal powers at work in nature, responsible for the 
accelerations we see. But he refrains from any detailed understanding of the natures of those 
causes—what they are, where they are, and how they work. He is staying true to his promise 
to address only the “mathematical principles” and causes of motion. He will not, as others 
before him tried to do, form hypotheses about the natures of the agent or final causes of 
motion (until, perhaps, his General Scholium at the very end of the Principia). 
 When the Principia first came out, certain critics said Newton was positing a 
“gravitational power” which could act at a distance and reside in a central point. Newton 
does no such thing. His idea of a center of force is similar to Archimedes “center of weight.” 
Archimedes did not mean to say that the point actually had weight. 
 There are others who, reading these words of Newton, say that “force” is a wholly 
useless idea in physics. It is nothing but an occult quality or an invisible cause. A “hard-
headed” physicist needs only the quantitative rules about where something will be when, and 
this requires no mysterious poetry about causes or forces––only pure algorithms. Newton 
himself did not seem to think in so positivist a fashion, but he carefully abstains, at least at 
this point in the Principia, from committing himself to any particular views about what 
things produce centripetal forces, and how, and for what purposes. 
 
 
A FURTHER PROPORTION: 
 
 Newton here also concludes that accelerative force is to motive force as speed is to 
momentum: 
 
 a : F = v : p 
 
He says that motive force is nothing but accelerative force times mass, and that momentum is 
nothing but speed times mass, so the proportion is obvious, by definition: 
 
 a : ma = v : mv 
 
STRANGE RATIO? Since Newton is making a ratio between “a” and “ma,” he seems to be 
thinking of straight lines or numbers representing these quantities more than the quantities 
themselves. 
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 7 
 

 
SCHOLIUM: 

ABSOLUTE TIME, SPACE, MOTION 
 
 
 
Newton follows his definitions with a lengthy scholium in which he explains his concepts of 
space, time, and motion. His definitions have served the purpose of explaining technical 
terms whose meaning is not known to everyone. This scholium serves the purpose of 
discussing concepts known to everyone, and banishing certain prejudices we all tend to have 
about them. 
 A scholium, as I have observed earlier, seems to be an explanatory note of something 
that has gone before. It is not a new definition (or demonstration), for example, but a 
drawing out of the implications in foregoing definitions (or demonstrations), or an 
application of them, or else a further explanation of something that was implicit and assumed 
in them. So it is usually more prosy, less terse. 
 
 
 
 

ABSOLUTE TIME 
 

Hitherto, lesser known words have been considered in order to set forth the 
senses in which they are to be understood in the following. Time, space, 
place, and motion are best known to all. It is to be noted, however, that the 
public conceives these quantities not otherwise than from a relation to 
sensibles. And thence arise certain prejudices, for the abolishing of which it 
is fitting to distinguish the same into absolute and relative, true and 
apparent, mathematical and common [vulgares]. 
 1. Absolute, true, and mathematical time, in itself and by its nature 
without relation to anything external whatsoever, flows equably, and by 
another name is called duration. Relative, apparent, and common time is 
some sensible and external measure (either accurate or inequable) of 
duration through motion, which the public use in place of true time; as for 
example an hour, a day, a month, a year.  

 
 
 Here Newton will be explaining things implied in the previous definitions which, if 
not distinguished, could lead to confusions. These are “absolute time,” “absolute space,” and 
the like. 
 He says he will not define time, space, place, and motion—these general ideas are 
well known to all people, or at least sufficiently well understood for Newton’s purposes. 
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Note that this is an admission by Newton that he relies upon common conceptions. But he 
will now attempt to purify these ideas of certain prejudices which people commonly suffer 
from because they conceive of time and place only in relation to sensible bodies, which are 
mobile. 
 The first distinction is between “absolute, true, mathematical time” on the one hand 
and “relative, apparent, common time” on the other. The one that is easier to understand is 
the second, relative time. When we wish to say how much time some event has taken, we 
assign to it some number of cycles in some repetitive motion which we regard as uniform—
for instance, if we say it took “three days” we mean the event in question took the same 
amount of time as that for the Earth to spin on its axis (or the Sun to go around us, if you 
happen to be a geocentrist) three times. In that definition of a quantity of time, however, we 
include a sensible body, such as the Earth or the Sun. Newton refuses to identify this with 
time itself––that is, with absolute and true and mathematical time. Why? Because the motion 
of the Earth or Sun could, conceivably, speed up and slow down, whereas time itself cannot. 
Again, because there is nothing special about the Earth or Sun such that its uniformity of 
motion should be the universal time for all things. Third, because we think the motion of the 
Earth is itself in time and measured by it. Astronomers like Newton are accustomed to noting 
slight irregularities in things, and correcting for them. How can they think to do this if they 
have no concept of perfectly uniform time, which is independent of the uniformity or lack of 
uniformity in the motions of bodies? We can wonder whether the motion of the Earth is 
perfectly uniform or not—does it speed up? Does it slow down? Plainly, then, we do not 
think of its motion as time itself. We are holding it up against a more abstract and more 
perfect standard. 
 Perhaps Newton’s account of “absolute time” is not altogether satisfactory. Is it really 
conceivable for time to be a sort of “flow,” although it is not the flow of anything at all? 
Where does it exist, exactly? Since these questions don’t get much more attention from 
Newton after this scholium, we will not worry about them too much either, or not here. 
 
 
 
 

ABSOLUTE SPACE 
 

2. Absolute space, by its nature without relation to anything external 
whatsoever, remains always similar and immovable; relative space is any 
movable measure or dimension whatever of this space, which is defined by 
our senses through its site with respect to a body, and is used by the public 
for immovable space: as for example the dimension of an underground, 
aerial, or celestial space defined through its site with respect to the Earth. 

 
 Like “absolute time,” “absolute space” is not something of another thing. It is not, for 
example, the location of the Earth, since the location of the Earth can change, but the one 
part of space the Earth is in at any point in time cannot itself move from one place to another. 
The parts of space itself are immobile, according to Newton (again, we seem to have a 
different view today, given that we hear of “expanding space,” but that is a can of worms we 
need not open yet).  



 49 

 What motivates him to believe in such a thing as absolute space? Like the most of us, 
Newton wants to think some things really are in motion, others really are not, in opposition 
to the Cartesian idea that “all motion is purely relative.” But for this to be true, there must be 
something immobile as a reference frame, a standard, for saying “this really moved.” We 
need an immobile stage on which motion is to take place. Aristotle, too, thought as Newton 
does, and indeed puts “immobile” in his definition of “place.” But unlike for Aristotle, for 
Newton there is no more “sphere of fixed stars” or any heavenly sphere, and hence no 
sensible evidence that the universe is finite; moreover, the philosophical reasons against an 
infinite magnitude are of no particular force for Newton (who probably was unaware of 
them). Again, Newton is first and foremost a mathematician, and hence he thinks of things 
geometrically, and there is no geometrical reason to say the universe is finite, so far as he 
knows. Furthermore, his First Law of Motion (inertia) seems to require an infinite universe, 
or at any rate it makes more sense in one. Therefore he does not have the luxury of a finite 
universe to give him an absolute frame of reference. Therefore he needs “absolute space” to 
save “absolute motion.” He needs an immobile, geometrical reference frame which exists 
independently of mobile bodies, and through which their real motions are mapped. 
 So what is “relative space”? This means “the space taken up by this sensible thing,” 
or “the space between these sensible things.” As “relative time” is defined by a sensible 
body, so too “relative space” is defined by a sensible body. “The space which the Earth takes 
up” is an example. And unlike absolute space, it is not exactly immobile, since the Earth 
moves, and so the space it is occupying is constantly different. 
 Clearly, then, a thing can be in absolute rest, but also in relative motion at the same 
time. If the Earth is truly moving through absolute space, and the Sun is not, then the Sun is 
at absolute rest, and yet it is still true to say that it is moving in relation to the Earth taken as 
our frame of reference. The Sun does not stay in the same position relative to us. Conversely, 
a thing can be in absolute motion, but also at relative rest. For example, I am in absolute 
motion, if the Earth is, since I move along with the Earth through absolute space. But I am at 
rest in relation to the Earth, since I am not moving with reference to it. 
 
 
 
 

ABSOLUTE PLACE 
 

3. Place is the part of space which a body occupies and, according to the 
notion of the space, is either absolute or relative. 

 
 
 “Place,” for Newton, in general means a part of space which a body takes up. 
 “Absolute place,” then, means a part of absolute space. Imagine a three-dimensional 
Cartesian coordinate-axes system in absolute space. If I am at rest in that grid, then I have an 
absolute place in it. “Relative place” would be defined by another grid which is defined by 
some body, e.g. Earth. 
 He also adds (although I did not quote it above) that place is not “the surrounding 
surface,” thus opposing himself to Aristotle’s definition of place. He insists that a “place” is 
three-dimensional, and has a volume equal to that of the body occupying it, and pervades 
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that body, or coincides with it. He argues thus: the motion of a whole body is the sum of the 
motions of its parts, and so for the whole to move out of the whole place is the same as for 
each part to move out of its place, and hence the place of the whole is the sum of the places 
of the parts, including those deep inside the body. Hence for Newton place is something “in” 
a body, not the other way around! 
 But “immobile” is in the definition of “place” for Newton as well as for Aristotle. We 
need an unplaced, unmoved place. 
 
 
 

ABSOLUTE MOTION 
 

4. Absolute motion is the translation of a body out of absolute place into 
absolute place; relative, out of relative into relative. Thus, in a ship which is 
borne by sail, the relative place of a body is that region of the ship in which 
the body is staying, or that part of the cavity of the whole which the body fills 
up, and which is moved exactly together with the ship: and relative rest is the 
continuance of the body in that same region or part of the cavity of the ship. 
But true rest is the continuance of a body in that same part of immovable 
space into which the same ship together with its cavity and its whole contents 
is moved. Whence, if the Earth be truly at rest, a body which relatively rests 
in the ship will be truly and absolutely moving with that velocity with which 
the ship is in motion on the Earth. But if the Earth also be in motion, the true 
and absolute motion of the body arises, partly from the true motion of the 
Earth in unmoving space, partly from the relative motion of the ship on the 
Earth; and if the body also be in motion relatively in the ship, its true motion 
arises, partly from the true motion of the Earth in unmoving space, partly 
from the relative motion, first of the ship on the Earth, then of the body in the 
ship; and from these relative motions arises the relative motion of the body 
on the Earth. As, for example, if that part of the Earth where the ship is 
staying were truly in motion towards the east with a velocity of 10,010 parts, 
and the ship were borne by sail and wind towards the west with a velocity of 
10 parts, but a sailor were walking on the ship toward the east with one part 
of velocity, the sailor would be in motion truly and absolutely in unmoving 
space with a velocity of 10,001 parts toward the east, and relatively on the 
Earth toward the west with nine parts of velocity. 

 
 
 In opposition to Descartes, Newton is convinced that there is such a thing as 
“absolute motion,” i.e. a motion from absolute place to absolute place in the “true” 
coordinate-axes system. “Relative motion,” by contrast, is just a motion from relative place 
to relative place, i.e. from a place defined by reference to a body (e.g. “here on the earth”) to 
a different place defined by that body (e.g. “there on the earth”). 
 He gives an illustration of a man walking on a ship, while the ship sails on the earth, 
and the earth sails through the heavens. He assumes the simple addition of velocities here. 
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 8 
 

 
REMAINDER OF THE SCHOLIUM 

ON ABSOLUTE TIME, SPACE, MOTION 
 
 
 

UNEQUAL DAYS 
 
Newton remarks that “In astronomy, absolute time is distinguished from relative by the 
equation of common time.” 
 Newton is referring to a correction which astronomers (and also navigators, who in 
Newton’s time needed accurate clocks to determine their longitude, given their speed, 
direction, and how long they had traveled) made in order to calculate how much time had 
elapsed from the solar transit of their meridian (noon) to the next solar transit of their 
meridian. It is not always the same amount of time, but varies, partly because Earth’s own 
axial rotation is not exactly uniform, and partly because it speeds up and slows down in its 
orbit around the sun. The details are not important here. But astronomers used accurately 
made clocks, and saw that noon-to-noon was not always exactly the same amount of time. 
So they didn’t define a “day” by one such cycle, but by an average of them—and they 
corrected each “day” by an equation determining how far off from the “true day” that 
particular day was, depending on what time of year it is. 
 So he says that the “days” we experience, defined by the sun, are unequal, and the 
astronomers must correct this inequality to measure the celestial motions by a more accurate 
time. 
 
 
 

UNIFORMITY OF ABSOLUTE TIME 
 
By contrast to a solar day, absolute time is not unequal, but totally uniform. This is 
something most of us think to be true prior to learning any astronomy or physics, and which 
Aristotle thought to be true as well. In fact, it might seem impossible and unintelligible to say 
that time itself could “speed up” and “slow down”—would “slower time” mean a time that 
took more time to pass? Is there some still prior time against which we are comparing times? 
Then that is the true time, or absolute time, and the other “days” or “hours” which were 
unequal must have been defined relative to some particular motion. 
 Newton says it “might be” that there is no perfectly uniform motion in the universe 
by which we can measure time, but rather all motions in fact speed up or slow down or both. 
Today we use the speed of light as one kind of standard (we say that in a vacuum that is the 
maximum speed and is the same in all reference frames), whereas Aristotle used the motion 
of the outermost sphere (fastest motion, and perfectly uniform). We also use the vibrations of 



 52 

cesium atoms (for example) to define a “second,” thus assuming that they are perfectly equal 
in duration. 
 
 

IMMOBILITY OF ABSOLUTE SPACE 
 
We can’t sense the parts of absolute space itself, so we must use bodies to measure space 
(e.g. a yardstick). And in common affairs, such relative places and motions are good enough. 
(Note again the new precision of science and the inadequacy of common experience for 
scientific purposes, which began to come to light especially with Kepler.) 
 But in philosophy, says Newton, we must abstract from our senses! “In philosophical 
disquisitions, we ought to abstract from our senses, and consider things themselves, distinct 
from what are only sensible measures of them.” 
 This is somewhat reminiscent of Descartes, who begins his investigation into reality 
by assuming that his senses lie to him. It is also reminiscent of Galileo, who dismisses 
everything but quantity as illusory. It is also reminiscent of Democritus, who also says that 
while he depends on his senses, much of what they tell him is misleading or false and needs 
the correction of reason. The idea that we should “abstract from our senses” also fits with the 
idea that we are learning the mathematical principles of natural philosophy, since it is 
characteristic of mathematics to abstract from sensible matter. But Newton is giving the 
phrase “abstract from the senses” new meaning. It does not mean “attend to magnitude while 
ignoring sensible matter and motion,” nor does it mean “attend to the common nature while 
ignoring this individual matter in which it exists,” but it means “attend to the mathematical 
uniformity of time and space while ignoring the bodies which make us sensibly aware of 
time and space and by which we measure them.” We have to get beyond the imprecision and 
non-uniformity which sensible bodies bring with them if we take them as standards. 
 But it is also characteristic of mathematics to abstract from motion, and it is 
characteristic of natural science never to abstract from the senses—even if it must sometimes 
correct the first ideas to which our sense impressions most easily lead us. 
 Newton again says it might be that no body to which places and motions can be 
referred is truly and absolutely at rest, and hence no sensible body can be a marker for a 
definite spot in “absolute space.” Aristotle thought he had such a point: the center of the 
earth, which is the center of the universe, and so the earth itself is a big body at rest simply 
and absolutely. But for Newton there is no sensible evidence of the finitude of the universe 
(e.g. that it is a moving sphere); the earth is moving, and maybe even our whole solar system 
is adrift in absolute space. 
 
 
 

HOW TO DETECT ABSOLUTE SPACE AND TIME? 
 
Consequently, we cannot determine absolute rest from the position of bodies in our region. 
 So we must distinguish absolute motion and rest from relative ones by: 
 (1) Properties 
 (2) Causes 
 (3) Effects 
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(1) PROPERTIES. 
 It is a property of ABSOLUTE REST that bodies in this condition must rest also 
relative to each other. This also belongs, I suppose, to things in relative rest—but it does not 
belong, or at least not necessarily, to things in absolute motion. Things in absolute motion 
might also be moving relative to each other. 
 It is a property of ABSOLUTE MOTION that the parts of a body in absolute motion 
participate in its motion, and share in any tendency that goes with that motion, e.g. to recede 
from an axis of rotation. (Here he seems to be thinking ahead to his bucket experiment.) 
 He says if we move a nut, the kernel inside it does not move relative to the shell, but 
it participates in the motion of the shell, so if the shell is moving absolutely, so is the kernel; 
but the kernel is not moving with respect to the body in its immediate vicinity. So we have 
absolute motion of the kernel where there is no motion of it relative to its immediate 
surroundings. Hence absolute motion cannot be determined “through translation from the 
vicinity of bodies which are viewed as at rest,” contrary to Descartes, who thinks that this is 
the only way to understand motion. 
 Again, he argues that we must admit an “UNMOVED PLACE” if there is to be 
motion at all. If something moves with reference to a moving place (e.g. if a bee flies around 
inside a jar, but we say the jar itself is moving, too), then the moving place is moving with 
respect to another place outside itself—is this place also moving? Well, we can’t go on like 
that forever, but must come to a place which simply isn’t moving. “No places are unmoved 
except those which, from infinity to infinity, maintain given positions to each other.” And 
motion with respect to those will be absolute. 
 
 
(2) CAUSES. 
 Conceptually, we can distinguish between absolute rest and absolute motion by their 
CAUSES. A body which begins to have relative motion does not by that fact require an 
impressed force, e.g. if I push A past B, B is in motion relative to A without my acting on B. 
But a body in true and absolute motion acquires that state only by action upon it, by an 
impressed force. 
 Assuming there is absolute space and absolute motion and rest, then, we can say the 
following: If we act on A and B and move them in exactly the same way through absolute 
space, we have absolute motion, but no relative motion. Again, if we accelerate A and B 
through absolute space, they could be moving uniformly in a straight line relative to each 
other, or resting relative to each other, so that their absolute motion (or state) changes, but 
their relative motion (or state) to each other does not. Conversely, if we act on A to 
accelerate it in absolute space, while B just moves uniformly through absolute space, then B 
might well be accelerating relative to A, but it will not be accelerating absolutely. Hence its 
absolute motion or state does not change, but its relative motion or state does. “And so true 
motion does not at all consist in relations of that kind,” i.e. if absolute space exists. 
 
 
(3) EFFECTS. 
 Sensibly, we can distinguish between them by their EFFECTS. And to this end he 
introduces his famous “bucket experiment.” 
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THE BUCKET EXPERIMENT 
 
 
Hang a bucket of water by a cord, and twist the cord many times until it is tight. Then release 
the cord and let the bucket spin. You will observe, in order, the following: 
 
 
 
1) The water does not spin with the bucket at first, and the surface of the 
water is flat. So at this point the water is in a maximum of relative motion 
with reference to the bucket. 
 
 
 
2) Bit by bit, the bucket communicates its motion to the water, and the water 
begins to revolve, and also its surface grows concave, climbing up the sides of 
the bucket. 
 
 
 
3) The water’s motion increases, and catches up with the spinning of the 
bucket, so that the water is now at rest relative to the bucket. But although the 
water is spinning together with the bucket, and at rest relative to it, its surface 
is still concave. 
 
 
So, when the water is in maximum relative motion, it is FLAT. 
When the water is in maximum relative rest, it is CURVED away from the axis of the 
motion. 
 
Newton is taking the curvature as a sign and measure of the water’s true motion or rotation, 
and he is refuting Descartes, who says that the motion of a body is nothing else than its 
differing relative position or disposition to a proximate body. 
 According to Descartes, then, when maximum relative motion is occurring, we 
should see the maximum curvature on the water, and when there is perfect relative rest 
(between water and bucket) the surface of the water should be flat. Instead we see the 
opposite. 
 (Einstein will later address this.) 
 
 Newton remarks: “It is, indeed, very difficult to recognize the true motions of 
individual bodies, and to discriminate them from apparent actions, since the parts of that 
immovable space in which bodies are truly in motion do not impinge on the senses. 
Nevertheless, the case is not wholly desperate.” 

Bucket spinning
Water not spinning

Water flat

Both spinning
But at unequal speeds,

Water curves a bit

Both spinning
At same speed,

Water fully curved
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 He follows this up with his example of TWO GLOBES connected by string and 
spinning around the common center of mass. He says that the TENSION of the string is a 
sign of their endeavor to recede from the common center of mass, and hence a sign of their 
revolving about that center. We can push on opposite faces of these globes and see what is 
required in order to get the string to RELAX, in which case we see we are undoing the 
circular motion—which tells us which faces the globes are being pushed on, i.e. which tells 
us the DIRECTION of the circular motion. And we should also be able to determine the 
SPEED of the circular motion by the tension of the string (he does not mean we should see 
how to do all this now, but only after reading the Principia). And from all that, we can figure 
out what the absolute circular motion is. 
 All of this is admittedly rather sketchy. We still have no way of deciding whether a 
thing is moving uniformly in a straight line in absolute space, or sitting still. Nor will 
Newton ever give us a way of determining that. Perhaps he doesn’t care—if the solar system 
as a whole is sitting still in absolute space, well and good; if it is moving uniformly in a 
straight line in absolute space, well, that’s not much different anyway. On the other hand, 
what if the solar system as a whole is accelerating through absolute space? We still would 
have no way of knowing, if all parts are accelerated equally and in the same direction. 
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 9 
 

THE FIRST LAW OF MOTION 
 

 
Newton next introduces his three famous Laws of Motion. He refers to this section as 
“AXIOMS or LAWS OF MOTION.” What does he mean by an “axiom”? And what does he 
mean by a “law”? 
 The word “axiom” comes from the Greek word “axios” meaning “worthy.” The idea 
was that only some statements are worthy of our assent, while others are not, and among 
those that are worthy of our assent, some are worthy because they derive from others that are 
worthy in themselves. The statements that need no proof through prior “worthy” statements 
are called “axioms”––those that are worthy of assent in themselves. For example, “When 
equals are added to equals, the wholes are equal” is an “axiom” in that sense. Even more 
specifically, sometimes “axiom” means not only a self-evident statement, but one that 
everyone has heard of, or that gets used in every science. But what does Newton mean by it? 
He seems to mean by “axiom” a statement which is plausible in itself, and which agrees with 
all experience, and from which we ought to begin our science. His laws are not quite axioms 
in the sense that “The whole is greater than the part” is an axiom. They are not things whose 
opposites are simply inconceivable. At least, his first and third axioms are not like that. 
 The idea of a “law” of physics, or a natural law, also predates Newton by many 
centuries. The first meaning of “law” is from human laws, of course. In that case, a law is a 
rule or standard of human behavior, laid down by someone in a position of power or 
authority, for the good of a community. A “law of physics” has some likeness to that original 
idea of “law.” It is a rule describing how things are expected to behave, or how they “must” 
behave, where the “must” has the idea of a natural necessity as opposed to a moral necessity. 
It is also laid down by someone with authority, such as a scientist—although he merely 
expresses the law in speech or symbols, whereas nature itself causes the law to be true and 
“enforced.” Or perhaps there is even a “lawmaker” behind the laws of physics, as Newton 
himself believed, and as we shall see by the end of the Principia. The laws of physics also 
have their efficacy within a community, namely the physical universe, and they somehow 
unify that multitude of things. 
 Now let’s move on to the particular laws. 
 
 
 
 

LAW 1 
 

Every body perseveres in its state of resting or of moving uniformly in a 
directed line, except insofar as it is compelled to change its state by 
impressed forces. 
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Projectiles persevere in their motions, except insofar as they are retarded by 
resistance of the air and are impelled downwards by the force of heaviness. A 
hoop, the parts of which, cohering, are perpetually drawn aside from 
rectilinear motions, does not cease to rotate, except insofar as it is retarded by 
air. Moreover, the larger bodies of the planets and comets conserve still 
longer their motions, both progressive and circular, made in less resistant 
space. 

 
 Compare this to DEFINITION 3, the definition of “innate force of matter” or 
“inertia.” That definition simply said what is meant by “innate force of matter,” and here 
Newton is basically saying “There IS such a force.” Note: “in a DIRECTED line” means not 
only straight, but only in one direction along that straight line. You cannot move back and 
forth in one straight line simply by inertia. 
 
 With this first law of his, Newton sides with Descartes, making rectilinear motion 
primary, contrary to Galileo and Copernicus and Aristotle. The straight line is 
mathematically primary, and since we are expecting nature to be mathematically intelligible, 
we look to mathematical priority. Note: “except insofar as” is reminiscent of hypothetical 
necessity, the kind found most often in the natural world. Also, this law is in some ways 
reminiscent of Euclid’s 2nd postulate, allowing us to continue any straight line as far as 
needed. 
 
 Is this first law of motion self-evidently true? Euclid’s Postulate 2 says a straight line 
can be continued forever in a straight line. That is self-evident. But straight motion is another 
story. 
 Law 1 seems to involve two statements, an affirmation and a negation. 
 AFFIRMATION: A body in a state will continue in that state unless its state is 
changed by impressed forces (outside causes of acceleration). 
 NEGATION: Its continuation in that state is not due to any active principle. 
 • The affirmation is the only thing explicit here in Law 1. 
 • The negation comes from thinking of Definition 3, the “vis inertiae,” which is not 
mentioned here, but surely Newton means us to think of it. There, we are told that the 
insistence with which a thing keeps going does not differ from its laziness—so the reason for 
its continuation in motion is supposed to be nothing else than the absence of any cause for 
making it do anything different. 
 • The affirmation is more important than the negation, for the purposes of the 
Principia. 
 • The negation is important for physics only insofar as it denies the need for any 
physical cause of the continuation of inertial motion. 
 • There is some experiential support for the affirmation, as Newton’s examples 
illustrate. As for the negation, there is no evidence at all. At best, we see that in many cases 
we do not see any cause for the continuation of an inertial motion. That does not mean that 
there isn’t one. 
 • The affirmation is not known through the conception of “body” or “mobile” or 
“straight.” There is nothing in our conceptions of these which makes “body which of itself 
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naturally moves in a circle” a contradiction in terms, for example. We know better only by 
induction. 
 • Nor can we verify even in one case that a body continues in inertial motion forever, 
without slowing down even a tiny bit when there are no external causes of it slowing. We 
can never be sure we have a body in those conditions, even if we see no causes slowing it 
down—and probably, thanks to universal gravitation and other inescapable forces, we simply 
can’t have a body in that condition. 
 • So Law 1 does not seem to be self-evident, although there is good reason to accept 
the affirmation, and perhaps some reason to hold the negation at least as a working 
hypothesis as regards physical causes. In other words, it is reasonable to assume, based on 
what all experience suggests, that bodies tend to continue in rectilinear motions at fixed 
speeds except insofar as they are slowed by external causes, and also to assume that their 
inherent tendency to continue thus really is not due to the action of any outside bodies. 
 • But does Law 1 really agree with experience? Is it true about a dog, for example? In 
one sense, a dog can get up of its own accord, and stop walking of its own accord. On the 
other hand, when the dog gets up, its muscles must overcome the sluggishness of its mass, 
and likewise when it stops itself from running. And it cannot start itself or stop itself except 
by impressed forces from the ground under its feet. If you removed this, it could not start 
running, and if it were already moving, it could not stop. 
 
 
 
What FAVORS the idea that things in such motions continue forever? 
 • Extrapolation from things like his examples of motions that last a very long time 
without any obvious source of impressed force. 
 • The simplicity of uniform motion in a single direction along a straight line, both 
mathematically, and its resemblance to rest. 
 • A thing in such motion “feels” as though it were at rest (although the same is true of 
things undergoing accelerations the same way in all their parts). 
 
 
What FAVORS the idea that such motion, if it exists, has no cause? 
 • Only that we see none—which is really just evidence that there is no visible cause, 
or none which is detectible by our current methods of detection. 
 
 
 NEWTON’S EXAMPLES. Newton’s examples are interesting, e.g. the spinning top 
(or “hoop” in the Ron Richard translation) and the heavenly bodies, which he says would 
continue spinning forever if we could get rid of friction entirely. These are not straight-line 
motions! If the law is supposed to be about straight-line motions, why is he using circular 
motions as examples? He is analyzing them, saying each is in part the result of a centripetal 
force, such as gravity (for the planets) or cohesion of parts (for the spinning top), and in part 
the result of the inertial tendency to keep going straight. He cannot find a simple example of 
what he is talking about, since there is none, as explained above. He must introduce the law 
not simply as something seen, but as explaining something seen. More than that, with close-
to-home examples he must extrapolate, since the top eventually stops. So we must attribute 
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the stopping to friction and irregularities in the table-top and to air resistance. This is why he 
takes up circular motions. When we roll something in a straight line, it stops very quickly, 
either because it hits a wall, or because friction stops it. But when we spin something, we 
reduce the friction to a tiny spot, and the wind resistance is less since the body is simply 
spinning in its own place. Once we get rid of the air, such motions go on for a very, very, 
very long time. Those in the heavens have been going on for billions of years. The top 
moving circularly moves within itself, diminishing wind resistance and friction, and 
approximating the orbits of planets. 
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 10 
 

THE SECOND LAW OF MOTION 
 

 
 

LAW 2 
 

Change of motion is proportional to the motive impressed force, and is made 
according to the straight line in which that force is impressed. 
 
If some force generate any motion, double will generate the double, triple the 
triple, whether it will have been impressed all together and at once, or 
gradually and successively. And, if the body were previously moving, this 
motion (since it is always determined towards the same region as the 
generative force) is either (by conspiring with) added to, or (by opposing) 
subtracted from, or (by being oblique to) adjoined obliquely to its prior 
motion, and is compounded with it according to the direction of each. 

 
 
 This is like the complement of Law 1, which was about things in their state, what 
they do without any impressed force. This one says what happens due to impressed force. 
 “Change of motion” means “change of momentum,” of mv. That is plain, since 
“proportional” implies that motion is quantified, and we have from Newton only one 
definition for a “quantity of motion,” which is mv. 
 What is “motive impressed force”? This has not been defined, but “motive quantity 
of centripetal force” has been defined (Def. 8, F = ma). Probably Newton wants us to 
generalize after all, and take “F” to mean not just centripetal force, but any impressed force 
quantified by ma. 
 Is this Law true and self-evident? It is true by definition. Since “motive impressed 
force” is defined as ma, i.e. that is how its quantity is defined, Law 2 is just saying that 
“change of motion” is proportional to ma, but “change of motion” is change from one 
momentum to another, from one mv to another mv. So, if we are talking about the same 
body, and hence the same m, the only thing changing is the v, and a change in v is an a 
(acceleration). So the Law ends up meaning: the total change of momentum is proportional 
to ma, i.e. (mv1 – mv2) = ma. The change in velocity is proportional to (or is equal to, or 
simply is) the acceleration. 
 
 So far Law 2 appears to be true by definition, and is not really experimentally 
verifiable. But what about the part that says the direction of the change of motion results 
from the direction of the motive impressed force? If this means the direction of the 
acceleration in a body is the same as the direction of the body which collided with it or 
knocked it, that can be verified experimentally, at least in some cases—e.g. in head-on 
collisions. In other cases, we would have to assume vector addition applies, which would 
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seem to beg the question. Newton’s wheel (an illustration he will soon introduce in the 
Corollaries to the Laws) follows from Law 2, but also from Law 1, so even though that is 
experimental verification of a kind, it is not a verification of Law 2 independently of 
assuming any other Laws. 
 
 Here for the first time Newton highlights DIRECTION, saying that the direction of 
the impressed force determines the direction of the change of motion. This is in opposition to 
Descartes, who says motion is not contrary to motion, and therefore change of direction is 
not a change of state for him. Here we may remind ourselves of the distinction between 
vector quantities and scalar ones. A vector quantity is a magnitude (a “how much”) plus a 
direction. A scalar quantity is a mere magnitude, without any direction. It is not merely a 
matter of human convention to combine magnitudes with directions. Just as it is natural to 
quantify motion by both speed and mass, since nature preserves that quantity, so too 
direction must be taken into account, since nature preserves that, too. 
 
 If the force is impressed in the same direction as the original motion, then the change 
in motion is simply added to the original motion. If in the opposite direction, then subtracted. 
If obliquely, then we need vector addition, as specified in Corollary 1 following the Laws. 
 
 Again, no special importance is placed on the origin of the force. It can take place 
“all together and at once” or “gradually and successively,” and the resulting quantity (i.e. of 
change of momentum) will be the same. 
 
 QUESTION: Can’t I push on something without budging it, and hence impress a 
force which is not proportional to any change of motion in the body I am pushing against 
(e.g. a large stone)? 
 This seems to involve us in more modern considerations of energy. Changes in my 
muscles and expenditure of their potential energy must translate into some transfer of energy 
into the stone, but not always in the form of a motion of the whole stone. Perhaps I keep 
smacking it with my hand, and it does not move—but I do heat it up a little bit. Ignoring 
these kinds of complications, though, if I shove against the stone, I will accelerate it 
somewhat, even if just a tiny bit. This kind of difficulty will come up more plainly in Law 3. 
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 11 
 

THE THIRD LAW OF MOTION 
 

 
LAW 3 

 
To an action there is always a contrary and equal reaction; or the actions 
of two bodies between themselves are always equal and directed toward 

contrary parts. 
 

Whatever presses or draws another, is pressed or drawn just as much as it. If one 
presses some stone with a finger, his finger is also pressed by the stone. If a horse 
draws a stone tied to a rope, the horse is drawn back (if I may so speak) equally 
towards the stone; for the rope, being distended on either side by the same stretching 
out, endeavors to urge the horse toward the stone, and the stone toward the horse; 
and as much as it impedes the progress of the one so much will it promote the 
progress of the other. If a body impinging on another body would by its force 
change the latter’s motion in whatever way, the same, in turn, also will undergo the 
same change in its own motion towards contrary parts by the other force (on account 
of the equality of the mutual pressure). By these actions equal changes are made not 
of velocities, but of motions; that is, in bodies not impeded by something else. For, 
changes in velocities, being likewise made towards contrary parts, are inversely 
proportional to the bodies, since the motions are equally changed. This law also 
obtains in attractions, as will be proven in the next scholium. 

 
 
This is Newton’s star law, and is contrary to Descartes, who said (e.g. in his fourth rule of 
collision in his Principles of Philosophy) that bodies do not always produce accelerations in 
each other. A smaller body cannot accelerate a larger one, according to him, regardless of 
how fast the smaller one is going. For Newton, the smaller always accelerates the larger 
(assuming perfect rigidity), no matter how small it is or how slowly it is going. 
 
Both Descartes’ view and Newton’s are counter-intuitive. According to Descartes, if a 
smaller football player runs into a larger, stationary one, the larger one will not budge at all. 
And if someone is shot by a bullet, then, since the bullet is much smaller than him, he will 
not be accelerated at all by the bullet. According to Newton, if a fly collides with a freight 
train, it will slow the freight train down a little bit. Newton’s view, while in some ways 
shocking, is conformable to experience, whereas Descartes’ does not appear to be. 
 
What is meant by “ACTION”? Uniform motion in a straight line is not an “action,” and so 
you can have that without having anything equal and contrary going on. So does he mean an 
acceleration? If so, the “reaction” would be an acceleration, too, and so “an equal and 
opposite reaction” would mean “an equal and opposite acceleration.” But that is false. So by 
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“action” he means “a change of motion,” i.e. “a change of momentum,” i.e. a mass times its 
acceleration. 
 
“CONTRARY.” Impressed forces, in other words, exist only in contrary pairs. Every one is 
accompanied by another, of equal magnitude, acting in the contrary direction. A bit like 
“concave” and “convex.” 
 
Every impressing body is in turn impressed by what it impresses. This is reminiscent of the 
discussion after Definition 3 of “innate force of matter,” where he says a body has resistance 
insofar as it is impressed by another, and impetus insofar as it is impressing another. 
 
“EQUAL.” Equal in what way? Are the velocities of the action and reaction equal? No. Are 
the accelerations necessarily equal? No. The resulting changes of momentums are equal. 
What equation should we use to express Law 3? 
 
 m1a1 = m2a2  
 
Is that quite right? Since acceleration is a vector quantity, this means that both bodies are 
accelerated in the same direction as a result of their interaction—which is false. So we must 
actually write 
 
 m1a1 = - m2a2  
 
For every change in momentum, there is an equal and opposite change in momentum in 
another body. 
 
Impressed forces might arise from the vis inertiae, innate force of matter, but that is not 
necessarily the case. 
 
IS THIS LAW SELF-EVIDENT? 
 a. If A acts upon B, then A in turn is acted upon by B. That is not self-evident 
universally, but it might be self-evident if A and B are both bodies, since they can act only 
by contact. 
 b. If A pushes B, then B also pushes A. Again, if they are bodies, that seems fairly 
evident. (But maybe not exactly self-evident, since it requires that the pushed body resists, 
which is perhaps not in the idea of body or of “pushed.”) 
 c. If A pushes B, then B also pushes A in the contrary direction. That adds 
something, but again, seems to be fairly evident. 
 d. If A pushes B with so much acceleration in B, then B also pushes A back, in the 
contrary direction, accelerating A, such that mAaA = mBaB. That is not nearly as evident! But 
it is subject to experimental verification. Also, it stands to reason, since “mass” is 
proportional to “resistance to acceleration.” Hence one should expect masses to be inversely 
proportional to the accelerations, i.e.  
 
 
 m1 : m2 = a2 : a1  
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EXAMPLES. Imagine 2 books leaning against each other, each pushing the other. Each 
pushes the other, but is pushed back by the other equally, so there is balance. A spring scale 
might be placed in line with a rope on which you and I are pulling, at opposite ends. The 
direction in which the spring scale is turned, whether toward me or toward you, will make no 
difference to the reading. A bathroom scale reads the same either way you turn it. How 
much do I weigh on the planet Earth? And how much does Earth weigh on the “Planet Me”? 
The same! 
 
QUESTION. Newton’s own example of a horse drawing a stone raises a question: How will 
the two actions not just cancel each other out with zero net motion? 
 Or how can a HAMMER bang in a nail if the nail bangs back on the hammer just as 
hard? 
 Well, the action of the hammer on the nail drives it into the wood, and the equal and 
opposite reaction of the nail on the hammer slows the hammer down to a stop. 
 Likewise, the action of the horse on the stone (via the rope) moves the stone 
(Newton’s own example); and the equal and opposite reaction of the stone (via the rope) on 
the horse compresses its muscles, and slows it down, etc. 
 So too an ICE SKATER who pushes against a railing—she goes backward away 
from the railing. She acts on the railing (perhaps causing some little compression or vibration 
in it or some little acceleration in the large body to which it is fixed, e.g. the Earth), but it 
also acts on her. 
 So too a ROCKET in space goes forward because it thrusts gases backward, and they 
act back on it, throwing it forward. 
 So too a GUN does not kill the man shooting it. Why not? Because the “m” which is 
accelerated backwards by the explosion of the powder is not that of the bullet, but that of the 
gun + the mass of my whole body (if I hold the gun correctly and make one piece with it). 
But the bullet has a much smaller “m” than me, so it ends up having a much greater “a” than 
me. 
 
 

GENERAL REMARKS ON THE LAWS 
 
 
These are reminiscent of Ptolemy’s system of the world, in which certain simple tendencies 
or motions are induced from certain data, and certain simplicities are presumed to underlie 
certain complexities, although none of these principles are truly per se notum or “axiomatic” 
in the ancient sense discussed earlier. The soundness of these principles, accordingly, is to be 
judged from their results, i.e. from their explanatory power and the harmony of all their 
consequences with the observed facts. So we appear to be beginning not from “axioms” so 
much as from very reasonable hypotheses suggested by certain preliminary observations. 
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 12 
 

 
COROLLARY 1 

 
 

“PARALLELOGRAM OF FORCES” 
 
 

A body acted on by two forces at once will describe the diagonal of their 
parallelogram in the same time as it would describe the sides by those forces 
separately. 

 
 
 
Newton now attaches six corollaries to his three laws. They develop certain consequences of 
his laws, or else illustrating more concretely how they work. 
 
The first corollary is comparable to Heron of Alexandria’s “Parallelogram of velocities,” 
which can be found in Heath’s History of Greek Mathematics, Vol. 2, p. 348. It is also 
similar to Galileo’s procedure in Two New Sciences, in the 2nd Proposition of the Fourth Day. 
Only here we have forces or accelerations, as opposed to mere velocities. 
 
If speed AB = 30 mph, and speed AC = 40 mph, and ∠BAC = 90°, what is the compound 
speed along AD? 
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Given: Body at A acted on just by force M instantaneously at A will go to B in time T. 

Body at A acted on just by force N instantaneously at A will go to C in time T. 
 

Prove: Body at A acted on by M and N at once will go to D in time T. 
 
 
By the 2nd Law (an interesting application!), M will do 
nothing to alter the velocity caused by N, and vice versa, 
since they act in different directions, and each acts only in 
its own direction. 
 Therefore the body acted on by both, since it is 
acted on by M, must still reach the line BD in time T, and 
since it is acted on by N, must still reach the line CD in time 
T. So, after time T, the body will be at both line BD and 
line CD, hence it must be where they intersect, i.e. at D. 
 What about in between A and D? Where will the body be during that time? Along 
AD, because by the 1st Law a body travels only in a straight line after new forces stop acting 
on it. 
 So he is assuming an instantaneous action of forces M and N when the body is at A 
(they “knock” it), and hence there is instantaneous acceleration from rest to some uniform 
speed. OR he is assuming that M and N act continuously up till the body is at A, then stop 
acting right there. 
 So what has Newton done, here? He has proved that the parallelogram is a tool for 
constructing the net direction of a motion resulting from two simultaneous forces. 
 
NOTE: This same diagram allows us to compose forces, distances, velocities, and accelerations. 
 Since the forces (accelerations) M and N entirely determine the motions from A to B and 
from A to C, and those motions take place with uniform velocities and in the same time, those 
velocities are proportional to the accelerations or forces: 
 
 Acceleration M : Acceleration N = Speed (A to B) : Speed (A to C) 
 
But since those motions happen in the same time, therefore the speeds are as the distances, 
 
i.e. Speed(A to B) : Speed(A to C) = AB : AC. 
 
Hence 
 
 Acceleration M : Acceleration N = AB : AC 
 
i.e. Accelerative Force M : Accelerative Force N = AB : AC 
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 13 
 

 
COROLLARY 2 

 
 

“Newton’s Wheel” 
or 

“The Analysis of Elementary Machines” 
 
 

And in this way, the composition of a direct force AD from any oblique forces 
at all, AB and BD, and also the resolution of any direct force AD into 
whatever oblique forces, AB and BD, becomes evident. Which composition 
and resolution are, in fact, abundantly confirmed from mechanics. 

 
 
 

Q1. How do we compose forces? Wasn’t Corollary 1 about composing uniform motions? Wasn’t 
AD a distance over which there was a compound uniform motion? But now he speaks of “direct 
force AD.” What is he thinking of? 

 
The distances AB, AC and AD are as the uniform speeds which cover them in the same time, 
as we saw. But the accelerations M (or ab) and N (or ac) are to each other as the speeds they 
produce, i.e. AB and AC. Hence, too, the 
compound acceleration ad will have to 
either component, say ab, the same ratio as 
compound speed AD to component speed 
AB. So we can compound accelerations (or 
“accelerative forces”) by the same sort of 
diagram used in Cor. 1. 
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Q2. Given two forces, is the compound force unique? Given the magnitude of two forces, is 
the magnitude of the compound force unique? How is the magnitude of the compound force 
given? 
 
 • Yes, given two forces, their compound is unique and determined, since we are not 
given a force unless we are given both its magnitude and direction. Hence we get one 
parallelogram, one resulting diagonal, and one direction along it. 
 • But given the magnitudes of two forces, we are not yet given the compound force 
either in magnitude or direction. two straight line-lengths can be used to make an infinity of 
different parallelograms, and hence can be used to make an infinity of different diagonals, 
varying in both length and direction. 
 • But if the magnitudes of the two component forces are given in units of length, and 
the angle between them is given in degrees, then the magnitude of the diagonal is given 
trigonometrically. For example, 
 
Let AB = 5 
 AC = 4 
 ∠BAC = 80° 
then AB = 5 
and BD = 4 
and ∠ABD = 100° 
 
but a2 = b2 + c2 – 2bcCOS A  [Law of Cosines] 
 
so AD2 = AB2 + BD2 – 2 (AB.BD)COS ∠ABD 
 
i.e. AD2 = 25 + 16 – 2 (20) cos 100° 
 
so AD2 = 41 – 40 ( – .173648177...) 
 
i.e. AD2 = 41 + 6.945927107... 
 
so AD2 = 47.945927107... 
 
so AD = 6.92429975... 
 
 
 

Q3. Given a force, is the pair of forces into which it can be resolved unique? 
 
No—a given straight line is the diagonal of an infinity of possible parallelograms. 
 

A B

DC
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Q4. Can we compound three forces? Can we resolve a single force into three components? Can 
we do it in three dimensions? Does the order of vector-addition matter when we have three  
things to add? 
 

 
To compound three forces in a plane, the first method that suggests itself is to use Newton’s 
parallelogram-method to compound any two of them, and then compound the compound 
with the remaining one. And we can likewise resolve a single force into as many as we want, 
e.g. into three components. Simply resolve it into two, and then resolve one of the 
components into two. But can we do this in three dimensions as well as in two? And another 
QUESTION: does the ORDER in which we add make any difference in vector addition? 
Suppose we have a point P, and three vectors PA, PB, PC. The mere definitions of the 
following operations are not the same: 
 
 (PA + PB) + PC 
 (PA + PC) + PB 
 (PB + PC) + PA 
 
We need to prove that the results of these are all one and the same vector, or else we have no 
unambiguous way of adding three vectors. 
 In a way, this is easier to see in three dimensions first. What follows is a proof of this, 
i.e. that the order of vector-addition makes no difference when we are given three vectors to 
add, whether in three dimensions or in two. 
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Given:  3 vectors PA, PB, PC 
Prove:  (PA + PB) + PC 
 and (PA + PC) + PB 
 and (PB + PC) + PA 
 are all the very same vector, i.e. in magnitude and 
direction. 

 
First let the three vectors be not all in one plane, so that 
they enclose a solid angle. 
Then complete the parallelepipedal solid by making 
parallelograms 
 APBD 
 BPCE 
 APCG 
 DAGQ 
And join the diagonals 
 PD, CQ 
 PE, AQ 
 PG, BQ 
 
1. Well,  PA + PB = PD   (prlgrm. APBD) 
2. and     PD + PC = PQ  (prlgrm. PCQD) 
3. so   (PA + PB) + PC = PQ 
 
4. Again,  PA + PC = PG   (prlgrm. APCG) 
5. and     PG + PB = PQ  (prlgrm. PBGQ) 
6. so   (PA + PC) + PB = PQ 
 
7. Again,  PB + PC = PE   (prlgrm. BPCE) 
8. and     PE + PA = PQ  (prlgrm. PAQE) 
9. so   (PB + PC) + PA = PQ 
 
So the order in which we add the three given vectors makes no difference: the result is PQ every 
time. 
 
Q.E.D. 
 
PORISM: For three vectors from a point, not all in one plane, the compound vector (or vector-sum) 
is the diagonal PQ of the parallelepipedal solid of which they form the solid angle. 
 
If we now take PA, PB, PC to be all in one plane, we simply collapse the same diagram into a two-
dimensional drawing of parallelograms all in one plane, and the argument works the same way. So 
instead of making a solid, make the same parallelograms as before, this time all in one plane, and join 
the diagonals, and all the things called parallelograms in the proof will still be parallelograms. 
Therefore it is also true that the order of vector addition makes no difference in one plane. 
 
Q.E.D. 
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But this leaves us with the question whether we can add four or more vectors, and whether 
the order of addition will make any difference after three. We don’t want to come up with a 
new and separate proof for each case, so instead we use a new method of adding vectors: the 
“tip-to-tail method.” 
 Suppose we are given three vectors to add: A, B, C. Starting at any point P, we place 
the tail of A there, and then we place the tail of B at the tip of A, and the tail of C at the tip of 
B, and then we join the starting point P to the tip of C. Call this final vector, taking us 
directly from P to the end of the vector sequence, “V.” Obviously if we follow the arrows 
(vectors) A, then B, then C, we get to the same spot from P as we do by following V . So if 
A, B, C are motions, or accelerations, or whatever, the result of putting them all together at 
once, or going through them all, is the same as going through just V. That is, 
 
 A + B + C = V  (vector addition) 
 
V is the vector-sum of all three given vectors. 
 Plainly the order of addition makes no difference to the resulting vector-sum. If I go 
“10 feet north” first, then “5 feet west,” then “3 feet South-East,” I will end up in the same 
place as I would by going through these same steps in any other order. The paths will differ, 
but the final result will always be the same, and will define the same resultant-vector, 
whether in two dimensions or in three dimensions, and regardless of how many vectors are 
added (cf. the “City Block Theorem.”). 
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Q5. Will the compound force always be of greater magnitude than the component forces? When 
will the compound of two forces (which are equal to each other in magnitude) be equal to each 
component (in magnitude)? 

 
No, the compound will not always be of greater magnitude than the 
components. 
 
 If ∠KEG = 135°, and EG = 1 and EK = √2, then EH, the compound 
(diagonal) will be 1, which is equal to one of the components, and less than 
the other. 
 
 
 
 If LM and LO are the diagonals of 
adjacent rectangles whose common side LP is to 
the remaining sides MP, PO in the ratio of 1:2, 
then the compound of LM and LO will be LP, 
which is 1, whereas each component is √5. So 
the compound is of much less magnitude than 
either component. 
 
 
 
 If ∠QRS = 120°, and QR = RS, then the 
compound force, RT, is equal to each component. 
 
 
 
 
 What happens if we want to compound 
forces AB and AC, and they happen to lie in a straight line, and have the same direction? By 
looking at cases close to a straight line, i.e. very flat parallelograms, we see that the opposite 
side CD is always equal to AB; so in the “flat” case, we simply add CD equal to AB, and the 
resulting AD is the compound force (i.e. just use the tip-to-tail method): 
 
 
 
 
 
 
 
 
 
 
 And if AB and AC lie in a straight line, but have opposite directions? Then we see 
that the opposite side of the parallelogram DC must always equal AB, so that in the “flat” 

K

H
45

90

G

E

L

M P O

R

Q S

T

120

A B C D

A
B

C
D



 66 

case we simply subtract from AC a portion CD = AB, and the resulting AD is the compound 
force (again, just use tip-to-tail): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Q6. What is Newton doing with the wheel, etc., in the explanatory part of the Corollary? Is he 
proving Cor. 2? 

 (See NOTES below) 
 

Q7. Given that the weights A and P in Newton’s diagram are balancing the wheel, can we prove 
Archimedes’ law of the lever, just using Newton’s Laws and Corollaries 1 and 2 ? 

 (See NOTES below) 
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NOTES ON COROLLARY 2 
 
 
 
 (1) Corollary two states that we now know, by Cor. 1, how to COMPOSE two forces 
into a new force which will produce the same result as the separate ones do when they work 
together. Now he adds that we can also RESOLVE any one given force into component 
forces which produce the same result (when they work together) as the single given one 
does. 
 
 (2) Given two forces, there is only one force which alone will accomplish the same. 
But given one force, there is an infinity of pairs of forces which will accomplish the same. 
So the decomposition of forces allows great freedom, and is somewhat more arbitrary or 
conventional. But, given one actual force, and one other into which to resolve it, the 
remaining component is determined. 
 
 (3) He says that mechanics provides abundant evidence of this. 
 
 (4) Newton shows how the composition and analysis of forces gives us a way of 
calculating the forces of wheels, levers, wedges, mallets, screws, inclined planes, and more 
complex machines composed of these, including animals. He shows us how to determine the 
forces needed to move a simple machine, or the forces which they exert on other bodies. 
(Such principles are used, by the way, in certain branches of physical medicine.) 
 
 (5) NEWTON’S WHEEL. We will focus just on the wheel. It doesn’t matter whether 
it is a vertical wheel moved by hanging weights, or a horizontal wheel moved by shoves. As 
a vertical wheel, it is really just a balance. It seems here that Newton is deriving 
Archimedes’ Law of the Lever (or Balance) from his simple Laws of Motion. This shows 
that they are not only consistent with ancient and well-verified mechanics, but also that they 
give reasons for those ancient ideas. 
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Given:  Wheel with center O 
 Weight A hung from M 
 Weight P hung from N 
 Wheel balanced (this is just one scenario) 
 KOL horizontal 
 

Prove:  A : P = OL : OK 
  

Suppose OL > OK (if OL = OK, obviously P = A to cause 
balance) 

Therefore the circle of radius OL around center O will cut MA below K, as OD. 
 
Newton says that the effect of weight A (on the wheel) is the same anywhere along MA, e.g. at K or at D. 
So he lets it be attached at D (in order to resolve it into a force tangent to the circle of radius OL). Again, 
let P be attached at L (for the same reason). 
 
Now, draw tangent DC, and draw AC perpendicular to DC. 
 
Therefore, if we let DA represent the force of weight A straight down, we see it has the same effect as the 
forces DC and CA together (Cors. 1-2), of which CA does nothing to turn the wheel, and therefore the 
turning power of weight A is as DC. 
 
But since DC and weight P both act at equal distances from the center (the “obvious” case we dismissed 
at the beginning), and both at 90° to the radii, therefore both are equally effective in turning the wheel. 
Hence, since the wheel is balanced, it follows that force DC is equal to the force of weight P. 
 
So:  Weight A is as DA, 
  Weight P is as DC, 
  and therefore balance happens if 
  wt.A : wt.P = DA : DC 
 
But rADC is similar to rDOK, since each is right, and ∠ODC is right, and KDA is one straight line. 
 
Thus DA : DC = OD : OK 
or  DA : DC = OL : OK  [OD = OL] 
so balance happens if 
  wt.A : wt.P = OL : OK 
 
“which is the well-known property of the balance, lever, and wheel”. 
 
 
Q.E.D. 

 
This is a confirmation of Newton’s Laws of Motion (and his Definitions), since these are implied in 
the composition of forces parallelogram (and he relies on Law 1 and Law 2  in his Cor. 1). 
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Newton next complicates matters by letting weight P be partly supported by an inclined 
plane pG, causing the string to move aside from the vertical. This will show the power of his 
method to solve problems not solvable by the simple law of Archimedes. Archimedes needed 
things to be nice and straight down, but Newton doesn’t. He is showing the universal 
applicability of his Laws, Definitions, etc. 
 (But perhaps we should skip this more complex case, so long as we understand what 
he is doing in a general way, and why.) 
 
At the end of this Cor. 2, Newton mentions the other “elementary machines”:  
 wedge 
 inclined plane 
 mallet 
 screw 
 wheel 
 drum 
 pulley 
 stretched cord 
 weights (ascending or descending) 
He is saying, in effect: “If you accept these things, you should accept my first two Laws, 
since those Laws give simple, elementary, universally applicable reasons for all the rules by 
which these machines function.” 
 And he says that “From this corollary” (of resolution of forces into components) “are 
easily derived the forces of machines which are usually composed out of [all the elementary 
machines just listed].” So, understand the Laws, and you will understand all simple 
machines, and thus you will understand all machines whatsoever, since they are either 
simple, or else composed of the simple. 
 And then he mentions “the forces of tendons for moving the bones of animals.” He is 
showing that his Laws are not limited to artifacts, but apply also to natural “machines.” 
 In the Principia, however, he is not going to be interested in the analysis of machines 
(unless the universe is a machine). He is bringing these up here in order to show the 
fruitfulness, utility, and explanatory power of his Laws. 
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 14 
 

 
COROLLARY 3 

 
 

“Conservation of Momentum” 
 
 

The [total] quantity of motion (which is obtained by taking the sum of 
motions in the same directions, and the difference of motions in contrary 
directions), undergoes no change from the action of bodies among 
themselves. 

 
 
(1) This conservation law (Newton says) follows from Laws 2 and 3, concerning equal and opposite 
action and reaction. It was discovered experimentally in the mid-17th century, shortly before 
Newton’s time. So this is another way of confirming his Laws, showing their relevance and truth. 
 
(2) If we are not talking about a closed system of bodies, then the conservation law does not hold. If, 
for example, we look only at bodies A, B, C, the total momentum among them might increase or 
decrease because of another body D, acting on one or more of them, but which we have failed (or 
refused) to include in our considerations. 
 
(3) Even within a closed system, momentum is not strictly conserved, but energy is. Momentum can 
be ‘stored’ in different forms of energy. But insofar as energy must exist as kinetic energy, as motion, 
momentum is conserved. 
 
(4) QUESTION: If Body A has 5 units of momentum to the right, and Body B has 10 units of 
momentum to the left, and they are not on a collision course, what is the total momentum in the 
system, 5 or 15? (Newton is plainly thinking of vector addition, so the total would be “5 to the left.” 
Oblique motions cannot be added except by vector addition.) 
 
(5) QUESTION: Does this mean nothing can ever slow down? (It means nothing can slow down 
without something else picking up the lost motion.) 
 
(6) QUESTION: Can a body give to another more momentum than it has itself? (Yes. A body at rest 
in absolute space has 0 momentum. But it can give [or maybe it is better to say “take”!] new 
momentum to another which crashes into it.) 
 
 
 
 
 
 



 71 

(7) We can prove this Conservation Law in a simple case, i.e. for two bodies colliding head on, and 
assuming perfect elasticity (so no momentum is lost by being transformed into some other kind of 
energy). Let perfectly rigid Sphere A collide with perfectly rigid Sphere B, head on. By the 2nd Law, 
an impressed force is proportional to (or is equal to or measured by) the change in the quantity of 
motion resulting from it, i.e. by the change in momentum produced. So consider the force exerted by 
Ball A on Ball B (written FAB): 
 
 FAB = mBvB – mBv’B 
 
i.e., the force exerted by A on B in the head-on collision is equal to the difference between B’s initial 
momentum (prior to collision) and B’s resulting momentum (after collision). Since B’s mass does not 
change (we assume), the only new thing is B’s velocity. Likewise the force of B on A can be written 
(by the 2nd Law): 
 
 FBA = mAvA – mAv’A 
 
Now by the 3rd Law, these forces are equal and opposite. Hence 
 
 FAB = – FBA 
 
i.e. mBvB – mBv’B = – (mAvA – mAv’A) 
 
or mBvB – mBv’B = – mAvA + mAv’A 
 
i.e. mBvB + mAvA = mBv’B + mAv’A 
 
...which is the law of the conservation of momentum. 
 Since the 3rd Law is pretty much a logical equivalent of the Conservation of Momentum, this 
reasoning is not so much a proof of the Conservation Law as a show of equivalence and 
consistency—Newton is connecting his Laws to other recognized and venerated ideas. Since we can 
work these last four steps in reverse, we see that the 3rd Law is entailed in the Conservation Law (and 
this is perhaps how Newton first discovered the 3rd Law), and we see that Descartes was inconsistent 
in affirming the Conservation Law while effectively denying the 3rd Law (with his odd rules of 
collision). 
 
(8) Suppose our Spheres have unequal masses and unequal (initial) velocities. Can we say what the 
new velocities are by this law? For example, let A have a mass of three and a velocity of two, while B 
has a mass of two but a velocity of three. What happens when they run head on? What will the new 
velocities be? Newton does not get into this here. What we know, by this Corollary, is only this: 
 
 m1v1 + m2v2 = m1v’1 + m2v’2 
 
We know that the sum of the momentums in the system is a constant, but how the individual 
velocities change has not yet been explained here. Nor is he interested in getting into details on this, 
since he brings it up only as a sign of the validity of his laws. 
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How does Newton illustrate the conservation law in the examples with 2 SPHERES colliding head-on? 
 
Suppose we have two spheres,  A and B, and 
 
 mA = 3 
 mB = 1 
 vA = 2 
 vB = 10 
 
thus pA = mAvA = 3 × 2 = 6 
and pB = mBvB = 1 × 10 = 10 
 
Therefore in the whole system, prior to collision, the total momentum is 16, since the motion of the 
whole is the vector-sum of the momentums of the parts (as he stated in his definition of “quantity of 
motion” or momentum). 
 NOTE: Thus if mass in a closed system is constant, so is net velocity. 
 
 
Now, AFTER COLLISION, 
 
suppose  pA = 6 + 3 = 9  [a gain of 3] 
then  pB = 10 – 3 = 7 [a loss of 3] 
 
And so, in the whole system, after collision, the total momentum is still 16. 
 
Or, AFTER COLLISION, 
 
suppose   pA = 6 + 12 = 18 [a gain of 12] 
then  pB = 10 – 12 = – 2 [a loss of 12] 
 
And so, in the whole system, after collision, the total momentum is still 16 (in the original direction 
in which A and B were moving, though now B is moving with a velocity of 2 in the contrary of its 
original direction). 
 
Note that the mere initial momentums and the rule of conserving total momentum do not enable us to 
say what the individual new momentums will be. But if we assume what one of them will be, we can 
say what the other will be. 
 
But if we know the individual resulting momentums, then we also know the individual resulting 
velocities (assuming the masses have not changed). For instance, 
 
if  pA = 18 after collision, as in the last case, 
then  18 = mAvA = 3vA  [since mA = 3] 
thus  vA = 6 
 

 
 
 
 
 
 

A B
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What does Newton say about cases in which the bodies are NOT SPHERES, or which COLLIDE 
OBLIQUELY? What are the steps to finding the new motions resulting from the collisions? 

 
He is very sketchy here, but gives us two basic steps if we wish to find the momentums after collision 
when we are given the prior momentums of the two bodies (and, presumably, the resulting 
momentum of one of them). 
 (1) FIND THE ORIENTATION OF THE PLANE TANGENT TO BOTH BODIES AT THE 
POINT OF COLLISION. He does not explain what this means, or define this plane. What if two 
cubes meet at their corners? What is the plane “tangent” to each of them through that point? He does 
not say. 
 (2) DECOMPOSE THE MOTION OF EACH BODY INTO TWO COMPONENTS: ONE 
PERPENDICULAR TO THE PLANE, THE OTHER PARALLEL TO IT. This is a geometry 
problem, and he does not explain how to solve it. But he says that the components acting at right 
angles to the plane are the ones which we must add or subtract in order to determine the new 
momentum in the body for which this is unknown. 
 He excuses himself from further consideration of this, saying it is a long and tedious thing to 
get into the details. 
 
 
 
If two ideally elastic and simply convex solids with centers of mass A, a and momentums as AB, ab 
collide at P, then the way to determine the results of their collision is: 
 
(1) Draw TPN, the plane tangent to both solids at P. 
(2) Drop AD and ad at right angles to TPN. 
(3) Draw DB and db parallel to TPN. 
(4) Whatever the vector-sum (AD + ad) is before collision, it must also be after collision, although 
each of the components AD, ad will be different. But components BD, bd will be unaffected (by 
Laws 1 and 2 and Cors. 1 and 2). 
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 15 
 

COROLLARY 4 
 

The common center of gravity of two or more bodies does not alter its state of 
motion or rest by the actions of the bodies among themselves; and therefore 
the common center of gravity of all bodies acting upon each other (excluding 
external actions and impediments) is either at rest, or moves uniformly in a 
straight line. 

 
 
• Newton gives a sketchy geometrical argument for this Corollary after enunciating it, letting 
two points move with uniform motion along straight lines, and saying their center of gravity 
will divide the line between them in a fixed ratio, and hence either sit still, or move 
uniformly in a straight line. 
• This is his first use of “point-masses.” We will continue to speak of moving masses as 
points for quite a while. 
• He refers to Lemma 23 (which we will not read), in which he proves this Corollary more 
generally. 
• It is fairly obvious anyway, but we will explain it more fully below. Lemma 23 does not 
apply in any obvious way to 3-D cases in which the motions of two bodies are not in the 
same plane, so we will not bother with Lemma 23. 
• One can now add a third body, and if it is moving uniformly in a straight line or resting, so 
will be the common center of gravity between it and the center of the previous two. And so 
on, ad infinitum. 
• But you can also take Cor. 4 as a CASE OF LAW 1 in which the “body” happens to be a 
crowd of bodies, and the thing moving by its inertia is the center of mass of all the bodies. 
Still, he prefers to argue for this, and concludes at the end: “There is, therefore, the same law 
for a system of many bodies as for solitary bodies, as far as perseverance in its state of 
motion or of rest.” i.e. LAW 1 applies equally well to systems as to individual bodies. 
• Even a single body, like a thrown wrench, behaves like a “system” of many bodies in 
which only the common center of gravity either rests or moves in a straight line uniformly, in 
the absence of impressed forces, as when you slide it across a friction-free surface and the 
parts of the wrench orbit the center of weight, which point is the only one moving uniformly 
in a straight line. If you slide a wrench across a table-top, and give it some spin, the center of 
mass of the wrench will not spin, and it will move in a straight line. The only reason it slows 
down is because of the friction of the table top and wind resistance. 
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NOTE ON THE COMMON CENTER OF WEIGHT 
FOR 3 OR MORE BODIES 

 
 
 
Suppose we have three weights 
A, B, C and we want to find their 
common center of weight. With 
Archimedes we learned how to 
find the center of weight for one 
triangle which is made of 
uniformly heavy material (namely 
by finding the point of 
intersection of the three lines 
dropped from the vertices to the 
midpoints of the opposite sides), 
and also for two bodies (namely 
by finding the point dividing the distance between the centers of weight for each body in 
such a way that the segments of this distance are inversely proportional to the weights; i.e. 
the Lever Law). But how do we find the center of weight for three weights at different 
distances from each other? (Let us suppose the centers of weight for each body are identified 
at points A, B, C.) 
 Well, one method suggests itself. We can find the center of weight of A and C by 
taking point D such that 
 
 A : C = CD : DA 
 
and then we can join BD, and divide it at E so that 
 
 B : D = DE : EB 
 
Since point D “weighs” the same as A + C, as it were, because it is the common center of 
their weight, then it seems logical to conclude that E is the common center of weight for all 3 
bodies, since it is the common center of weight for B and D. 
 But this should make us wonder whether the ORDER OF PAIRING WEIGHTS 
makes any difference. What if we found the common center of weight for B and C first, and 
then found the common center of weight for this center and the remaining body A? Would 
we still get point E as the common center of weight for all 3 bodies? Put another way: If we 
join AE and produce it to K on BC, will K be the common center of weight for B and C? 
And will E be the common center of weight for A and K ? 
 It will. But this requires proof. So here it goes. 
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Grouping A and C first, then  
 
Given:  A : C = CD : DA 
  B : D = DE : EB (D = A + C) 
  AE joined and extended to K 
 
Prove:  B : C = CK : KB 
  B + C : A = AE : EK 
 
 
Note that E is the “crotch” of a Menelaos figure (see the Ptolemy course for a proof of the Menelaos 
Theorem). 
 
Hence  CK : KB = (DE : EB) c (AC : DA)  [Menelaos Theorem] 
But  CD : DA = A : C    [Given] 
so  CD + DA : DA = A + C : C   [Componendo] 
so  AC : DA = A + C : C 
And  DE : EB = B : D    [Given] 
 
so  CK : KB = (B : D) c (A + C : C)  [Substituting from above] 
so  CK : KB = (B : A + C) c (A + C : C)  [weight D = A + C] 
so  CK : KB = B : C 
 
Hence K is indeed the common center of weight for weights B and C. 
 
 
Again  CD : DA = (KE : EA) c (BC : BK)  [Menelaos Theorem] 
so  AE : EK = (DA : CD) c (BC : BK)  [rearranged] 
 
But  CK : KB = B : C    [just proved] 
so  CK + KB : KB = B + C : C   [Componendo] 
i.e.  BC : BK = B + C : C 
And  DA : CD = C : A    [Given] 
 
So  AE : EK = (C : A) c (B + C : C)  [Substituting from above] 
so  AE : EK = B + C : A 
i.e.  AE : EK = K : A    [weight K = B + C] 
 
Hence E is indeed the common center of weight for weights K and A. 
 
So E is once again the center of weight for A, B, C even though this time we began by finding the 
common center of weight for B and C, rather than for A and C. 
 Hence it makes no difference, when we are looking for the common center of weight for 
three bodies, which two we pair up first. 
 
Q.E.D. 
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I hate trying to remember the Menelaos Theorem, so I end up reproving it all the time. In this case, 
extend BD until it meets CJ drawn parallel to AEK, and we reason like this: 
 
 CK : KB = JE : EB     [parallels] 
so CK : KB = (DE : EB) c (JE : DE)   [DE new term, compounding] 
i.e. CK : KB = (DE : EB) c (DE + DJ : DE) 
 
Now DJ : DE = DC : DA     [similar triangles] 
 DE + DJ : DE = DA + DC : DA    [componendo] 
 
so CK : KB = (DE : EB) c (DA + DC : DA) 
so CK : KB = (DE : EB) c (AC : DA)  
 
Q.E.D. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now let’s take up some of the cases of Cor.4, and verify them one at a time: 
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 (1 Body) Consider first the case of a single body, although it has many parts. If you throw 
an axe, it spins end over end in the air, but if you watch it in slow motion, the center of its weight 
(around which it spins) describes a nearly straight line, curving down only because of the outside 
influence of gravity. Or if you slide a wrench across a flat table top, it may spin, but it spins around 
its center of mass, which moves in a straight line. This is, in a way, just an application of Law 1: 
Once you stop acting on the wrench, it moves uniformly in a straight line—and although not every 
part of the wrench does, there is one point associated with the wrench which does, namely its center 
of mass. All the other points, too, are trying to move uniformly in straight lines, but they are drawn 
back around the center of the wrench’s mass by the cohesive forces among its parts, a bit like planets 
in orbit. 
 
 (2 Bodies, not colliding or attracting, moving 
to/from a point simultaneously occupied) Now consider two 
bodies, but not acting on each other, and let their 2 motions lie in 
one plane, intersecting at V, and let them begin from (or arrive at) V 
at the same time. Suppose the one body moves uniformly through 
the equal distances VA, AB, BC in three successive and equal time 
increments, while the center of gravity of another body moves 
uniformly (though with a different speed, if you like) through the 
equal distances VD, DE, EG in the same increments of time. Then 
the common center of gravity for both bodies taken together must 
either be at rest or travel in a straight line. 
 Obviously if VC and VG are equal and in contrary directions and the bodies have equal 
masses, then V will be the common center of weight, since it bisects the distance between the two 
centers of weight, and in that case it will be at rest. 
 But suppose instead CVG forms some angle. Join AD, BE, and CG. Obviously the common 
center of weight, when the bodies’ individual centers are at A and D, must lie along the line AD, say 
at H. Similarly, when the centers are at B and E, the common center must lie along BE, say at K. And 
when the centers are at C and G, the common center must lie along CG, say at L. But given the 
Archimedian property of the balance, the mass of the body with its center at A must be to the mass of 
the body with the center at D as DH is to AH. So too EK : BK and GL : CL must be in the inverse 
ratio of the masses of the bodies. But that ratio is constant. So VHKL is a straight line. Hence the 
common center of weight moves in a straight line. Also, by the parallels, VH = HK = KL, so the 
common center is also moving at uniform speed. 
 
 (3 Bodies whose motions are all to or from a point) Adding a third body into this 
same type of system will make no difference to this rule, nor even to the argument, really, so long as 
the three motions have a common point of intersection which the bodies did (or will) occupy at the 
same time. Since H, K, L locates the common center of our original two bodies, it is the same as a 
center of weight of one body, of which our original two are considered parts—so adding a third body 
is just like the two-body problem, taking the original two as one. 
 
 (Not Simultaneously at Point of Intersection) But what if the bodies are not simultaneously 
at the point where their lines of motion intersect? Or what if there is no point at which their lines of 
motion intersect, but they are askew? Newton handles these cases by referring us to his Lemma 23 in 
Book 1 of the Principia; but his argument there is terse and difficult, and needlessly so. Also, it is not 
at all clear how his argument there will apply to the non-coplanar case, since his Lemma seems to 
rely upon a point of intersection for the lines of motion. So I prefer to demonstrate this case as 
follows: 
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Given: One body of mass M is at A, then B, then C with ABC collinear 
 when the other, of mass m, is at a, then b, then c with abc collinear 
 and each body is travelling at uniform speed (hence AB : BC = ab : bc) 
 (ABC and abc can either intersect or not; it makes no difference) 
 
Prove: The common center of mass is also travelling in a straight line at uniform speed. 
 
Join Aa, Bb, Cc. 
Draw ce equal and parallel to CA, thus completing parallelogram CceA. 
Draw bd equal and parallel to BA, thus completing parallelogram BbdA. 
 
Now ce : bd = CA : BA [ce = CA, bd = BA] 
so ce : bd = ca : ba  [ca : ba = CA : BA, 
from the givens] 
but ce is parallel to bd  [each is parallel 

to ABC] 
so rabd is similar to race 
so ade is collinear, and ad : ae = ab : ac 
 
Join Ad, Ae. 
Cut Aa at g so that Ag : ga = m : M 
Cut Ad at h so that Ah : hd = m : M 
Cut Ae at k so that Ak : ke = m : M 
 
Thus g, h, k collinear, and ghk is parallel to ade. 
Thus gh : gk = ad : ae = ab : ac = AB : AC 
 
Now in parallelogram ABbd, draw ht parallel to AB, 
cutting Bb at t. 
In parallelogram ACce, draw kr parallel to AC, cutting 
Cc at r. 
 
Thus ht : kr = AB : AC  [ht = AB, kr = AC] 
so ht : kr = gh : gk  [gh : gk = AB : AC, shown just above] 
but ht is parallel to kr  [each is parallel to ABC] 
so rght is similar to rgkr 
so gtr is collinear, and gt : gr = gh : gk 
i.e. gt : gr = AB : AC  [since gh : gk = AB : AC] 
 
But g is the common center of mass when the bodies are at A, a 
since Ag : ga = m : M  [construction] 
 
and t is the common center of mass when the bodies are at B, b 
since Bt : tb = Ah : hd = m : M 
 
and r is the common center of mass when the bodies are at C, c 
since Cr : rc = Ak : ke = m : M 
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Hence g, t, r are the three locations of the common center of mass when the bodies are at A, B, C 
and a, b, c respectively; and g, t, r have been shown collinear, and also gt : gr = AB : AC, i.e. gt : tr = 
AB : BC, and therefore the common center of mass is moving uniformly in a straight line. 
 
Q.E.D. 
 
PORISM: 
 
Since Ad is equal and parallel to Bb, 
and Ae is equal and parallel to Cc, 
thus Aa, Ad, Ae show us how mass m appears to move from the point of view of mass M, if mass 
M considers itself at rest. Hence ade describes the motion of mass m relative to mass M. But this 
shows that when two bodies are moving uniformly in 
straight lines with reference to absolute space, each 
is also moving uniformly in a straight line relative to 
the other considered at rest. And by the exact same 
argument we can say, conversely, when two bodies 
are such that one is moving relative to the other 
uniformly in a straight line, and the other is moving 
uniformly in a straight line in absolute space, then 
the one is also moving uniformly in a straight line in 
absolute space. (Resting is also an option, of 
course.) Accordingly, since ghk describes the motion 
of the common center of mass relative to mass M, 
and this is uniform motion in a straight line, 
therefore it follows that the common center of mass 
is also moving uniformly in a straight line in 
absolute space (motion gtr). 
 
 
 
 
 
 
 
 
 
 
 
 (Colliding Bodies) Even if the bodies in our system 
collide and change direction and velocity and the like, the 
common center of mass of all of them must either be at rest, or 
must be in uniform motion in a straight line, and cannot 
change from one of these “states” to the other (unless 
something outside the system acts on the bodies in the 
system). We can see this by Cor. 3, the Conservation of 
Momentum, which says the total momentum of the whole 
system must always remain the same, regardless of collisions. 
We can also see it by Law 1, as hinted at in the enunciation of 
Cor. 4: If things don’t change their “state” unless acted upon, 
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then the common center of mass in a system cannot change its state, either, unless something 
from outside the system is introduced. 
 
 
 
 
 (Easy case: if angle of Incidence = Reflection) If two bodies, A and B, move 
uniformly in straight lines on a collision course, then their center of mass M does, too. If it 
happens that the bodies, after colliding, retain their former speeds, and each of them bounces 
off the line traced by their center of mass (produced) so as to hit it and bounce off it with 
equal angles, then the center of mass itself must continue in its original line and at its original 
speed. 
 
 
 
 
 (Easy case: if momenta of the bodies are equal) Also, if mAvA = mBvB, then A and 
B will make the same angle with the line of the center of mass, even if mA > mB and vA < vB. 
For: AE is as the velocity of body A, and BD is as that of body B, and AC is as the mass of 
B, and BC is as the mass of A. So if the momentums are equal, it follows that AC·BD = 
BC·AE, i.e. AC : AE = BC : BD. But since AK and BK are just n times AE and BD, it is also 
true that AC : AK = BC : BK. But from this it follows that ∠AKB is bisected by KC (Eucl. 
6.3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
But now let’s not make any such suppositions, but simply let our two bodies, B and b, collide 
at X. Each body has a uniform velocity up to X, and in equal time increments B is at B, C, D, 
X, and so would be at Q in the next increment if there were no collision, and b is at b, c, d, 
X, and would be at R if the two bodies passed through each other at X like ghosts. Let the 
common center of mass be at E, G, K, X in the same time increments, so that EGKX must 
also be collinear and EG = GK = KX. 
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Given:  mB : mb = bE : EB = 3 : 2 
  vB : vb = BC : bc = 5 : 4 
  B after collision is not at Q, but at H 
 
Prove: The common center of mass after collision continues to move uniformly in 

the same straight line, at the same speed, as before collision 
 
Since B would have been at Q were it not for the collision, but it is actually at H, then vector 
QH is representative of the change in its velocity due to the collision. Hence the vector QH is 
as the acceleration of body B due to collision. 
 
Now Law 3 tells us that 
 
 mBaB = – mbab  
 
So mB[QH] = – mbab 
 
 
so 
 
 
so   
 
 
so 
 
So now draw Rh parallel to QH and equal to 3/2 QH. Therefore the vector Rh is as the 
acceleration of body b due to collision. Hence, instead of being at R after one time increment 
following collision, b is at h. So when B is at H, b is at h. 
 
Now cut Hh, the distance between the bodies, at Z so that 
 
 HZ : Zh = mb : mB = 2 : 3 
 
Hence Z is the location of the center of mass one time increment after collision. 
 
But now, since 
 
 HZ : Zh = 2 : 3 
and QH : Rh = 2 : 3 
thus QH : HZ = Rh : Zh 
but ∠QHZ = ∠RhZ   (since Rh is parallel to QH) 
so rQHZ is similar to rRhZ 
so R, Z, Q are collinear 
 
Also RZ : ZQ = HZ : Zh = 2 : 3 
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so that Z is also where the center of mass would have been without collision. Therefore the 
center of mass after collision continues to move uniformly along the same straight line, and 
at the same speed, as it was moving on prior to collision. 
 
 
Q.E.D.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NOTE: There is a certain indeterminacy in Newton’s Three Laws of Motion. They do not 
enable us to say how two given bodies will react after a collision. This is in part because they 
tell us nothing about the rules governing the cohesion of bodies. Will the two colliding 
bodies be smashed to bits? Or will they stay together and each bounce off in some direction? 
The Three Laws do not tell us. Again, even if we suppose the two colliding bodies will not 
be destroyed or deformed, or stick together in a clump, but will instead bounce back in some 
direction, nothing about the laws specifies the direction. Law Three tells us only that given 
the original directions and masses and velocities of the two bodies, and given the resulting 
direction of one of them, we can determine the direction of the other. But we cannot, from 
the initial conditions prior to collision, and from the Three Laws alone, determine the 
outcome of the collision. 
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 16 
 

COROLLARIES 5 AND 6 
AND SCHOLIUM TO THE LAWS 

 
 

COROLLARY 5 
 

The motions of bodies included in a given space are the same among 
themselves, whether that space is at rest, or moves uniformly forwards in a 
straight line without any circular motion. 

 
In other words: If you are on a plane or ship that moves uniformly in a straight line, you can 
drink a hot cup of coffee and not spill it all over yourself. 
 If you are inside a big box, you can’t tell, by any number of physics experiments 
performed inside there, whether the box is sitting still in absolute space or moving uniformly 
in a straight line, even if you are given that it is doing one of these. 
 
 
 
 

COROLLARY 6 
 

If bodies, moved in any manner among themselves, are urged in the direction 
of parallel lines by equal accelerative forces, they will all continue to move 
among themselves, after the same manner as if they had not been urged by 
those forces. 

 
In other words: If you are acted on by forces accelerating every particle of your body at the 
same time, in the same direction, and with the same power or “umph,” you won’t feel a 
thing. You can drink that cup of coffee and not worry about spilling it all over yourself. 
There will be no motion of your parts relative to each other due to these forces. 
 If I am twirling a rock around my head with a string, that motion will not be affected 
at all by equal forces acting on all parts of me, the string, and the rock, in parallel lines in the 
same direction. 
 Cor. 6 will be important in certain simple-case three-body problems, e.g. the Sun-
Earth-Moon problem. For certain considerations, we can think of the Moon or the Earth as 
being accelerated more or less uniformly toward the Sun along parallel lines, given the 
distance of the Sun from the Earth-Moon system. 
 QUESTION: When an elevator plummets, aren’t you in this situation, i.e. where 
every part of you and everything in the elevator is accelerated equally in the same direction, 
and yet you do feel something? Don’t you feel one part of your body press against another? 
Why is that? Is that because of something like what happens to Wile E. Coyote? When he 
falls, his body goes down first and his neck stretches; then his head follows. This is 
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reminiscent of the “spaghettification” you would experience as you get sucked into a black 
hole.  

Indeed the lower parts of a human body are closer to the center of the earth than the 
upper parts of the body, and therefore do get accelerated faster than the upper parts do, as we 
shall see—but not to a sufficient degree that the lower parts are noticeably accelerated faster. 
It is not a difference that you can feel. So the reason we have the experience of our stomach 
lurching up as we plummet down, as if our legs were leaving our stomach behind, must be 
something else. The reason seems to be that we began by standing on a platform that pressed 
against our legs, and our legs pressed against our hips, our hips against our guts etc., so that 
we are always feeling a gentle pressure from the supportive parts of our bodies below. When 
we leave the pressing floor, or the floor stops pressing against our feet, that pressure departs, 
and we feel it. But we do not continue to feel it. If we begin in a weightless environment, and 
then come within the influence of a gravitating body, we would feel no such lurch. Instead, 
all parts of your body would be accelerated at more or less the same rate and in pretty much 
the same direction, so that there would be no compression or stretching of your body parts. 
You would not feel a thing. 
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SCHOLIUM 
 
 
Here Newton confirms his laws by experimental results, and a little bit by authority, too, citing other 
eminent physicists and their findings, and how they agree with this laws. This further testimony to his 
laws falls into four parts: 
 (1) The testimony of Galileo, and the discovery of the parabolic path of projectiles. 
 (2) The testimony of Christopher Wren, John Wallis, Christian Huygens, and the laws of 
pendulums. 
 (3) The laws of mutual attraction among bodies, e.g. heaviness and magnetism. 
 (4) The laws governing simple machines. 
He is particularly interested in showing the THIRD LAW is true, as one sees in his preoccupation 
with it in (2), (3), (4). The first two laws are ratified by Galileo, but then again they were also 
enunciated, or nearly enunciated, by Galileo himself, and by Descartes, and others. The 3rd Law 
(equal and opposite reaction) seems to be Newton’s most distinctive contribution. At any rate, he 
treats it as something more novel and more in need of manifestation and support. 
 
 

(1) 
GALILEO 

 
 
He mentions that by Laws 1 and 2 Galileo discovered that the descent of bodies varies as the square 
of the time, and that the motion of projectiles is in the curve of a parabola (ignoring wind resistance). 
 “When a body is falling, the uniform force of its gravity acting equally, impresses, in equal 
intervals of time, equal forces upon that body, and therefore generates equal velocities; and in the 
whole time impresses a whole force, and generates a whole velocity proportional to the time.” So, 
double the time means double the added velocity, etc. 
 “And if a body be projected in any direction, the motion arising from its projection is 
compounded with the motion arising from its gravity.” 
 He shows how the parallelogrammic composition of motions agrees with the rule that 
projected bodies describe parabolas. The motion due to falling alone (in some time T) is the diameter 
of the parabola, that due to projection alone (during T) is the tangent to the parabola at the vertex of 
that diameter, and it is parallel and equal to the ordinate of the parabola actually described (during T) 
joining the body to the diameter. 
 
 

(2) 
PENDULUMS 

(Collisions) 
 
 
 More confirmation of Laws 1 and 2: “On the same Laws and Corollaries depend those things 
that have been demonstrated concerning the times of the vibration of pendulums.” 
 More confirmation: “By the same, together with Law 3, Sir Christopher Wren, Dr. Wallis, 
and Mr. Huygens, the greatest geometers of our times, did severally determine the rules of the impact 
and reflection of hard bodies.” He then goes into detail about these results. 
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 NOTE: Newton describes these gentlemen as “easily the master geometricians of the prior 
generation” (as Ron Richard has it). Descartes is noticeably absent—is this just because he is not a 
countryman? 
 Much of the detail to follow is dedicated to showing how, experimentally, one removes the 
“retardation” caused by air resistance. He enunciates the law of pendulums: “Thus trying the thing 
with pendulums of 10 feet, in unequal as well as equal bodies, and making the bodies to collide after 
a descent through large spaces, . . . I found always . . . that when the bodies collided together directly, 
equal changes towards the contrary directions were produced in their motions” (as the Cajori 
translation has it). Hence Law 3 is confirmed by experience. 
 In the course of this discussion, he acknowledges that no bodies are perfectly hard or elastic, 
and says that this does not disprove Law 3, but is simply another fact to be taken into account. Hence 
two bodies which smash into each other do not entirely transmit their motion to each other, nor do 
they bounce back with the same velocity with which they hit each other, but the loss is in a definite 
ratio for a given material. For example, if we use two WOOLEN balls, the ratio of the speeds they 
had to the speeds they have after collision is about 5 to 9. STEEL balls return with almost the same 
velocity they had. CORK balls have somewhat less. GLASS balls bounce back in such a way that 
their original velocity is to their reflected velocity in the ratio of about 15 to 16. (Note: Newton does 
not get into how “loss” of speed due to the degree of non-elasticity is compatible with the 
Conservation of Momentum. But we have here a hint that momentum can be “used up” or “stored” 
by causing deformation in something, e.g. a spring, and that it is then potential energy, or else it can 
be turned into heat energy.) 
 “And thus the third Law, so far as it regards percussions and reflections, is proved by a 
theory exactly agreeing with experience.” 
 
 

(3) 
ATTRACTIONS 

 
 
ARGUMENT FOR LAW 3 IN THE CASE OF ATTRACTIONS, GOING BACK TO LAW 1. 
Newton goes on to confirm the 3rd Law again, this time in the case of attractions. He says imagine 
you have two bodies attracted to each other, and yet attractor A is more attracted to B than B is to A 
(like unrequited love!). Then if you put your hand (or some obstacle) between them, A will press the 
hand more (toward B) than B presses it back (toward A). Hence the hand, and the two attractors, will 
be out of equilibrium, and in that state, will accelerate in the direction of A to B, and will do so 
forever—contrary to Law 1. 
 NOTE: Law 1 is considered more certain than Law 3, and is used to confirm it. Law 1 is 
more fundamental, it seems. 
 
 
ILLUSTRATION OF LAW 3 IN THE CASE OF ATTRACTION TO EARTH. “So too the 
gravitation between the earth and its parts is mutual.” So the 3rd Law applies in that kind of attraction, 
too. He says that a small part of the earth presses as hard, by its heaviness, against a larger, as the 
larger against the smaller. This seems counter-intuitive, but is again an application of Law 3. And 
really it is clear that my feet press against the Earth just as hard as the Earth presses back against my 
feet. 
 QUESTION: Is Newton saying that a tiny portion of the Earth is just as heavy as the 
remaining portion of the earth it is pressing against? (No––only that their “weights toward each 
other” are the same. If one brought these unequal parts of Earth to a much larger planet, each would 
weigh toward that planet in proportion to its mass, and they would not have equal weights. But the 
weight of the little one toward the big one is the same as the weight of the big one toward the little 
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one. My weight on Earth is equal to the Earth’s weight toward me. This is already an eye-opener for 
us readers, the idea that the Earth has “weight toward me.” But Law 3 demands it, if Law 3 is true! If 
I am attracted to the Earth, then it must be equally attracted to me, such that my ma is equal and 
opposite to its ma. Obviously, its acceleration toward me is much smaller than mine toward it, since 
its mass is so much greater than mine.) 
 
 
EXPERIMENTAL CONFIRMATION OF LAW 3 IN THE CASE OF ATTRACTIONS USING 
MAGNETS. Newton next says that a magnet and a bit of iron, each allowed to float on water in a 
little vessel (like a wax-paper “boat”), to reduce friction, will attract each other equally, because 
when they snap together after release, their boats might spin, but they will not drift to one side with 
an accelerated motion—probably not even with a uniform motion. If we thought that the iron was 
attracted to the magnet, but the magnet was not attracted back to the iron, or not as much, then there 
would be a net acceleration of the “iron boat” toward the “magnet boat”, and the system of the two 
boats should accelerate in the iron-to-magnet direction. But they do not. Hence the attraction is 
mutual and equal and opposite. 
 
 

(4) 
MACHINES 

 
 
Next, he confirms or explains the meaning of Law 3 in regard to the elementary machines: balance 
(lever), pulley, screw, wedge. 
 So, if there is an equal and opposite reaction to every action, how does anything happen at 
all? “The power and use of machines consist only in this, that by diminishing the velocity we may 
augment the force, and the contrary; from whence, in all sorts of proper machines, we have the 
solution of this problem: To move a given weight with a given power, or with a given force to 
overcome any other given resistance. For if machines are so contrived that the velocities of the agent 
and resistant are inversely as their forces, the agent will just sustain the resistant, but with a greater 
disparity of velocity will overcome it” (p 27 Cajori). 
 For example, we gain “having to go through less distance” at the cost of “putting in more 
force” if we close a door by pushing near the hinges, and we gain the reverse way if we push out near 
the edge of the door. 
 He then says “But to treat of mechanics is not my present business. I was aiming only to 
show by those examples the great extent and certainty of the third Law of Motion.” 
 
 
 

NOTE ON LAW 3 
 
Throughout the Corollaries and this second scholium, Newton seems preoccupied with Law 3. Why 
is that? 
 (1) Newton defines himself in opposition to Descartes, who was all the rage at the time. So 
he entitles his work “Principia Mathematica Philosophiae” as a kind of in-your-face reaction to 
“Principia Philosophiae.” And he refuses to mention Descartes as a great mathematician of the prior 
generation. One key place Newton disagrees with Descartes is where the latter says (in his Fourth 
Rule of Collision) that a smaller body can never move a bigger one, as if one acts with greater force 
on the one than the other acts with on the other. Hence the 3rd Law is a locus of the disagreement. 
 (2) The First Law was already well accepted by Newton’s time, and had been recognized by 
Descartes and Galileo, or very nearly. This law is not Newton’s contribution. 
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 (3) The Second Law is more original with Newton. Newton and Descartes have 
disagreements about the importance of direction. Descartes says motion is not contrary to motion, but 
only to rest, and so the conservation of momentum does not require the conservation of net direction 
in a system. Hence the little body can be flying at 30 mph to the right, hit the larger resting body, and 
then bounce off at 30 mph to the left, leaving the resting body at rest, unaffected. Hence there was a 
net change in the direction of the system. Newton thinks this is impossible. Descartes would have the 
impact of the little body, going rightward, not cause any rightward change of motion! That is against 
Law 2. 
 (3) The Third Law is more original with Newton, too. And Descartes’ Fourth Rule of 
Collision is clearly contrary to Law 3. But Law 3 is also counterintuitive, at least at first. Students 
resist it. 
 (4) The 3rd is close to the purpose of his book. He wants to show that all bodies weigh 
towards each other. In the 2nd Scholium he is already saying that “weighing” is a mutual thing—
although he keeps it here on earth, he is saying one part of earth weighs toward another, and the other 
weighs back just as much. Simply in dividing the earth, he is getting us to think of weight as tending 
to the center of massive bodies, not just to the center of the earth. And the 3rd law will play a decisive 
role in the argument for universal gravitation. 
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 17 
 

 
On The Motion of Bodies 

Book 1 
Section 1 
Lemma 1 

 
 
Introductory Notes: 
 
 
 • Newton intends to present us with mathematical propositions about motions, and so 
Books 1 and 2 are “On the Motion of Bodies” in a very general, abstract way. In Book 3 we 
will find concrete application of some of these motion theorems. So Newton’s Books 1 and 2 
are to his Book 3 a little bit like Euclid’s Book 5 is to his Book 6. In physics, we study 
motion first in the abstract, and then find some of its forms in various bodies, much as in 
geometry we study proportion first in the abstract, and then discover it in various things. 
 
 • We have now finished the Newtonian analog of Euclid’s Definitions, Postulates, 
and Common Notions, namely Newton’s Definitions, Laws, and Corollaries (with some 
explanatory scholia). But the Newtonian analog of Euclid’s Theorems will begin only once 
we have equipped ourselves with some “Lemmas.” 
 
 • The word “Lemma” comes from the Greek “lemma, -atos, to” = “that which is 
peeled off, a peel, a husk, a skin, a scale, bark.” This in turn comes from the verb “lepo” = 
“to strip off the rind or husk, to peel, to debark” (cf. “leper”). The idea is that a “Lemma” in 
a science is something you have to go through before you get to the real substance, i.e. 
something necessary and preliminary but not desired for its own sake (like the peel of an 
orange). It is something relatively insipid. 
 
 • Sometimes a “lemma” is simply uninteresting, but is necessary. We see some of 
these in Euclid. Other times it is something interesting in itself, but is somehow foreign to 
the matter at hand, and so it is not essentially part of the thing aimed at, but is nonetheless 
necessary to go through in order to get to it. We see this in Ptolemy’s Almagest, when he 
develops trigonometry, because it had not been developed sufficiently by others so that he 
could safely assume it for his purposes, and yet he was not interested in trigonometry as 
such, but astronomical applications of trigonometry. This is the sense in which Newton’s 
Lemmas are “Lemmas” (or “Lemmata”). They are very interesting in themselves, and 
perhaps they are not even foreign to the science of motion (although the terms “approaching” 
and “becoming” in them could be reinterpreted so that they are purely geometrical things), 
but there is no use of Newton’s Laws of Motion in these Lemmas, and no consideration even 
of force except in Lemma 10. Hence these “Lemmas” are foreign to, or prior to, the science 
of motion built on Newton’s Laws. 
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 • If Ptolemy’s mathematical lemmas are “trigonometry,” one might say that 
Newton’s Lemmas are the historical roots of what today is called “calculus.” We need this 
mathematical equipment in order to apply Newton’s Laws so as to derive the motions of 
bodies in curves from given rectilineal forces (or, given their motions in certain curves, to 
derive the rectilineal forces producing these motions). 
 
 • Historical Note: Newton is actually one of the inventors/discoverers of the calculus. 
He invented it at the same time as, and independently of, Leibniz. Each accused the other of 
intellectual theft. It was a bitter affair, and some of the historical details are matter for debate. 
 
 • What we have here is nevertheless not quite full-fledged CALCULUS, but differs 
from it in the following ways: 
  (1) It is very geometrical, rather than having the generality of “functions,” and so it is too 
concrete and specific to be calculus. Nonetheless, the underlying principles herein are of 
broader application than that to which they are put by Newton in this book, and it is evident 
that he knew that. 
  (2) It lacks a specific notation, and hence one does not get to learn mechanical rules 
whereby to “calculate,” mechanically, what the right answers are. 
  (3) There are no general definitions of certain limits of particular interest, such as 
derivatives and integrals. 
 
 • We are not doing pure math, even in these “lemmas,” insofar as we have the idea of 
motion. Pure math abstracts from matter and motion. One could reinterpret the Lemmas so 
that they are not about “changing quantities” but about the different quantities that could be 
taken out of a continuum in a series of some kind, and then indeed they would be theorems 
of pure mathematics. But there is no need to do that, here, since this is a book “On the 
Motion of Bodies.” 
 
 
 
 

ON THE MOTION OF BODIES 
BOOK ONE 

 
SECTION 1 

 
On the method of primary and ultimate ratios, by the use of which the following are 

demonstrated. 
 
 
 Newton’s section-title here (the text in italics above) explains that the Lemmas are 
presenting us with a new mathematical technique. He is trying to make up for the defects in 
GALILEO’s composition of continuous things out of indivisibles—and although he basically 
succeeds, he himself falls back into that sort of thinking often enough. Galileo had said that a 
line is composed of an infinity of points, and a surface is made out of an infinity of lines, and 
an accelerated motion is composed out of an infinity of instantaneous speeds. But it is 



 92 

impossible to put together two indivisible points in any way so as to get anything other than 
two points at a distance from each other or else a single point in which the two coincide. In 
neither way do the two points constitute a line. The same is true of all indivisibles and 
continuous things. But consideration of things continuously different, such as an accelerating 
motion, requires us to consider the presence of the indivisible in the continuous in some way. 
For example, if a body accelerates uniformly from 0 mph up to 10 mph over the course of 
one hour, how far does it go? One’s gut feeling is “5 miles”––and that is correct. But how 
does one prove that, exactly? We know if the body moves at 10 mph uniformly for the whole 
hour, then it will go 10 miles. But the body has an infinity of different speeds during its 
acceleration, and none of them for any length of time! We need to see that what the 
accelerating body does can be approximated as nearly as we please by a series of uniform 
speeds for short lengths of time. The shorter the lengths of time, and the greater the number 
of uniform speeds we take, the closer the total distance accomplished will be to the distance 
actually accomplished by the accelerating body. If we can see that the approximation can be 
made as accurate as we like, and if we can calculate somehow what the limit of the 
approximations is, then we will also have discovered how far the accelerating body has 
moved. The details of this illustration are not important at the moment. The point is only this: 
In the study of motion, and especially in the study of accelerated motion, we often find 
ourselves needing a way to determine the limit of some infinite process of refined 
approximations. It is for that reason that Newton gives us these Lemmas prior to beginning 
his treatise on motion proper. 
 NOTE: When he says “by the use of which the following are demonstrated,” he does 
not mean “the following Lemmas,” but “the Propositions of Book 1, following these 
Lemmas.” (“Sequentia” might be translated, here, as “the things afterward,” rather than as 
“the following.”) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 93 

LEMMA 1 
 

Quantities, and also ratios of quantities, which for any finite time continually tend 
towards equality, and before the end of that time approach nearer to each other 
than by any given difference, become ultimately equal. 
 
If not, let them become ultimately unequal, and let their ultimate difference be D. 
Therefore, they are not able to come nearer to equality than by the given difference 
D, contrary to the hypothesis. 

 
 
QUESTIONS: 
 
Q1. “approach nearer each other ...” How can one quantity “approach” another? Can 2 “approach” 3? 
 
Q2. What is an example of two quantities “continually tending towards equality,” and which “before the end of 

a finite time approach nearer to each other than by any given difference”? 
 
Q3. Do both quantities have to be changing? Can both be changing? 
 
Q4. Newton lists three conditions for two things to be “ultimately equal”: 
 (1) They “continually tend towards equality” 
 (2) They do so for some “finite time” 

(3) Before the end of that time they “approach nearer to each other than by any given difference” 
 What does each of these mean? 
 
Q5. Are all three necessary? What things does each one exclude from being ultimately equal? 
 What if we have (1) and (2) but not (3)? 
 What if we have (1) and (3) but not (2)? 
 What if we have (2) and (3) but not (1)? 
 
Q6. Must the results after the finite time is finished be still the same kinds of things that were “tending towards 

equality”? Must two lines, for example, end up as two equal lines in order for them to be “ultimately 
equal”? Does “ultimately equal” (“ultimo aequales”) mean the same as “equal in the end”? 

 
Q7. If two variable and comparable quantities in a finite time both shrink until they simultaneously vanish, 

does it follow that they are ultimately equal? 
 
Q8. If two variable and comparable quantities in a finite time both shrink until they vanish into two comparable 

quantities, and throughout the process the two variable quantities were continuously tending toward 
equality by nearer than any given difference, does it follow that the remaining quantities are equal? What 
if the variable quantities were always equal throughout the process? 

 
Q9. If two variable quantities in a finite time differ by less than any given difference, does it follow that they 

are ultimately equal? 
 
Q10. Is Lemma 1 a demonstration or a definition? 
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Q1. “approach nearer each other ...” How can one quantity “approach” another? Can 2 “approach” 3? 
 
We must be thinking of the quantity of something, not just a quantity itself. For example, the height of someone 
can approach the height of someone else, because “Joe’s height,” even if his height changes, is still Joe’s 
height. So it is in some sense the same quantity, i.e. it is the quantity of the same subject. 
 So we are not really thinking of one quantity, simply speaking, approaching another, but the many 
quantities of (or associated with) one thing, one subject––e.g. the successive polygons inscribed in a circle. 
 In modern terminology, we speak of a variable quantity. This really means the quantity of a thing 
which can have various quantities. 
 
 

Q2. What is an example of two quantities “continually tending towards equality,” and which “before the end of a 
finite time approach nearer to each other than by any given difference”? 

 
The major and minor radii rotating in an ellipse. One is getting continuously bigger, 
the other continuously smaller. And within a finite time that process is over, and the 
one that was getting bigger is now getting smaller, and the one that was getting 
smaller is now getting bigger. This is a case where the two quantities actually 
become equal at some point. 
 Or suppose rRST has side RT bisected at M. Then if we were to rotate TS 
about T it would be divided by SM into segments like TL and LN which are not in 
fact equal, but ultimately become equal as TM and MR. That is another case in 
which the unequal things become actually equal by the end. 
 
 

Q3. Do both quantities have to be changing? Can both be changing? 
 
Do both quantities have to be changing? No, not necessarily, but it is possible. In the diagram above, TL and 
LN are both changing, and they are ultimately equal. On the other hand, LN is ultimately equal to MR, and LN 
is changing while MR is not. 
 
 

Q4. Newton lists three conditions for two things to be “ultimately equal”: 
 (1) They “continually tend towards equality” 
 (2) They do so for some “finite time” 

(3) “Before the end of that time” they “approach nearer to each other than by any given difference” 
 What does each of these mean? 

 
Condition (1) means the two quantities tend towards equality continuously, as opposed to discretely, and (more 
importantly) that they do so monotonically, instead of getting now closer to equality, now further away, etc. 
(The word “continuously,” i.e. “constanter,” does not mean “at a constant rate” here.) 
 
Condition (2) means the process by which they are tending towards equality has some definite end. 
 
Condition (3) means that if the quantities are A and B, and we are given any challenge difference, D, we can 
find a place in the process where A and B differ by less than D. 
 
 
 

Q5. Are all three necessary? What things does each one exclude from being “ultimately 
equal? 

 What if we have (1) and (2) but not (3)? 
 What if we have (1) and (3) but not (2)? 
 What if we have (2) and (3) but not (1)? 
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Let ab grow continuously during finite time t, up to size cd, and then stop. And let cd be less than AB. Then we 
have conditions (1) and (2) but not (3), and Newton will not call ab and AB “ultimately equal.” They are 
ultimately unequal. 
 
 
 
Let AB, Bc be asymptotes of an hyperbola, and AF a secant parallel to BC, and “a” 
some point moving right, with abc drawn parallel to AB. Then ab continually tends 
toward equality with AB, and nearer than any given difference. So ab and AB meet 
conditions (1) and (3). But they don’t meet condition (2), since this process cannot 
be completed in a finite time. So we cannot say AB and ab are “equal in the end,” or 
that they tend toward any definite thing by the end of the process, since there is no 
end to this process. AB and ab are not “ultimately equal” since they are not 
“ultimately” anything. 
 NOTE: The finitude of time is not really what is important to Newton. He 
uses this as a way of expressing that the process has some definite terminus. But if one looks ahead to Lemma 
2, one sees that the infinity of rectangles he wants us to draw cannot be drawn in any finite time, and yet he will 
call the figure they compose “ultimately equal” to the fixed curvilinear figure. But the fixed curvilinear figure is 
itself a terminus of the process, so that the process is finite in that sense. One can point to a definite spot, the 
curved line, and say what the step-figure is doing as the polygonal perimeter moves toward that finish-line. 
Similarly there is a sort of “finish line” in the case of ab in the accompanying figure, namely the asymptote, 
although there is no fixed point on it where point b is tending! Newton seems to want to exclude these cases, in 
order to understand what is in flux by something that is real and fixed. Nevertheless, one could still say that 
“the first ratio which AB : ab will not attain by this process, carried out indefinitely, is the ratio of equality.” 
But Newton’s language of “ultimate equality” does not make much sense there, since there is no “ultimate 
condition” in such a process, no “there” where the line ab is going. 
 
 
 
Let ab grow as it moves to the right, up to a maximum height of HT = AB, and then 
shrink back down to ef, something less than AB. Then ab and AB meet conditions 
(2) and (3), but not (1). Hence they are not ultimately equal, but ultimately unequal. 
This is the sense in which continuous tendency toward equality is necessary. 
 Strictly, though, the quantities can get closer to and further from equality as 
they shrink or change, and still be “ultimately equal,” so long as there comes a time when they do nothing else 
but tend more and more toward equality, or so long as each remains always sandwiched between other things 
which purely tend toward, never away from, equality. But these are secondary things. 
 
 
 

Q6. Must the results after the finite time is finished be still the same kinds of things that were 
“tending towards equality”? Must two lines, for example, end up as two equal lines in 
order for them to be “ultimately equal”? Does “ultimately equal” (“ultimo aequales”) 
mean the same as “equal in the end”? 
 
Recall the diagram with rRST, side RT bisected at M. Draw SV (of any length) parallel 
to RT and draw through a secant Vtmr, and rotate this about V toward S. Then tm and mr 
are not equal, nor will they ever be equal (there is no rm which is actually equal to mt). But 
within the finite time it takes to get to S these two lines will tend continuously toward 
equality and their ratio will differ from the ratio of equality by less than any assigned 
difference. Hence all three conditions of Lemma 1 are met. So we must say that rm and mt 
are “ultimately equal.” And Newton will in fact say this for such a case. But at the end of 
this process we do not have “a pair of equal straight lines,” nor lines or magnitudes at all, 
but only the one point S. V
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 So it is not necessary, in order for magnitudes to be “ultimately equal,” that the remainders of the 
process be magnitudes of the same kind as those which underwent the process, nor that they be comparable 
magnitudes, nor magnitudes at all, nor even distinct from each other. 
 Newton’s language both here and later suggests that by “ultimately equal” he means “equal in the 
end,” i.e. the two things actually end up as a pair of equal things, though perhaps infinitely small. Throughout 
the Principia he seems to waffle on this, sometimes talking like Galileo about such things, and other times 
tending more toward the modern rigor about them. We should not try to make him more consistent than he 
really is, but we should ourselves distinguish what he leaves confused. 
 Since it makes no sense to say S is “a pair of equal lines”, and yet it is all that remains after a finite 
process in which two lines become as close to equal as we please, therefore, by saying the lines are “ultimately 
equal,” we should not always assume this means the same thing as “they are a pair of equal lines when the 
process is over.” Instead, we should take “the lines are ultimately equal” to mean nothing else than that they 
meet the three conditions of Lemma 1. Modern terminology would say that the ratio of equality is the “limit” of 
their ratio as they go through this process, since they tend continuously toward that ratio, and get closer to it 
than any given difference. And while that ratio might not, in some cases, be the last thing attained by the 
variable quantities, when that happens it will be the first ratio not attained by them. 
 
 
 

Q7. If two variable and comparable quantities in a finite time both shrink until they simultaneously vanish, does it 
follow that they are ultimately equal? 

 
 
Not necessarily. For example, let there be a triangle VAC, in which AC is divided at any point 
B other than the midpoint, and VB joined. Now draw VP of any length so that it is parallel to 
AC. If we draw through secants from P such as Pabc, and rotate this about P toward V, plainly 
ab and bc ultimately vanish, and simultaneously become nothing. But they are not ultimately in 
the ratio of equality—that is not the ratio toward which they tend nearer than any given 
difference. Rather, it is the ratio AB : BC. 
 So ab : bc ult.= AB : BC. 
 
But what condition of Lemma 1 is missing, such that we cannot say ab and bc are “ultimately equal”? An 
IMPLIED condition, which Newton intimates when he says “and ratios of quantities.” Here we have a situation 
in which ab and bc continually tend towards equality (the ratio ab : bc becomes more like the ratio of equality 
throughout the process), and ab and bc in a finite time come to differ from each other by less than any given 
difference. Nevertheless, they are not ultimately equal, since their ratio does not itself tend toward the ratio of 
equality by less than any given difference. So when Newton says “continuously tend towards equality,” we are 
given to understand not only that the ratio differs less and less from equality, but that it will differ from it by 
less than any given difference during the process. In the case above, ab : bc never gets any closer to the ratio of 
equality than AB : BC. 

 
Q8. If two variable and comparable quantities in a finite time both shrink until they vanish into two comparable 
quantities, and throughout the process the two variable quantities were continuously tending toward equality by 
nearer than any given difference, does it follow that the remaining quantities are equal? What if the variable 
quantities were always equal throughout the process? 

 
 
Not even when there is a pair of things after the process is over, and those things have comparable quantity, do 
they have to be equal, in order for the previous magnitudes which vanished into them to be “ultimately equal.” 
Suppose you have two equal rectangles, ABH and abh, of unequal bases AB, ab. We can shrink them by 
diminishing their heights in such a way that they always remains equal. Hence, by the definition, they are 
“ultimately equal” (or perhaps more than just ultimately equal, but always equal). We could also make it so that 
they are never actually equal, but tend towards equality by nearer than any given difference as they go to 
nothing. But the remainders of the process are the comparable, yet unequal, bases AB, ab. 
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• NEVERTHELESS, if the remainders of things “ultimately equal” are of 
the same kind as those that were changing, it is necessary that these 
remainders be actually equal, and in such cases the changing quantities are 
simply “equal in the end.” And when this is not so, but they vanish 
somehow, it is necessary that their ratio can be made to differ from that of 
equality by less than any assigned amount, and that this remains true in all 
times ending the time of change (e.g. in the “last second” or “last 
nanosecond”), no matter how short.  
 
 
 

Q9. If two variable quantities in a finite time differ by less than any given difference, does it follow that they are 
ultimately equal? 

 
 
NO. This was already touched on in Question 7 above, but it is worth saying again. 
For example, let there be rABC in which AC is divided unequally at K, e.g. so that 
CK : KA = 1 : 3, and join BK. Now, if we start moving AKC, always parallel to 
itself, toward vertex B, it is manifest that the difference between CK and KA will 
become less than anything. And yet CK and KA are not ultimately equal, but are 
ultimately (and in fact always) in the ratio of 1 : 3. They are not “tending toward 
equality” at all, much less is their ratio tending toward it in such a way as to differ 
from it by less than any given difference during the process. 
 
QUESTION: What does it mean for a ratio to “differ from equality” (or from any fixed ratio) “by less than any 
given difference”? 
 That could be defined any number of ways, but I’ll define it “Cartesian-style,” as follows. 
 
If two ratios r : t and R : T be both changing (or one of them changing and the other fixed), they are said “to 
differ from each other by less than any given difference” during the change if, during the change, the difference 
of the lengths r/t and R/T becomes continuously less, and if, given any line length D, the difference of the 
lengths r/t and R/T becomes less than D at some point during the change.  
 
 
 

Q10. Is Lemma 1 a demonstration or a definition? 
 
 
Newton presents it as though it were a little demonstration. This is an indication that he wishes us to understand 
the phrase “ultimately equal” not as a new term being defined so much as the familiar expression “equal things 
at the end of the process.” 
 But this is part of his inconsistency, and is not really tenable. It is only in special cases that things 
which meet the three givens of the Lemma are, when the process is finished, a pair of equal magnitudes (or 
ratios), as examples above have illustrated. If we try to take it as an argument, it fails because things can meet 
the three conditions, yet not become “ultimately unequal” (in the privative sense), and hence have some 
“ultimate difference, D,” but simply become “ultimately NOT equal” (in the purely negative sense), and hence 
not have any ultimate difference. For example, two areas that vanish into a pair of lines, are “ultimately [i.e. at 
the end of the process] not equal areas.” They are not “unequal areas,” either. They are not areas at all. If the 
only alternative to their being equal areas were for them to be unequal areas, the argument would follow. But 
that is not the only alternative. 
 So Lemma 1 really has only the force of a definition, and Newton does not need it for more than that. 
As a definition, and with some of the implications made explicit, Lemma 1 would read like this: 
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Two ratios which in any finite process continually change towards equality, and, given any 
difference between them, D, come to differ from each other by less than D at some point 
during the process, I call “ultimately equal.” 
 
Two quantities which in any finite process continually change towards equality, and whose 
ratio comes to differ from the ratio of equality by less than any given difference D at some 
point during the process, I call “ultimately equal.” 

 
The modern analog is the definition of “limit,” which we will not enter into here. 
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REMARKS 
 
 
Suppose you have a triangle ACD, in which D is joined to B somewhere along AC, and you draw a line Cgh 
through at random, with g being where the secant cuts DB, and h being where it cuts DA. If we start rotating 
Cgh toward CBA, will the ratio ab : bc get nearer than any given difference to AB : BC ? 
 Yes it will. And we might think that is obvious just because Cgh and CBA will coincide at the end of 
the rotation. The ultimate version of Cg : gh is CB : BA. But although that is true, it is not quite the same thing 
as saying that the ratio Cg : gh gets as close as we please to CB : BA on the way to the end of the process of 
rotation. This latter statement means that prior to ultimate coincidence of the rotating line with CBA, we can 
find an instance of Cg : gh which is closer to CB : BA than any “challenge ratio.” To prove this: Choose any 
point P along AC, as near to B as you please, so that the ratio CP : PA is as near as you like to CB : BA. I can 
find a place in the rotation of my secant such that it will be divided in a ratio which is closer to CB : BA than 
CP : PA is. Draw Pg parallel to AD, cutting BD at a point we will call g. Join Cg and extend it through to h. 
Choose any point a along hA and join Ca, cutting gB at b and gP at v. Also, draw Be parallel to AD, cutting Cb 
at e. 
 
Obviously, av : vC = AP : PC  [by the parallels] 
thus  ab : bC > AP : PC 
 
Again,  ae : ec = AB : BC  [by the parallels] 
thus  ab : bC < AB : BC 
 
So  AP : PC < ab : bC < AB : BC 
 
And so we have found a secant Cba, the ratio of whose segments is closer to AB : BC than the challenge ratio. 
Q.E.F. 
 
The point of all this is merely to illustrate that it is not quite the same thing to say that “in the end the ratio of 
the parts of the secant will be the same as CB : BA” on the one hand, and to say, on the other hand, that “the 
ratio Cb : ba can be made to differ from CB : BA as little as we please during the process of rotating the 
secant.” 
 That kind of distinction is very important, since sometimes it will NOT be the case that the changing 
quantity will coincide with the fixed one in the end, and nevertheless it remains true that the changing quantity 
can be made to differ from the fixed one by as little as we please during the process. For example, if we draw 
DP parallel to AC, and draw secants from P through, like Pcba, and rotate the secant toward PD, then obviously 
ab and bc will not ultimately coincide with or become AB and BC. Rather, they will vanish into point D. Still, it 
is true that ab : bc can be made to differ from  AB : BC by as little as we please during this rotation—we can 
beat any challenge ratio. Hence there is reason to call AB : BC the “limit” ratio being approached by the 
changing ratio ab : bc. 
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 18 
 

 
LEMMA 2 

 
 
Here is the text of Newton’s next lemma, Lemma 2: 
 
 
 
 

If in any figure whatever, AacE, comprehended by straight 
lines Aa, AE, and curve acE, there be inscribed however many 
parallelograms Ab, Bc, Cd, etc., contained by equal bases AB, 
BC, CD, etc., and sides Bb, Cc, Dd, etc. parallel to side Aa of 
the figure, and the parallelograms aKbl, bLcm, cMdn, etc. be 
completed. Then let the width of these parallelograms be 
diminished and the number be augmented into infinity: I say 
that the ultimate ratios that the inscribed figure, AKbLcMdD, 
the circumscribed figure, AalbmcndoE, and the curvilinear 
figure, AabcdE, have to one another are ratios of equality. 

 
 
 
Newton’s explanation is plain. In his figure, the complete inner figure and the complete outer one (which are 
both rectilinear) differ by the rectangle ABla. But as we proceed, that rectangle (or parallelogram) shrinks as 
small as you like, meaning that the difference between the outer and inner figures becomes less than any given 
difference. Hence the first ratio they do not reach is that of equality—that ratio is the limit of their successive 
ratios. So they are “ultimately equal.” 
 And since the curvilinear figure is always between the inner and outer figures in its area, it is always 
even more equal to the inner than the outer is, and to the outer than the inner is. Hence its ratio to either the 
inner or outer also approaches that of equality, as the number of parallelograms increases. So the inner (or 
outer) figure is ultimately equal to the curvilinear figure. 
 Q.E.D. 
 
NOTE: The “independent variable” is the number of the bases of the parallelograms, n. The “dependent 
variable” is the area of the inscribed figure, or the area of the circumscribed one. 
 
 

QUESTION 1: Why does Newton divide the base into equal segments? 
 In order to get the difference between the inner and outer figure incarnated in a single rectangle, ABla. 
If the rectangles had different widths, the sum of their differences would not be equal to that first rectangle, 
which has its own width. And is it clear that no step-figure is actually equal to the curvilinear one? 
 
 

QUESTION 2: Do the segments of the base have to be equal for the Lemma to be true? (Note: This is answered in 
Lemma 3) No––as long as all are shrinking to nothing. But it is not enough if we say “the difference is always 
shrinking.” If some area is reserved, and will not be “invaded” by rectangles, then the figures being so 
constructed are not ultimately equal. 
 Is it enough to say “as the number of segments of the base increases to infinity”? No. We have to add 
“and as they are all taken smaller and smaller.” Otherwise, we could leave some one rectangle the same, and 
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multiply and shrink only the others, and then the inner figure would always differ from the curved figure by at 
least the amount by which our unchanging rectangle differs from the area under the curve which stands on the 
same base. For example, if, in Newton’s diagram, we left rectangle MdDC unchanged, then the inner figure 
would always be short of the area of the curve by more than the curved segment cdM. 
 
 

QUESTION 3: Do the figures have to be rectangles? No. He himself mentions “parallelograms” in the course of the 
Lemma. 
 
 

QUESTION 4: Do the lines aA and AE have to be parallel to the tangents at a and E? Not for every figure, perhaps, 
but in order for the argument to work in all cases we might need the two lines aA and AE to be parallel to the 
tangents at E and a, at least when the curve is all-convex, as he has it in his diagram. Otherwise, suppose Eo 
were not tangent, but a secant. Then it would cut off a segment of our figure which will never be “invaded” by 
inscribed parallelograms, so the argument will fail. It is interesting that Newton nowhere mentions this fact 
about the figure in his Lemma. Probably he wishes us to gather it from the figure and from the argument. Also, 
he probably wants us to consider a portion of the curve that is all-convex, or else all-concave, not going up and 
down (although that would not complicate things much). 
 
 

QUESTION 5: Is this argument “quia” or “propter quid”? That is, does it merely establish the truth of the 
conclusion, or does it also give the cause or the reason for the truth of the conclusion? 
 There are really two conclusions: 
 (1) The rectilineal areas are ultimately equal. 
 (2) Each rectilineal area is ultimately equal to the curvilinear one. 
The cause of the two rectilineal areas being ultimately equal is that they are approaching the same area, i.e. the 
curvilineal one, as near as we please. So there is something a little backwards about showing first the ultimate 
equality of the rectilineal figures to each other, and then arguing to their ultimate equality to the curvilinear one 
by a “squeeze” argument. Still, that seems to proceed from what is better known to us––thus, a “quia” 
argument. (And I don’t think that all arguments using ultimate equality or limits are by that very fact “quia.”) 
 
 
 
 

QUESTION 6: Will this Lemma be useful only for showing things are 
approximately equal, or as equal as we like, but never quite exactly 
equal? No—it will often be useful for showing that things are exactly 
equal, if we take it together with a few self-evident principles. 
 For example, if two variable quantities A and B are always 
equal, throughout their variation or succession, and they are “ultimately 
equal” respectively to C and D, it will follow that C and D are exactly 
equal—or else there would be no way for A and B to be always equal to 
each other and also to approach C and D by less than any given 
difference. 
 
 
 
 

QUESTION 7: Is the process in this Lemma able to be completed in a “finite time”? We can imagine B going to A 
in a finite time, but not an infinity of rectangles coming into being. Can the process be completed at all? No, 
since if it could, there would have to be a last step-figure, which is impossible. Does that affect the conclusion 
of the Lemma? Well, if “ultimately equal” means “equal at the end of the process,” and there IS no end of the 
process, then indeed it destroys the Lemma. But it remains true, and demonstrated, that the area of the step-
figure approaches that of the curved figure by nearer than any given difference by this process. And that is all 
that Newton will really need in the upcoming Lemmas and Propositions, even if he himself prefers to speak in 
another way that is faster and more intuitive (though less intelligible). 
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 19 
 

 
LEMMAS 3, 4, 5 

 
 

LEMMA 3 
 

“Unequal Bases Work, Too” 
 
 

The same ultimate ratios are likewise 
ratios of equality, when the widths AB, BC, 
CD etc., of the parallelograms are 
unequal, and all are diminished to infinity. 

 
For, let AF be equal to the maximum 
width, and let parallelogram FAaf be 
completed. This parallelogram will be 
greater than the difference of the inscribed 
figure and the circumscribed figure. But 
with its width, AF, being diminished to 
infinity, it will become less than any given 
rectangle. Q.E.D.  

 
 
 
 

Q1. Is Newton assuming that the left-most rectangle is the widest? 
 
No. He is simply constructing one there which is as tall as the tallest, and also as wide as the 
widest, and saying that even this constructed rectangle must shrink to nothing (since it stands 
on a base that shrinks to nothing), and yet it is greater than the difference between the inner 
step-figure and the outer one. 
 If the bases be unequal, and so the rectangles are of unequal width, take the greatest 
width among them and cut off AF equal to it from the left side of the base. Now complete 
rectangle FAaf. That is now equal to the tallest of the rectangles, and also as wide as any of 
them, and wider than many. So it is GREATER than the difference between the outer and 
inner rectangle-sums (since, if we shove all the other differences over to the left, they will 
not all be as wide as this tallest and widest rectangle, and so will not fill it up)—and yet 
FAaf, too, shrinks as close as we like to nothing, so that a fortiori the ACTUAL difference 
between the outer and inner figures, even when we take unequal bases, must also shrink as 
close as we like to nothing. 
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Q2. So if equal bases are not required, what IS required for the Lemma? 

 
All that is required is that all the parallelograms shrink toward nothing—no single 
parallelogram is left, through the process, with a fixed base, and no base or part of a base 
gets left undivided, or “unshrunk,” by the process. If we have even so much as a single, tiny, 
fixed parallelogram, then the step-figure will always differ from the curved one by at least as 
much as the amount by which this fixed parallelogram differs from the area of the curved 
figure sharing the same base. 
 
 
 
 

COROLLARY 1 
 

Hence the ultimate sum of the vanishing parallelograms coincides in every 
part with the curvilinear figure. 

 
 

Q3. What does “ultimate sum” mean? 
 
It means the first area which our sums of parallelograms cannot reach. But Newton might 
well mean the last one which we do reach, in which the parallelograms have “infinitely 
small” bases, as Galileo would say. The first way of speaking is correct, the second is more 
intuitive. 
 NOTE: This is as much a corollary to Lemma 2 as to Lemma 3; it is not about 
unequal bases in particular. What this Cor. is saying is that there will be no part of the area of 
the curved figure which the successive inner (or outer) figures do not eventually “invade.” 
 QUESTION: What does this corollary add to Lemmas 2 and 3? If anything, we saw 
the truth of Lemma 1 because we already saw that the rectangle-sum would eventually 
coincide with all parts of the curved figure. So what is Newton’s game? He seems to be 
bringing us back to the idea of coincidence in order to get us to think about the straight 
coinciding with the curved, as the next Corollaries seem to confirm. 
 
 

Q4. Can we say, as a Newtonian extension of Euclid’s 4th Common Notion, that “Things which 
ultimately coincide are ultimately equal”? 
 

Provided the two things still have the same sort of magnitude at the end as they had 
throughout the process, the answer is “yes.” 
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COROLLARY 2 (inscribed polygon) 
 

And much more does the rectilinear figure which is comprehended by the 
chords of the vanishing arcs ab, bc, cd, etc., ultimately coincide with the 
curvilinear figure. 

 
 
 That is, if we join ab, bc, cd, dE, we form a polygon contained by those chords and 
the original angle aAE. But such a polygon is even closer to the area of the curve than the 
“inner figure,” i.e. the sum of inscribed rectangles. Hence such polygons also approach the 
area of the curved figure by nearer than any given difference. 
 
 
 

Q5. What does “ultimately coincide” mean? 
 
It means the first figure with which our inscribed polygons cannot entirely coincide. But 
Newton might well mean the last one with which they do coincide, in which the polygon has 
“infinitely many and infinitely small” sides, as Galileo would say. The first way of speaking 
is correct, the second is more intuitive. 
 So either we mean that there is a final 
polygon in our series, which polygon must have 
an infinity of sides which coincide with the curve 
(Galileo’s way of thinking), or we mean that our 
polygons come as close as we like to coinciding 
with the whole curved figure (thinking now of 
areas coinciding rather than lines), or (and 
Newton seems already to be hinting at this) we 
could mean that the perimeter of the figure comes 
as close as we like to coinciding with the curved 
line. 
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COROLLARY 3 (circumscribed polygon) 
 

As also the circumscribed rectilinear figure which is comprehended by the 
tangents to the same arcs. 

 
That is, if we draw tangents at a, b, c, d, E, we form 
an “outer polygon” which falls inside the “outer 
figure” composed of the rectangles, and hence this 
outer polygon is closer in area to the curved figure 
than that “outer step-figure” is, and therefore such 
outer polygons, too, approach the area of the curved 
figure by nearer than any given difference, as the 
segments of the base increase in number and 
decrease in width. 
 NOTE: Students often have trouble 
picturing this figure, and so it is good to have 
someone draw it on the board. The inscribed figure 
is easier, since the vertices of the perimeter are 
actually in the diagram already, a, b, c, d, E. So draw 
the figure as aPQRSE. 
 
 
 

Q6. Why has Newton moved on from Step-figures to Polygons? What happens to the perimeter of the 
INNER POLYGONS as the process goes on? What happens to the perimeter of the OUTER 
POLYGONS? What happens to the perimeter of the INNER STEP-FIGURES? What happens to the 
perimeter of the OUTER STEP-FIGURES? 

 
Newton began with the “stepped” figures, the rectangle-sums, because it is quick and easy to prove 
that they are ultimately equal to the curved figure and each other. But from that he can easily show 
that the inscribed and circumscribed polygons are ultimately equal to the curved figure and to each 
other, as he has done in the corollaries. And why does he go to them? Because he is also interested in 
getting perimeters to coincide with arcs—whereas the “perimeter” of the “stepped” figures do not 
tend toward equality with curves, but rather remain constant as one increases the number of 
rectangles. 
 Newton will need to approach CURVED LENGTHS with PERIMETERS as early as the very 
first Proposition in Book 1. But the perimeter of the STEP-FIGURE does not approach the length of 
the curve as we proceed; in fact, it does not change at all, but is always equal to Aa + AE, as the 
“CITY BLOCK THEOREM” shows. But the perimeter of the POLYGONS is always changing: ever-
growing, for the inscribed polygons, and ever-shrinking, for the circumscribed ones. These can never 
be equal, but neither is there any limit to how close they can get to being equal—so there is a single 
straight line between all the lengths which can be inscribed and all those which can be circumscribed, 
and this is the straight line which Newton will say is equal to the curve. By contrast, the stepped 
perimeter does not approach the length of the curve. 
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COROLLARY 4 

 
And on this account these ultimate figures (as to the perimeters acE) are not 
rectilinear, but curvilinear limits of rectilinear ones. 

 
 
• Here Newton for the first time explicitly mentions LIMITS. 
• He also uses the expression “ULTIMATE FIGURES.” 
 
 

Q7. What does “ultimate figures” mean? 
 
It means the first figure or shape which our inscribed polygons cannot assume. But Newton 
might well mean it is the last shape which they do assume, in which the polygon has 
“infinitely many and infinitely small” sides, as Galileo would say. The first way of speaking 
is correct, the second is more intuitive. 
 
 

Q8. What does he mean by “as to their perimeters acE” ? 
 
He wants to say that the “ultimate figures” are “not 
rectilinear,” i.e. that the perimeters such as acE 
approach the length of the curve as nearly as we 
please during the process. This can be proved if we 
allow that the curve joining the ends of a straight 
line is longer than that straight line. Anyway, he 
deliberately draws our attention to “acE,” i.e. the 
perimeter of the inscribed polygon rather than that 
of the inscribed step-figure, since that of the 
inscribed step-figure is obviously NOT approaching 
the length of the curve, but the sum of aA + AE, 
which is dependent on the angle at which we chose 
to draw them, and is in no way dependent on the 
length of the curve. 
 
 
aP + Pb > ab 
 
(1) Any tangent-perimeter is greater than any chord-perimeter. 
(2) Any tangent-perimeter with more sides is LESS than any tangent-perimeter with fewer 
sides. 
(3) Any chord-perimeter with more sides is MORE than any chord-perimeter with fewer 
sides. 
(4) There is no minimum difference between the tangent-perimeters and the chord-
perimeters. 
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LEMMA 4 

 
 
If in two figures AacE, PprT, there are inscribed (as before) two series of parallelograms, an 
equal number in each series, and, their breadths being diminished in infinitum, if the 
ultimate ratios of the parallelograms in one figure to those in the other, each to each 
respectively, are the same: I say that those two figures, AacE, PprT, are to each other in that 
same ratio. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We have three new things in this Lemma: 
 (1) We are comparing two curvilinear figures. 
 (2) We are not proving that they are equal, in particular, but that they have the same  

ratio as that to which their inner rectangle-sums tend, say a : b. 
 (3) We are not assuming that the corresponding parallelograms always have the ratio  

a : b, or even that they ever have the ratio a : b, or even that they always or ever have  
the same ratio as each other, but only that this is the ultimate ratio to which each pair  
of corresponding parallelograms tends. 

 
PROOF. We have two curvilinear areas like before. We draw first two parallelograms inside 
each, then three, then four, then five, etc., ad infinitum. If the ratio approached by the ratio of 
the first two parallelograms (i.e. taking the first one in each figure) is “R,” and again the ratio 
approached by the ratio of the second two parallelograms (i.e. taking the second one in each 
figure, and comparing them) is also R, and so on, each to each, then “by composition” the 
ratio of the sum of all in one to the sum of all in the other also approaches R nearer than any 
given difference. But the sum of all in one approaches the area of the curved figure in which 
it is inscribed, and the sum of all in the other approaches the area of the other. Hence the 
ratio of the two figures must actually be R. (We are using the “YOU CAN’T SERVE TWO 
MASTERS” principle, here. You must either overstep the nearer of the two limits, in order to 
get as near as possible to the further; or you must never go beyond the nearer of the two, 
thereby always remaining a minimum distance from the further.) 
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NOTE. The easiest case of this, of course, is when the two figures being compared are 
SIMILAR (e.g. two circular quadrants taken from unequal circles), and when the 
parallelograms are similarly drawn. Then the corresponding parallelograms, and also their 
sums, always have the ratio R, throughout the “growth” of the stepped figure. 
 
 
Q1. Just to be clear: What is the ratio of the first rectangle to the second one in the figure on 
the left? 
 We don’t know, or at least we don’t have to know. What ratio are they approaching? 
Again, we don’t know, or we don’t have to know, in order for the Lemma to hold true. The 
ratios we are concerned with are those between corresponding parallelograms taken in the 
TWO figures. 
 
Q2. Do the parallelograms have to be drawn on equal bases? 
 No. As long as the number of parallelograms is always the same in each figure, and 
as long as all corresponding parallelograms are approaching some fixed ratio R, the Lemma 
holds. 
 
Q3. Do we have to use parallelograms? 
 No. We can also say that if the ratio of the areas of the inscribed polygons is 
approaching the ratio R, then the ratio of the two curved figures must be R. And we can 
divide the polygons into equal numbers of triangles with their common vertices at A and P. 
 
Q4. Do the two curved figures have to be similar? (No.) How can they not be, if the 
corresponding rectangles are all approaching the same ratio? 
 Well, the heights of those on the left don’t have to equal those of those on the right, 
and the bases of those on the left don’t have to equal those of those on the right. We can have 
tall-and-skinny rectangles on the left, and fat-and-short ones on the right—and this is what 
happens when we consider two non-congruent quadrants of the same ellipse. 
 
 
COMPARISON: This is very similar to Elements 12.2, where Euclid proves that circles are 
to each other as the squares on their diameters. As you inscribe similar polygons in them, the 
polygons are always in the ratio of the two squares, and the polygons get as close to the areas 
of the circles as you like. 
 There are some key differences, though. 
 (1) Euclid’s proof is limited to circles. Newton’s is much more universal. 
 (2) Euclid’s proof uses inscribed figures which actually have the ratio R at any given 
step in our series; Newton’s proof requires only that the inscribed figures approach the ratio 
R by nearer than any given difference. 
 
 
 
 COROLLARY: The same is true for two volumes, or two lengths, or two times, or 
whatever two continuous quantities you please. We know that the theorem still holds for these other 
kinds of quantities because we can always construct our curvilinear figures and parallelograms in the 
same ratios as the given quantities and their parts. So if the parts of our quantities approach R, then 
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let the parallelograms in our figures approach R, and what follows for the parallelograms will have to 
follow for the parts, since the parts of the given figures are always as the parallelograms under our 
curves. 
 Really, there is no special reason to use curves and parallelograms except to make all this 
easier to imagine in a concrete case. Newton is asking us here to grow up, and realize this is not some 
special truth about curvilinear figures and rectangles. It doesn’t matter whether the parts we are 
taking are angles, lengths, areas, volumes, times, speeds, weights, or whatever! This generality begins 
to suggest the generality of modern calculus. 
 
 
EXAMPLE OF APPLICATION: 
 
Two non-symmetrical “quadrants” of an ellipse that has been divided into four sectors (by non-axial conjugate 
diameters) may be proven perfectly equal in area by this technique. Ask the students to try to discover this 
proof in class. 
 
Let there be an ellipse of center C, with any non-axial conjugate diameters AB and DE. Obviously the quadrant 
DCB is equal to the quadrant ACE, since they are congruent, and again quadrant DCA is equal to quadrant 
BCE. 
 But what about quadrants DCA and DCB? Are they equal? 
 They are, and it is easy to prove using Lemma 2 and Lemma 4. 
 Divide DC into any number of equal segments (say at Q, G, H, K). Since AB and DE are conjugate 
diameters, therefore the lines through Q, G, H, K which are parallel to AB will be ordinatewise to diameter DE, 
and hence they will be bisected by DC and the ellipse. But that means KL = KM, and so the parallelogram HKL 
is equal to parallelogram HKM. And so the sum of parallelograms on one side of DC will be equal to the sum 
on the other. But such sums can approximate the areas of the two quadrants as nearly as we please, i.e. they are 
ultimately equal to those quadrants. And yet those sums are always equal. Hence the things they approach as 
nearly as we please must be exactly equal—that is, quadrant DCA is equal to quadrant DCB. Q.E.D. 
 
Porism: Since every quadrant is ¼ the area of the ellipse, all quadrants of an ellipse, regardless of the conjugate 
diameters which form them, are equal. 
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LEMMA 5 
 
 
All corresponding sides (whether curvilinear or rectilinear) of similar figures are 
proportional; and the areas are in the duplicate ratio of the corresponding sides. 
 
 
No proof offered! This is laid down as though it were a kind of Axiom. And it is not about limits or 
ultimate equality, but is seen through such things (e.g. through Cor. 4 to Lemma 3). 
 
Everything in it was proven in Euclid as to the straight lines and rectilinear figures. The curves are 
the only curve-ball here. 
 
To see it in all its generality, one must see the following things: 
 (1) That curved lines are comparable to similar curved lines (i.e. have ratios to them, can be 
longer, shorter, equal, etc.). This is not immediately evident from Euclid’s definition of “things which 
have a ratio,” i.e. that they can be multiplied so as to exceed each other. Suppose A is a circle and B 
is a square. By Euclid’s definition, we can see that these “have a ratio.” Why? Because we can 
multiply the square into an area that is greater than the circle, which we can see because it contains 
and surrounds the circle. Since this multiple is greater than the circle, it has a ratio to it; and since it is 
a multiple of the square, it has a ratio to that; so the square also has a ratio to the circle. 
 Now we can easily multiply the circumference of a smaller circle, i.e. take it a repeated 
number of times (draw it three times over, for example). But how do we verify that the sum of these 
three lengths is longer than some other circumference of a larger circle? We cannot lay them off 
inside the greater circumference. Newton’s way of thinking about this is implied in this Lemma: Do 
the circumferences of unequal circles differ? Yes. But how? In shape? No. Then how? In size! But 
they each have only one kind of size: length. So the circumference of the bigger circle is LONGER. 
This is how we see that they have a ratio. To see what ratio, we need the next step: 
 (2) That similar curved lines are to each other in the same ratio as corresponding straight 
lines drawn in each of them. Here is why. Since the curves are similar, they can each be approached 
by similar “bent lines” (series of chords) as near as you please. But therefore, by the Cor. to Lemma 
4, the two curves must have the same ratio as that approached by the corresponding chords—but this 
is in fact always the same ratio. Hence the lengths of the similar curves are to each other as the 
corresponding chords. But Newton also says: 
 (3) That all similar plane figures, whether polygons or curvilinear figures or mixed, are in 
the duplicate ratio of their corresponding sides. Elements 6.19 and 6.20 prove it about similar 
triangles and similar polygons, and so it follows for all similar plane figures, since similar curvilinear 
figures are limits of similar polygons. Euclid also proves it about circles in Elements 12. One more 
thing is implied in Lemma 5: 
 (4) That all similar surface figures, even if they be warped and not in a single plane, are also 
to each other in the duplicate ratio of corresponding chords, since such figures are limits of similar 
“bent planes,” e.g. bunches of little triangles. 
 
 
 “As the squares of the corresponding sides” or “in the duplicate ratio of the 
corresponding sides.” What does this mean for curved sides? (We might have a figure with 
no rectilineal sides, after all.) It means “as the squares on the straight lines equal to those 
curves,” OR it means as those straight lengths squared, i.e. multiplied by themselves 
Cartesian-style. 
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Consider, for example, two unequal circular quadrants, AGE and age. 
Call their areas Q and q. 
 
Then Q : q = AG2 : ag2  [Euc. 12.2 or Newton Lemma 4] 
 
But if we cut arcs AE and ae at corresponding points, 
 
then AC : ac = AG : ag 
and CE : ce = AG : ag 
so AC + CE : ac + ce = AG : ag 
 
Similarly 
 
 (AB + BC + CD + DE) : (ab + bc + cd + de) = AG : ag 
 
These corresponding perimeters are always in a fixed ratio. But as we increase the number of 
chords in them, they become as close to equaling the arcs as we please, which means the arcs 
themselves must actually BE in that fixed ratio (cf. Lemma 4). Hence 
 
 arc AE : arc ae = AG : ag 
 
So, if we take the lengths of those arcs as straight lines, we can say: 
 
 (arc AE)2 : (arc ae)2 = AG2 : ag2  
 
so (arc AE)2 : (arc ae)2 = Q : q 
 
Q.E.D. 
 
 
The same argument works for any similar 
figures. 
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 20 
 

LEMMA 6 
 
 
 

 
 
 
If any arc ACB, given in position, be 
subtended by chord AB, and at some point 
A in the middle of continuous curvature be 
touched by a straight line AD extended both 
ways, then the points A, B approaching 
towards each other and meeting: I say that 
the angle BAD, contained by the chord and 
the tangent, will be diminished in infinitum 
and ultimately will vanish. 
 
 
 
PARAPHRASE: If you have a curve ACB 
(with A being in a place of “continuous curvature”) and a chord AB and a tangent AD, then as points B and A 
get as close as we please, the angle BAD gets as close as we please to nothing. 
 
QUESTION 1: What does Newton mean by “continuous curvature”? 
 He means there is only one tangent there. We can draw “pointy” 
curves, like a gothic arch, where at a certain point it is possible to draw two 
tangents. That is not a continuous curve. (And so, really, it is not one curve, but 
two that intersect at a point.) Newton defines the continuity of a curve (and 
hence, in a way, its unity) by the continuity in the movement of a unique 
tangent along the curve. If the tangent “jumps” (or stops and completely 
reverses direction) at any point, i.e. if in order to continue you must suddenly 
shift the tangent through an angle at a point, then you have a gap in continuity 
of curvature. 
 
 
QUESTION 2: Is this a proof? 
 Since he does not say Q.E.D. at the end, it seems similar to Lemma 1, which is closer to being a 
definition than a proof. Here, the claim is that the limiting position of a chord rotating about point A in a curve 
must be the tangent at A, provided there is only one unique tangent to the curve at A. 
 
 
QUESTION 3: Euclid proves a circle can have only one tangent at a point, and Apollonius proves the same for 
conics. Is Newton just assuming the same is true of all curves? 
 Well, no. He is saying that if you DO have two tangents, then the curve is discontinuous, i.e. you make 
the tangent have to sweep through an angle at one point in order to continue tracing along the curve. 
Conversely, if you have a curve that is continuous, where you don’t make the tangent sweep through an angle, 
there can be only one tangent at any point, and so the tangent will always be the limit-position of the chord 
shrinking to the point of tangency. 
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CAN A STRAIGHT LINE BE COMPARED TO A CURVED ONE? 
 
Can a straight line be less than, or greater than, or even equal to a curved one? This is not the 
sort of comparison one would run into in Euclid. It is not possible to take a straight line and 
lay it off in a curved one some number of times, so as to measure the curved line by the 
straight one, and get a numerical ratio between them that way. A straight line and a curved 
one can never be made to coincide except in points, and never in any amount of their lengths. 
 Nonetheless, there is another way to compare them, namely through non-coincidence. 
The straight line is the shortest length joining two points, and any curve joining those two 
points will be longer. Similarly, if a curve is all-concave on one side and all-convex on the 
other (as opposed to one that squiggles back and forth), then the two tangents to it at its 
endpoints (and intersecting each other) will be longer, taken together, than the curve itself. 
These ideas are intuitive. Given the choice between a straight path between two points, and a 
curvy one, we automatically choose the straight one. And given the choice between a 
smooth, gentle curve between two points that does not wiggle back and forth, and the jagged 
path of the two tangents to its endpoints, we automatically choose the curved path, if we are 
trying to save time. 
 But once we admit these ideas, there is also a way to say what it means for a straight 
line to be equal to a curved one, as follows. 
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DEFINING THE STRAIGHT LINE 
EQUAL TO A CURVE 

 
Given: A finite, continuous curve, AE. 
Prove:  There is a unique straight line which is neither greater nor less 

 
 
Pick any number of points on the curve, A, B, 
C, D, E, and join the chords and draw tangents 
to each as well. 
 
Let the tangent-perimeter and the chord-
perimeter which are defined by the same 
number of points be called perimeters of the 
SAME ORDER. 
 
For example: 
 
tangent-sum AP + PE and chord-sum AE, since 
they are defined by points A and E, and so these 
are both of the first order. 
 
tangent-sum AG + GCK + KE and chord-sum 
AC + CE, since they are defined by points A, C, 
E, and so these are both of the second order. 
 
tangent-sum AF + FBH + HCJ + JDL + LE and 
chord-sum AB + BC + CD + DE, since they are defined by points A, B, C, D, E, and so these 
are both of the third order. 
 
And so on. 
 
 

STEP 1: Any tangent-sum is greater than any chord-sum, going from A to E. 
 
Plainly  AP + PE > AE   [rAPE] 
so  1st tangent-sum > 1st chord-sum 
 
Again  AG + GC > AC   [rAGC] 
and  CK + KE > CE   [rCKE] 
so  AG + GK + KE > AC + CE 
so  2nd tangent-sum > 2nd chord-sum 
 
 
 
and in general 
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  nth tangent-sum > nth chord-sum. 
 
i.e. any tangent-sum is greater than the chord-sum of the same order. 
 
Furthermore, since the tangent-sum is decreasing with the increase in its order, we have to 
say that 
 
  (n + m)th tangent-sum < (n)th tangent-sum 
 
but  (n + m)th tangent-sum > (n + m)th chord-sum  [same order] 
 
so  (n)th tangent-sum > (n + m)th chord-sum 
 
Might it be possible, though, to take a small enough tangent-sum, and a large enough chord-
sum, so that 
 
  (n)th tangent-sum < (k)th chord-sum ? 
 
After all, the tangent-sums get shorter as n grows, and the chord-sums get longer as k grows, 
and therefore, if k and n are taken large enough (but not of the same order!), might we not be 
able to get this order of inequality? 
 
Let’s assume it and see what happens: 
 
  (n)th tangent-sum < (k)th chord-sum   [ASSUMED] 
 
Well, we know that n and k cannot be equal, since, if they were, the tangent-sum would be 
greater than the chord-sum, being of the same order. Therefore 
 
either  k > n 
or  n > k 
 
First let k > n, i.e. k = n + m 
 
thus  (n)th tangent-sum < (n + m)th chord-sum  
 
But we showed above that 
 
  (n)th tangent-sum > (n + m)th chord-sum 
 
which is absurd. Hence k is not greater than n. 
 
Then let n > k, i.e. n = k + m 
 
thus  (k + m)th tangent-sum < (k)th chord-sum  
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but  (k + m)th tangent-sum > (k + m)th chord-sum  [same order] 
so  (k)th chord-sum > (k + m)th chord-sum 
 
which is absurd, because chord-sums increase as their order increases. 
So n is not greater than k. 
 
So n and k can be neither equal, nor unequal. Hence there are no values of n and k for which 
it is true that  
 
  (n)th tangent-sum < (k)th chord-sum  
 
which means this is never true. 
 
Therefore (n)th tangent-sum > (m)th chord-sum 
 
regardless of the values of n and m. 
 
Q.E.D.  
 
 

STEP 2: It is impossible that TWO lengths between a chord-sum and a tangent-sum be neither a 
chord-sum nor a tangent-sum. 

 
 
Let the straight line PI be a 
chord-sum, capable of being 
inscribed in the given curve 
ACE as a series of chords. 
 
Let the straight line PO be a tangent-sum, capable of being circumscribed about the Outside 
of the given curve ACE as a series of tangents. 
 
Hence  PO > PI   [by Step 1 above] 
 
If possible, let it be that TWO lengths falling between PO and PI (such as PQ and PZ) are 
such that neither can be inscribed in nor circumscribed about ACE, and of these two let PZ > 
PQ. 
 
Since PQ cannot be inscribed (given), it is longer than any chord-sum. For any line equal to a 
chord-sum is obviously able to be cut up and inscribed as a chord-sum; so PQ is not equal to 
any chord-sum. And any line shorter than a chord-sum is also able to be inscribed in ACE, 
although it might not reach all the way to E (if it is shorter than AE). But it is given that PQ 
cannot be inscribed in ACE. Therefore it is not shorter than any chord-sum, either. Therefore 
it is longer than every chord-sum. 
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Again, since PQ cannot be circumscribed (given), it is shorter than any tangent-sum. For any 
line equal to a tangent-sum is obviously able to be cut up and circumscribed as a tangent-
sum; so PQ is not equal to any tangent-sum. And any line longer than a tangent-sum is also 
able to be circumscribed about ACE, although it might shoot past E (if it is longer than AP + 
PE). But it is given that PQ cannot be circumscribed about ACE. Therefore it is not longer 
than any tangent-sum, either. Therefore it is shorter than every tangent-sum. 
 
Similarly PZ is both longer than any chord-sum, and shorter than any tangent-sum. 
 
But a fortiori all the lengths between PQ and PZ will be both longer than any chord-sum, and 
shorter than any tangent-sum. 
 
Hence QZ is a MINIMUM DIFFERENCE between any chord-sum and any tangent-sum. 
 
But there is no minimum difference between chord-sums and tangent-sums (see below). 
 
Therefore it is impossible for there to be two lengths, each of which is neither able to be 
inscribed in nor able to be circumscribed about the given curve ACE. 
 
Q.E.D. 
 
PROOF of the premise that there can be no minimum difference between any chord-sum and 
any tangent-sum: 
 
Obviously, the difference between tangent-sums and chord-sums of the same order decreases 
as the order increases, since the tangent-sums are all greater than the chord-sums, but the 
tangent-sums grow shorter, and the chord-sums grow longer, as the order increases. 
 
But might there be a minimum difference between chord-
sums and tangent-sums, such as QZ? 
 
Well, any same-order tangent-sum and chord-sum will 
form a connected series of triangles. And in any one 
triangle, such as AFB, as the order increases, the peak 
angle AFB increases, and the base angles (where the 
chord AB is the “base”) decrease. But if the difference  
(AF + FB) – AB approached a minimum value, this 
would imply that (∠AFB + ∠FBA) could not shrink 
below a given value, or that ∠AFB must always differ from 180° by a minimum value, 
which is false for a continuous curve. Hence (AF + FB) – AB, in all our little triangles, gets 
less than any assigned value as the order increases. But then it follows that the difference 
between the sum of all the tangents (AF + FB + BH + HC etc.) and the sum of all the chords 
(AB + BC + etc.), gets less than any assigned value. Therefore there can be no minimum 
difference between chord-sums and tangent-sums. 
 
Q.E.D. 
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STEP 3: There is one and only one straight line which is not greater than, and not less than, the 
curve ACE, and hence is equal to it.  

 
Let the straight line PO be a tangent-sum, and the part PI a chord-sum. 
 
Since every length less than PI is a chord-sum, too, but every length greater than PO is 
greater than every chord-sum (by Step 1), there is some limit to the lengths which can be 
chord-sums: therefore it is either the case that there is a LAST length which can be a chord-
sum, i.e. a longest chord-sum, or there is a FIRST length which cannot be a chord-sum. 
 But there is no last length which can be a chord-sum. For any length which can be a 
chord-sum can be broken up into segments which can be inscribed in the curve, and either 
stop at E or fall short of it. And any length we can do this with, will make it possible for us to 
find a greater one, just by taking more points on the curve. So there is no last, and hence 
longest, length which can be a chord-sum. 
 Hence there is a first length which cannot be a chord-sum. 
 
 Similarly there must be a limit to the lengths which can be tangent-sums, but there is 
no last length which can be a tangent-sum, and therefore there is a first length which cannot 
be a tangent-sum. 
 
 These cannot be different lengths. 
 
 If possible, let PQ be the first length which is too long to be a chord-sum, and PZ the 
first length which is too short to be a tangent-sum. Then, picking any point between Q and Z, 
such as L, it follows that L is both too long to be a chord-sum (since it is longer than PQ) and 
also too short to be a tangent-sum (since it is shorter than PZ), and therefore there are many 
lengths which are neither tangent-sums nor chord-sums, which is impossible (by Step 2). 
 
 Therefore there is a single length which is the limit of both, i.e. it is both the first 
which is too long to be a chord-sum, and the first which is too short to be a tangent-sum. Call 
this PL. 
 
 I say that PL is equal to the curve. 
 
 For, employing the postulates of Archimedes (ratified by Aristotle and Thomas), the 
curve is longer than every chord-sum, but shorter than every tangent-sum. But every length 
less than PL is a chord-sum. And every length greater than PL is a tangent-sum. Therefore 
the curve is greater than every length less than PL, and less than every length greater than 
PL—which can happen only if the curve is equal to PL. 
 
Q.E.D.  
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 21 
 
 

LEMMA 7 
 

“Newton’s Microscope” 
 
The same things being supposed, I say that the ultimate ratio of the arc, the chord, and the 
tangent to each other, is the ratio of equality. 
 

 
 
Let the points B and D be produced to the further points b and d, such that bd is always 
parallel to BD. 
 
Then  AB : AD = Ab : Ad  [always] 
but  Ab = Ad   [ultimately] 
so  AB = AD   [ultimately] 
 
The point of the “microscope,” i.e. the magnification of the whole figure ABD into the 
similar, larger figure abd, is to give us a FIXED LINE Ad, which will always be in our 
argument. The lines AB and AD are both shrinking to nothing, and at different rates, so it is 
hard to see what we can say about them in themselves. But the line Ad always stays the 
same, and so it is clear that Ab gets as close as we like to Ad in length. 
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NOTE: The points R, r are not important for this Lemma. 
 
Q1: How do we construct the new point b each time? 
 Newton does not specify how far to go out, but if we are to keep Ad the same (and 
keeping some such line the same is the point of the construction), then the construction is 
decided for us, as follows: Taking the new location of B, namely B1, join A to it. Keeping R 
the same, too, if we like, we then join RB1 through to D1 on the given tangent, and then draw 
dr1 parallel to RD1, and extend AB1 until it intersects dr1. Call this point of intersection our 
new b1. 
 
 
Q2: Is this more a tool for the imagination than a demonstration? 
 The magnification allows us to see the lines Ad and Ab and curve Ab (which are 
always as AD and AB and curve AB) tending toward coincidence in the permanent line Ad, 
instead of vanishing into points. Probably this magnification is not an argument from the real 
reason why. It is not because the magnified versions are ultimately equal that the original 
lines are ultimately equal. 
 
 
Q3: How do we see that the CURVE ACB is ultimately equal to the chord AB and the cut-
off tangent AD ? 
 First we see that the similar curve Acb is ultimately equal to Ab and Ad; then we 
argue that ACB is ultimately equal to AB and AD from their similarity to the magnified 
versions. 
 And how do we see that curve Acb is ultimately equal to Ab and Ad? 
 Newton is not very explicit about that! But he refers to this arc as “the intermediate 
arc Acb,” implying the “sandwich principle.” We see that Ab and Ad are ultimately equal, 
since b gets as close as we please to d, and Ad is a nice permanent line. But arc Acb is 
always BETWEEN those two straight lines which ultimately coincide. So all the more does 
it ultimately coincide with either of them. 
 NOTE: Newton seems to be assuming that we have a finite arc Acb, with smooth and 
simple curvature. If it is assumed to be one of those horrid “fractal” things, then it has 
infinite length, and it is in no way “straightening” as we go, and the argument here would not 
work. Then again, those “fractals” cannot really exist all at once, but are more like processes 
themselves; and we are interested in paths of motion, whereas nothing can move through one 
of those curves. 
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NOTE: An easy, but specific, case would be that of the 
circle, with RA as diameter. In that case, ∠RAD is 90° (since 
AD is tangent), and ∠ABR is 90° (since AR is the diameter). 
Hence △DAB is similar to △DRA, and therefore DA : AB = 
RD : RA always. But RD is ultimately equal to RA (as B 
goes to A). Therefore also DA is ultimately equal to AB. 
Q.E.D. 
 

 
 
Q4: Does this argument prove that chord and arc are comparable? No. It assumes this, and 
then shows that they tend toward equality as B goes to A. 
 
 
NOTE: We can also see the ultimate equality of chord and tangent (the ultimate equality of 
chord and arc is really an easy matter, and would not require this Lemma) in a different case, 

if we draw the secants BD always parallel to the 
original position. One can see (by using the 
original AD as our fixed line) that as D1B1 
becomes D2B2 and again D3B3 etc., the ratio of AD 
and AB approaches that of equality. Just extend 
AB1 till it meets BD, and we will have our 
magnification, in which the magnified version of 
ABn is approaching the fixed length AD. 
 NOTE: This way of cutting off our 
tangents is actually USED IN COROLLARY 1. 
 

 
COROLLARY 1. If we draw any fixed straight line AF through the point A (see Newton’s 
figure), and continually draw BF to it, parallel to the tangent, as B goes to A, then BF is also 
ultimately equal to the vanishing arc AB. 
 Proof: Complete parallelogram AFBD (thus determining how we cut off our 
tangents!): 
 
 BF = AD (always) 
 AD is ultimately equal to arcACB (by the Lemma itself) 
so BF is ultimately equal to arcACB 
 
NOTE: Although he doesn’t mention these names yet, AF is the SAGITTA, which will 
represent forces, and FB is the semi-chord or SINE of the arc, and BD is the SUBTENSE of 
the arc. 
 
COROLLARY 2. Newton draws more lines, cutting off equal portions AE and BG from AD 
and BF, and says these abscissas AE and BG are also ultimately in the ratio of equality to 
AB and arc ACB. 
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 Why? Presumably because AE is just a new tangent and AG a new diameter, and 
Lemma 7 applies to them just as well—in other words, there was nothing special about the 
diameter AR and tangent AD that we used in Lemma 7. 
 This means that regardless of the original ratio of the secant to the tangent (e.g. 
whether it be BD : AD, or BE : AE), the ultimate ratio is one of equality. 
 
COROLLARY 3. So we can use “ALL THESE LINES” indifferently in our reasoning about 
ultimate ratios, i.e. ratios which are limits approached by ratios among such lines. This 
statement is important for the later application of Lemma 7. 
 But WHICH LINES? He means those whose ultimate ratio he has just proved to be 
that of equality, i.e. the ABSCISSAS AD, AE, BF, BG, and AB (the chord itself) and ACB 
(the arc). 
 
NOTE: But AF, AG, BE, BD are a different story!!! 
 He does not mention these lines as being ultimately equal to AD, and there is good 
reason for that. 
 Consider the case where the subtense BD is always taken parallel to itself. 
 Then what is the ultimate ratio of BD to AD? 
 We see it by moving b up toward d while keeping Ad fixed: bd shrinks to nothing 
while Ab grows to Ad. But then the ratio Ad : bd increases as much as you like, and can be 
made as large as you please, and so does not tend to any finite ratio at all, much less the ratio 
of equality. 
 Also, in Lemma 11 he will show that the “subtenses,” like BD, have to each other 
ULTIMATELY the same ratio as the SQUARES of the corresponding chords like AB. 
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CLASS 22 
 
 

LEMMA 8 
 
If the given straight lines AR, BR, with the arc ACB, the chord AB, and the tangent AD, 
constitute three triangles RAB, RACB, RAD, and the points A and B approach one another: I 
say that the ultimate form of these vanishing triangles is one of similitude, and their ultimate 
ratio is that of equality. 
 
 
Newton argues again as in Lemma 7, 
introducing a magnification of the 
original arc ACB for the sake of 
giving us a PERMANENT LINE Ad, 
which gives us a fixed target through 
which to understand what something 
is tending to. 
 
 
 
 
PROOF.  As B goes to A, ∠BAD goes to nothing (by Lemma 5). 
 Therefore also ∠bAd goes to nothing, since this is just the same angle with longer 
legs. 
 Therefore b goes to d, since Ad remains fixed, and bd is shrinking to nothing. 
 Therefore Ab ultimately coincides with Ad. 
 Therefore rrAb and rrAd ultimately coincide, and so are ultimately equal and 
ultimately similar. 
 But also the curvilinear triangle rrAcb ultimately coincides with those two triangles, 
since it is always caught between them, and so it is ultimately equal and similar to them also. 
 But then rRAB, rRAD, rRACB, always similar (in shape) and proportional (in 
area) to the magnified versions, must also be ultimately equal and similar to each other. 
 
Q.E.D.  
 
 
COROLLARY:  So, again, in reasoning about ultimate ratios of things, we can use any of 
these three triangles that we like, indifferently. 
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Q1.  Here Newton speaks of the “uItimate form” of the vanishing triangles. In general, what 
does that mean? Is it possible for there to be a last shape which some changing shape will 
attain? Or a first shape which it does not attain? 
 
Yes, both are possible. 
 
 
 
 
 
 
Let ABC be some triangle, and extend CB down to any 
point R. Now draw from R a secant through the 
triangle, Rbc. This forms the triangle Abc. Plainly Abc 
is not similar to ABC. But if we now rotate Rbc toward 
RBC, we see that the LAST SHAPE Abc WILL attain 
is ABC. 
 
 
 

 
 
Now draw AP down parallel to CB, and draw a secant 
through the triangle, Pbc. This forms the triangle Abc. 
Plainly Abc is not similar to ABC. But if we now rotate 
Pbc toward AP, we see that the FIRST SHAPE Abc 
WILL NOT attain is that of similarity to rABC. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

C

B

R

A
b

c

C

B

P

A b

c



 125 

Q2.  In the case of Lemma 8, is there an ultimate shape toward which the three triangles are 
tending? Is there a last shape they will attain, or a first triangular shape that they will not 
attain? 
 
This might depend on how we define the process. 
 Is R a fixed point? Newton speaks of AR as a “given” line, which makes it sound like 
it is given in both position and length. Then R would be a fixed point. 
 If that is so, then ∠ARB (or ∠ARD) is closing up to nothing. 
 But then rARB (or rARD) is becoming longer and skinnier, in infinitum. But there 
is no “skinniest triangle” (or triangle that is most like a straight line), which could be either 
the first shape not reached in the process, or the last one reached. So in that case, there is no 
ultimate form. 
 
 On the other hand, if R is not fixed, but instead RBD is a fixed orientation, so that 
RBD is always drawn parallel to its last position, through each new B, then rbd, always 
parallel to this, and always passing through the fixed point d, remains fixed through the 
whole process. And in that case it is evident that the final form of rrAb is that of rrAd, a 
fixed triangle. Hence the final form of rRAB, always similar to rrAb, is also that of 
rrAd. 
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LEMMAS 9 AND 10 
 
 
 

 
 

LEMMA 9 
 
PARAPHRASE: Consider a simple curve ABC forming an angle with 
straight line ADE, where DB and EC are always parallel, and B and 
C both move to A. Then the ratio of the areas of the curvilinear 
triangles ABD and ACE will approach the ratio of the squares of 
their corresponding sides, as B and C approach A. 
 
 

CONSTRUCTION: 
Let AFG be the tangent to ABC, cutting DB and EC at F and G. 
Extend AE to e, and let Ae be our PERMANENT LINE, magnifying AE. 
So we cut Ae at d such that 
 
 Ad : Ae = AD : AE     [always] 
 
Draw the parallels to DB and EC through d and e, and let these parallels meet AB and AC produced at points b 
and c. And let ec and db cut tangent AFG produced at f and g. 
 So we have magnified our original rectilinear triangles into those with the lower case letters, which are 
similar. Now add in a curve through A,b,c similar to the given curve ABC. And we will always do this as B and 
C go to A (at whatever rates), always beginning our construction with Ae, a fixed line. 
 

ARGUMENT: 
What does c do? It moves along cg until it coincides with g. And ge sits still. 
What does b do? It moves along bf until it coincies with f. And bfd might move up or down. 
But as points b and c go over to f and g, ∠cAg vanishes (Lemma 6). 
But since ∠cAg vanishes, or goes down to nothing, therefore everything that is always inside it also vanishes or 
goes down to nothing. 
But that means all the angles and areas contained in it go to nothing, and specifically 
 
 curvilinear rAbf goes to nothing 
 curvilinear rAcg goes to nothing 
 
Hence curvilinear rAbd, which is (curvilinear rAbf + rAfd), ultimately becomes just rAfd. 
So too curvilinear rAce, being (curvilinear rAcg + rAge), ultimately becomes just rAge. 
 
Therefore, 
 
 curv.rAbd : curv.rAce = rAfd : rAge   [ultimately] 
but rAfd : rAge = Ad2 : Ae2     [always] 
so curv.rAbd : curv.rAce = Ad2 : Ae2    [ultimately] 
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but curv.rAbd : curv.rAce = curv.rABD : curv.rACE [always] 
and Ad2 : Ae2 = AD2 : AE2      [always] 
so curv.rABD : curv.rACE = AD2 : AE2    [ultimately] 
 
Q.E.D. 
 
 
 
Q1. What is left at the end of the whole process? And where is fd at the end? 
 Nothing but rAge is left, and whatever happens to be in it. 
 df could be fixed the whole time, if EA : DA is a fixed ratio. Or it can go up and down. 
 df could coincide with eg at the end, if EA and DA are ultimately equal. 
 Could df disappear down at A by the end of the process? 
  
 
Q2. Are the curved triangles ABD and ACE tending to some ultimate form? 
 Yes, and the same form, that of rAge. 
 
Q3. Do the points B and C have to be heading to A at some special rate, e.g. uniformly? 
 Nope. Just as long as they get there together at the end of a finite time. 
 If they do not vanish together, is the Lemma true? 
 (Then one will have vanished when the other is still there, and we cannot magnify the vanished one; 
and even when they vanish together, their ultimate ratios change depending on the two rates at which they drop. 
So long as they vanish together, though, their ratio will be ultimately the same as the squares of EA and DA) 
 Note: CG and BF form all the same triangles on their way down to A; therefore when they are at 
various points is the only thing giving us definite triangles to compare. 
 
Q4. Is Lemma 5 really necessary for Lemma 9? 
 Newton cites it, but he is really talking more about the ultimate ratios and figures toward which the 
curved figures are tending, not so much any ratio they ever in fact have. They are in fact always dissimilar. 
 
Q5. Are the curved triangles ABF and ACG ultimately similar? (yes) 
  Are they ever in fact similar? (no, unless B and C coincide at some point in the process) 
  Do they approach a fixed ultimate shape? (no) 
 
Q6. Can curved rABD be ultimately equal (or congruent) to curved rACE? 
 (Yes, if AE is ultimately equal to AD.) 
 
FOR CLARITY it might be good to illustrate the construction at an earlier stage (as in the left accompanying 
figure below) and again at a later stage (as in the right figure): 
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    LEMMA 10 

 
 
The distances which a body travels [by any finite force urging it, whether that force is 
definite and unchanging, or is continually increased or continually diminished] are, in the 
very beginning of the motion, to each other in the duplicate ratio of the times. 
 

 
 1. Whoa! Not just geometry anymore. Now 
we are talking about motion and forces and times. 
And FORCE means “acceleration” here, or at least 
that is its measure (and for a long time to come)! 
 
 2. Newton is using the diagram for Lemma 9 
again, and it is just a physical application of Lemma 
9. We don’t need the “magnification” part of the 
figure for this Lemma. 
 

 
 3. We let the times be represented by such lines as AD, AE, and we let the velocities 
generated in those times be represented by the corresponding ordinates DB, EC. When he 
says “in the very beginning of the motion,” he means that the motion begins from rest; the 
force might continually diminish, which means that although the velocity will increase (it 
must, as long as there is force), the rate at which it increases will diminish, i.e. the slope of 
the tangent will diminish as we progress over the curve, which is to say it will (in such a 
case) be a convex curve. Anyway, since the speed at A is zero, we are talking about some 
kind of acceleration from rest. 
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 4. So the endpoints of the ordinates representing the acquired speeds will trace out 
some line ABC over the time ADE, and this will enclose an area. QUESTION: Does ADE 
have to be tangent to the curve? No. Lemma 9 did not require that. (In fact, it is a further 
question whether the velocity-curve CAN BE TANGENT TO THE TIME-AXIS, since if 
that were so, the initial acceleration would be zero!) 
 
 5. Newton assumes we see that the distances travelled by the body in any two given 
times (starting from A) will be as the AREAS standing on those times (under line ABC and 
cut off by the corresponding ordinates). For example: 
 
 Distance in AD : Distance in AE = Curved area ADB : Curved area AEC 
 
 6. Galileo proved this (after a fashion) for the case of uniform acceleration from rest, 
where ABC is a straight line, and the whole figure is a triangle. But the general method he 
used to argue that the distances are as the areas standing on the lines representing the times 
did not depend on the uniformity of the acceleration. 
 
 7. So let’s supply a refresher argument that in a velocity-over-time diagram, AREA 
REPRESENTS DISTANCE. Divide AD into as many segments as you like, and on them 
describe circumscribed and inscribed rectangles. Each of these represents a uniform speed 
maintained for the time on which it stands—but we saw in Galileo that for any two uniform 
speeds at which bodies move for any two times, the distances covered will be in the ratio 
compounded of the speeds and the times, i.e. 
 
 d1 : d2 = (s1 : s2) c (t1 : t2) 
 
Now we represent the ratio of the speeds and that of the times by ratios among straight lines. 
And the ratio compounded of two ratios among straight lines is the same as the ratio of the 
rectangles they contain, so that the ratio of the distances covered at two uniform speeds over 
two times is the same as that of the “representative rectangles” we drew. So the total distance 
covered by a sum of such motions is represented by the total area of all the little rectangles. 
The total distance covered by the accelerated body, of course, is always between (a) the total 
distance covered by the uniform motions which the outside rectangles represent, and (b) the 
total distance covered by the uniform motions 
which the inside rectangles represent. So the 
area representing the distance covered by the 
accelerated body must be an area that is always 
between the rectangle-sums. But the only area 
which is always between these (less than the 
one, greater than the other) is the area of the 
curve (by Lemmas 2 and 3). Therefore the 
distance covered by the accelerated body is as 
the curved area. 
 
 8. Now back to Lemma 10. Since any 
two distances travelled by a body beginning 
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from rest are as the areas described on the times (and contained by speed-representing 
ordinates), i.e. as curved figures ADB, AEC, and since those areas in turn are ultimately in 
the duplicate ratio of the corresponding sides AD, AE as these are taken smaller and 
smaller, i.e. closer and closer to A (by Lemma 9), and since this comes to saying “closer and 
closer to the beginning of the motion,” it now follows that two distances travelled by a body 
accelerated from rest are ultimately in the duplicate ratio of the times, as we take the times 
closer and closer to the beginning of the motion. Q.E.D. 
 
 9. Now we see that for EVERY CONTINUOUSLY ACCELERATED MOTION, the 
closer we get to the beginning of it, the more it behaves like UNIFORMLY accelerated 
motion. For in the case of uniformly accelerated motion, any two distances covered (from 
rest) are actually in the duplicate ratio of the times. 
 
 10. We have to say every continuously accelerated motion, since Newton said 
“continually augmented or continually diminished,” which will guarantee the continuity of 
the curvature, and hence the applicability of Lemma 6 and hence of Lemma 9. 
 
 11. GALILEO. Galileo would plot our acceleration (from rest) due to gravity by a 
straight line. But Newton (who has already said the force increases as we get closer to the 
center of the Earth) would plot it as a curve. But here Newton is explaining, as it were, to 
what extent Galileo is right. Since we are always near the beginning of an accelerated motion 
to Earth, it is very nearly true that the distances covered (from rest) are as the squares of the 
times. 
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LEMMA 10 COROLLARIES AND SCHOLIUM 
 

 
 

COROLLARY 1 
 
And hence it may be easily gathered that the deviations [of bodies describing similar parts of similar 
figures in proportional times] which are generated by any equal forces whatever similarly applied to 
the bodies and are measured by the distances of the bodies from those places of the similar figures to 
which the bodies in those proportional times would have arrived without those forces, are NEARLY 
as the squares of the times in which they are generated. 
 
Newton gives no argument. We have to “gather” it for ourselves. 
 The main thing we need to see is that the SLOPE OF A TANGENT to a curve in a 
velocity-over-time diagram corresponds to instantaneous acceleration. That should be 
evident by now. The vertical lines in the diagram represent speeds, and the horizontal 
location of those lines represent the time those speeds are had by the mobile. But then at any 
point in the velocity-curve, what is the instantaneous rate of change of speed, i.e. the 
instantaneous acceleration? It is nothing else than the limit of the change of speed over short 
intervals of time shrinking down to that instant. But since those changes of speed are changes 
of heights (which represent the speeds) of the curve, and the horizontal locations of those 
heights represent the times, we are actually finding the limit of the “rise over run” ratio over 
short intervals of the curve, which intervals are shrinking down to the point in question. But 
that is the same thing as the slope of the tangent at that point. Hence the slope of the tangent 
to a velocity-curve at a given point is the same as the acceleration of the mobile at that 
instant. 
 With that principle in hand, we can now argue for Newton’s first corollary. 
 Let ABD and abd be similar arcs which two bodies would describe in times 
proportional to the arcs (that’s what Cor. 1 takes as given). Note that since the linear 
distances are always as the times to go through them, the 
bodies are NOT always at corresponding points, but their 
linear VELOCITIES ARE ALWAYS EQUAL to each other 
at the corresponding points (that is, until the interfering 
forces come along and ruin things!). 
 But let it be that the bodies are at corresponding 
points at some one moment, say when they are at B, b and 
let them there be acted on by equal interfering “forces” (i.e. 
accelerations) and in the same direction, and suppose at the 
end of the proportional times in which they would have 
been at d and D the bodies, due to the always-equal forces, 
are instead at c and C, so that the resulting “deviations” are 
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dc and DC. 
 When the bodies are at B and b (which is at the same time, by our supposition), start 
plotting a velocity-over-time diagram for each body, as in the figure for Lemma 10, 
beginning from the moment the bodies are at B and b, and plotting only the additional 
velocities taking them away from their original orbits (which additional velocities are due to 
the always-parallel and always-equal-at-corresponding-points forces). 
 Now, since arcs BD and bd are similar, the times for them are not equal, but 
proportional to those similar arcs (given). [NOTE: This is why the deviations are not simply 
equal: the always-equal forces have more time to produce DC than dc.] Hence the time for 
deviation DC and the time for deviation dc are also not equal, but are as those arcs (since 
they are accomplished in the same times in which arcs BD and bd would have been 
accomplished). 
 This means the velocity-graphs will be different for our two deviations, and will not 
coincide. 
 But now let TdD be our time-axis, and let ed and ED be the final velocities among 
those producing deviations dc and DC. 
 As it happens, the two velocity-curves will share a common tangent TgG, since we 
are given that at the original corresponding points B, b the accelerations are equal (so the 
slopes of the tangents to the velocity-curves must be equal, there). But if the initial 
accelerations are equal, so that TgG is a common tangent to both curves, what happens to the 
curved triangles Ted and TED as d and D go to T? They become as similar as we please to 
the always-similar rectilinear triangles Tgd and TGD. In other words, the triangles Ted and 
TED are themselves ultimately similar, and therefore 
 
 rTed : rTED = Td2 : TD2 [ultimately] 
 
so the distances always represented by those triangular areas, namely DC and dc, are also 
ultimately as the squares of the times represented by TD and Td, 
 
i.e. DC : dc = tDC

2 : tdc
2   [ultimately] 

 
Q.E.D. 
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NOTE: The usefulness of this corollary seems to be for showing, much later, how the Sun 
affects the orbits of the moons of Jupiter (for example). The Sun is so far away that it 
accelerates the moons almost equally, and along almost parallel lines. 
 
 
 

COROLLARY 2 
 
The deviations, however, which are generated by proportional forces similarly applied to similar 
parts of similar figures, are as the forces and the squares of the times conjointly. 
 
 
Now instead of equal forces applied at corresponding 
points, we have “proportional” forces, i.e. the two forces 
(i.e. accelerations) acting at any corresponding points are 
always in a fixed ratio. 
 So lets draw velocity-graphs again, and let A 
represent the moment when our two bodies are at 
corresponding points in their original orbits and the 
proportional forces begin to act. Let AB be one velocity-
curve, ab the other, with time-axis AdD; and bd, BD the 
velocities at the proportional times Ad, AD. 
 
 
 Now since the initial accelerations are not equal, 
but similar (i.e. proportional to all other pairs of accelerations at corresponding points), 
therefore the tangents Af and AF will not coincide, but will form an angle. Using the time-
axis AD as a coordinate-axis, the slopes of Af and AF are 
 
 fd : Ad  and  FD : AD 
 
i.e. fd : Ad  and  Kd : Ad  [FD : AD = Kd : Ad] 
 
and therefore the two slopes (of corresponding tangents) are always to each other as fd : 
Kd. 
 
Hence fd : Kd is the ratio of the proportional forces at time A (expressed in our diagram as 
the slopes of the tangents to point A). 
 
Now at the beginning of the motions, at A, the two accelerations are instantaneous, and thus 
NEAR the beginning they are as close as you please to being two uniformly accelerated 
motions whose accelerations are as fd : Kd; and therefore their distances (our “deviations”) 
are in a ratio as near as you please to the ratio of the areas of rAfd and rAFD, 
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i.e.    Deviation1 : Deviation2 = rAfd : rAFD  [ultimately] 
 
but 
 
 
so 
 
 
so  [ultimately] 
 
 
but  
 
 
so  [ultimately] 
 
 
so  [ultimately] 
 
 
i.e.  [ultimately] 
 
 
i.e.  [ultimately] 
 
 
i.e.   [ultimately]  
 
And so if we take actual deviations after short proportional times, it is approximately true 
that 
 
  Deviation1 : Deviation2 = (f1 : f2) c (t1

2 : t2
2) 

 
Q.E.D. 
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COROLLARY 3 
 
The same thing is to be understood of any distances whatever traversed by bodies urged with 
different forces, all which, in the very beginning of the motion, are as the product of (the forces) and 
(the squares of the times). 
 
The argument of Cor. 2 does not require that we be speaking of “deviations” in particular, 
but we can be speaking of any two distances accomplished by two accelerated motions; also 
it does not require that we have proportional forces throughout, so long as we are content 
with speaking ultimately (i.e. about what is going on at the very beginning of the motion). 
Whatever the forces at the beginning, since any two accelerations in teensy-weensy times are 
as near to uniform accelerations as we like, it will be true that 
 
 d1 : d2 = (f1 : f2) c (t1

2 : t2
2)  [ultimately, as t1 and t2 go to zero] 

 
where “f” means acceleration. 
 
 
 
 

COROLLARY 4 
 
This is just a mathematical manipulation of Cor. 3: 
 
 f1 : f2 = (d1 : d2) c (t2

2 : t1
2)  [ultimately, as t1 and t2 go to zero] 

 
 
 
 
 

COROLLARY 5 
 
This is just a mathematical manipulation of Cors. 3 and 4: 
 
 t1

2 : t2
2 = (d1 : d2) c (f2 : f1)  [ultimately, as t1 and t2 go to zero] 
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SCHOLIUM 

 
 

Here Newton defines some terms he has already been using: 
 
“A is directly as B” means 2121 :: BBAA =     
 
  So if  213 AA =   
 
  Then 213 BB =  
 

“A is inversely as B” means 
21

21
1:1:
BB

AA =   

  So if  213 AA =  
  

  Then 
21

13
BB

=  

 
“A is directly as B and C” means 221121 :: CBCBAA =  
   
 
  So if  213 AA =  
 
  Then 22113 CBCB =    
 
 

“A is inversely as B and C” means 
2211

21
1:1:
CBCB

AA =  

  So if  213 AA =  
 

  Then 
2211

13
CBCB

=  

 
 

“A is directly as B and C, and inversely as D” means 
2

22

1

11
21 ::

D
CB

D
CBAA =  

  So if   21 75 AA =  
 

  Then   
2

22

1

11 75
D
CB

D
CB

=  
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 25 
 
 

PRELIMINARY TO LEMMA 11: 
EXPLANATION OF CURVATURE 

 
 
 
 

EXPLANATION OF CURVATURE 
 
 
We naturally speak of one curve as being “sharper” or “tighter” than another which is 
“blunter” or “gentler” than it. There is a quantitative more and less in the curvature of 
curves—and this is obviously of interest in the science of motion, as any driver will attest. 
 
But how do we define the amount of curvature in a curve? We might say that the more a 
curve departs from a straight line, the more curved it is. Consider curve A, and compare it to 
one of its tangents, PT. If we draw TS at some angle, TS is a measure of the departure of 
curve APS from the straight line PT. The longer TS is, the greater the curvature, right? This 
is a good start, but is not good enough, as we’ll see. 
 
Suppose, for instance, we had 
another curve, B, to which PT was 
also tangent at P, but B cut TS at Z. 
Then curve B departs from the 
tangent less than curve A does, and 
so it would seem fair to say that 
curve B is less curved than A is. 
(And certainly there is some truth 
to that.) 
 
But now take C along PT somewhere, and draw CDE parallel to TZS. Is it the case that 
 
 CE : CD = TS : TZ ? 
 
Not necessarily! And that can’t be true continuously without making one curve a blow-up of 
the other (a special case). But this prompts us to wonder what is happening to those ratios—
in particular, what if they are changing toward the same ultimate ratio? Then we would be 
inclined to say that the curvature of the two curves becomes as equal as we like as we 
approach point P! 
 
The problem we are bumping into is that curvature can vary continuously in a curve (and 
indeed must do so if the curve is not a circle), and therefore curvature is a little bit like 
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“instantaneous velocity.” When curvature changes continuously, we have to talk about 
curvature at a point—where there is no curve! When velocity changes continuously, we 
cannot identify a single fixed speed except at an instant, when there is no speed! In the case 
of instantaneous velocity, we escape the paradox by defining the “speed at an instant” not as 
speed which the mobile actually possesses, but as one which its average speed (defined by 
the distance actually traversed in the short time interval) approaches as nearly as we please 
(but does not attain) during the time bounded by the instant, as we shrink the time to nothing. 
Somewhat similarly we define “curvature at a point” by the ultimate comparison of the 
subtense-tangent ratio at one point in a curve to the subtense-tangent ratio at another point. 
 
At first, we might be tempted to quantify the curvature 
at a point simply by the ultimate ratio approached by 
the subtense-tangent ratio as we shrink the tangent to 
that one point. But we cannot do that, since generally 
there IS no such ultimate ratio! Consider a circle, for 
example, with tangent PT and subtense TS. As we 
shrink PT, what is the ultimate ratio to which TS : TP 
will go? There is none. Suppose there were some finite 
ratio which limited this process. Then construct PT and 
TS in that ratio and join PS. Then the angle TPS is the ultimate angle as we shrink PT (or 
PS) to nothing. But that is false! The ultimate angle is zero. Put the other way: if we are 
given a ratio of TS : TP, and told that is the limit ratio, and we cannot in the process find a 
LESSER ratio than that, then we just construct the corresponding triangle, and cut the ∠TPS 
with any intercepting line, and the resulting subtense-tangent ratio will be still less. 
 
So, at least as we will consider it, curvature is a RELATIVE thing only. We do not look at 
one point on a curve and try to find the limit of the ratio TS : TP as T goes to P. Rather, we 
compare TWO POINTS in a curve, or in two curves, and ask whether the 
CORRESPONDING SUBTENSE-TANGENT ratios are ultimately equal, or if one is 
ultimately greater than the other. Those subtense-tangent ratios are “corresponding” which 
are taken from the same point on the tangent (or with tangents of equal lengths) and with the 
same subtense-angle. 
 
[NOTE: Will this ultimate ratio be different if our subtenses have different angles from each 
other? Newton’s Case 3 of Lemma 11 suggests that this is so. He seems to think it is 
necessary for the subtenses in his own lemma at least to be ultimately parallel, if they are not 
so throughout.] 
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If two curves share a point P, the two curvatures 
there are in the same ratio as the limit, as T goes 
to P, of the ratio 
 

 
 
 

 
 
 

 
 
 

 
Now, by this definition of “curvature” it is clear that every point on a CIRCLE will have the 
same curvature, and any two equal circles will have equal curvature. But what about 
UNEQUAL CIRCLES? Instinctively, we would say that the SMALLER circle has 
GREATER curvature, and indeed this definition harmonizes with that thought. According to 
our definition, it follows that THE CURVATURES OF TWO CIRCLES ARE TO EACH 
OTHER INVERSELY AS THEIR DIAMETERS or radii. 
 
 
 
 
Consider two circles with a common tangent at A, and let diameter 
AB be greater than diameter AC. Let DEF be a common subtense, 
drawn at whatever angle (which we will keep constant). Produce DEF 
through to G and H to exit the circles. Draw AKL at the subtense 
angle. 
 
 
 
 
 
 
I say that DE/DA : DF/DA = AC : AB [ultimately, as D goes to A] 
 
For  AD2 = DE.DH   [Euc.3.36] 
and  AD2 = DF.DG   [Euc.3.36] 
so  DE.DH = DF.DG 
so  DE : DF = DG : DH  [always] 
but  DG : DH = AK : AL  [ultimately, as D goes to A] 
so  DE : DF = AK : AL  [ultimately] 
thus  DE : DF = AC : AB  [ultimately] 
so  DE/DA : DF/DA = AC : AB [ultimately] 
 
Q.E.D. 
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This makes it apparent that we can have circular curvatures as large and as small as we like, 
and in any ratio. 
 
Given this, and given the uniformity of curvature in circles, and given that curvature is 
defined by the relation of ultimate ratios (and not by overall shapes), it seems reasonable to 
try to measure curvature in other curves by the circles which have the same curvature as 
them at a given point. Such a circle is called a CIRCLE OF CURVATURE. 
 
 
 
To illustrate, let NPT be tangent to some curve, such as an ellipse. Draw PH at right angles 
to it (this is called the “normal” to the curve at P). Hence any circle also tangent to NPT at P 
will have its diameter along PH. Cut off the tangent at any start-length PT, and draw TS at 
some angle to PT, which angle we will always use as we move T to P. Also, join the chord 
PS, and draw SR at right angles to it, forming right triangle PSR. Plainly a circle can be 
drawn through P, S, R, having diameter PR, and tangent to NPT at P. As T goes to P, we 
repeat the construction continuously, and if it should happen that, when S and P and T all 
coincide, there is a final length PR, then we will have a circle whose TS : TP ratio is 
ultimately equal to that of the given curve (although these do not converge on a finite ratio, 
as explained above—they are like triangles which get as similar as you please without 
converging on a fixed triangular shape). 
 
 
NOTE: How do we know the limit circle has the same curvature as the curve at P? Because 
ST : TP is the same ratio at S always for the curve and for the changing circle, and in the 
case of our limit-circle, it is the ultimate ST : TP that is the same for both it and the curve, 
since S is at P. 
 
 
 
 
 
Very well, but how do we know there will 
BE such a final PR? Well, we need to know 
the specifics of the curve. In some cases, 
there will not be, as we will learn in the 
SCHOLIUM following Lemma 11. 
 
 
 
 
 
 
For now, we will just say this: by “FINITE CURVATURE” we will mean curvature which is 
equal to the curvature of some circle. Non-finite curvature comes in two flavors: (1) 
sometimes a curve is of such a nature that, at a certain point P, if we shrink the chord to P, 
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there is no greatest circle sharing that chord and tangent, so that the “circle of curvature,” 
the limit-circle, is infinite, and degenerates into the tangent itself, (2) other times a curve is 
of such a nature that, at a certain point P, if we shrink the chord to P, there is no smallest 
circle sharing that chord and tangent, so that the “circle of curvature,” the limit-circle, is a 
point. In other words, compared to circles, some curves have infinitely small curvature, and 
are like straight lines, while others have infinitely great curvature, and are like points, or like 
rectilineal angles. 
 
The curves which are of principal concern to Newton are the conic sections, and these, being 
of second degree (like the circle), cannot have non-finite curvature compared to the circle 
(like certain third-degree curves, etc., can; more on this in the SCHOLIUM following 
Lemma 11). 
 
 
NOTE: Since a circle has uniform curvature, and no other curve has uniform curvature, it 
follows that a circle of curvature will have the same curvature as the given curve ONLY AT 
THE GIVEN POINT (or a few others like it). Since the non-circular curve is continuously 
changing curvature, it is (for instance) more curved than the circle before P, and less curved 
than the circle after P. Consider curve ABCPD, with circle of curvature PR at point P, and 
common tangent PT. Going clockwise from R, 
prior to P the circle falls between the curve and 
the tangent; but after P, the curve falls between 
the circle and the tangent. 
 This means that A CIRCLE OF 
CURVATURE OFTEN CUTS THE CURVE at 
the point where they have the same curvature, as 
our circle cuts the curve at P. Exceptions 
occur—for example, when the curve is at a 
point of maximum curvature or minimum 
curvature, so that it is symmetrical on both sides 
of the given point. 
 
 
 
Also, a circle of curvature is UNIQUE 
at a given point in a curve. This comes 
from the fact that there is only one 
tangent there (assuming continuous 
curvature), and we get the circle of 
curvature by drawing a circle with its 
diameter along the normal and which 
cuts the curve at the other end of the 
chord—then we shrink the chord to the 
limit. At any stage, we have only one 
circle. And one such process can have 
only one limit. You can’t get a second 

P TN

A
R

D
G

E

B

C

A L

BN

G

J

H



 142 

circle of curvature by now shrinking chord BP to P, since you obviously cannot have a 
smallest circle that way. 
For the sake of clarity, let’s find the CIRCLE OF CURVATURE FOR THE PRINCIPAL 
VERTEX OF A PARABOLA. 
 
Let AB be a parabola, axis AH, latus rectum AL (drawn tangent), B a random point on the 
curve. 
 
Join chord AB, draw BG at right angles to it, and drop BN at right angles to the axis. 
Thus a circle on diameter AG passes through B and is tangent to AL at A. 
If there is a limiting-circle among such circles as we shrink AB, we have our circle of 
curvature for point A. 
 
Well, note that 
 
 BN2 = AN.NG  [circle] 
but BN2 = AN.AL  [parabola] 
so NG = AL 
 
always, throughout the shrinking-process. 
But AN shrinks to nothing, as AB does. 
So the limit of the process is when AN = 0, and we have nothing left but NG. 
 
So draw AJ = NG = AL, the upright side. 
 
The circle on diameter AJ is our circle of curvature. 
 
 
 
To prove it, we need to verify that our definition applies, i.e. we need to show that, if we 
draw a common subtense TZS (e.g. at right angles to tangent AT), and shrink AT to nothing, 
then 
 
 TS : TA = TZ : TA  [ultimately, as T goes to A] 
 
So, draw CSE as a common ordinate, and join BZ. 
Now, as T goes to A, the point C also goes to A. Therefore, as T goes to A 
 
 AJCJ =    [ultimately] 
 

so 
AJ
CS

CJ
CS 22

=    [ultimately] 

 

so 
AL
BZ

CJ
CS 22

=    [ultimately, since CS = BZ, and AJ = AL] 
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so ABAC =  [ultimately, since CS2 = AC.CJ in circle, BZ2 = AB.AL in parab] 
 
 
so TZTS =    [ultimately] 
 
 

so 
TA
TZ

TA
TS

=    [ultimately] 

 
 
Q.E.D.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A LT R

EC S

Z

J

B



 144 

THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 26 
 
 

LEMMA 11 
 
 
The evanescent subtense of the angle of contact, in all curves which at the point of contact 
have a finite curvature, is ultimately as the square of the subtense of the coterminous arc. 
 
 
 
 
 
A “subtense” is what subtends something else, i.e. 
what stands under it. 
 So the “subtense of the angle of contact,” 
where the angle of contact is BAD, is the straight line 
BD, since it stands under the angle BAD. 
 And the “subtense of the arc,” where the arc 
is AB, is the chord AB, since it stands under that arc. 
 “Coterminous” just means “has the same 
endpoint.” So chord AB and arc AB are 
“coterminous,” since they share endpoints A and B. 
 Newton aims to prove that as we shrink down 
two subtenses BD and bd, their ratio approaches that 
of the squares on AB and Ab, i.e. the lines 
subtending the corresponding arcs. 
 This Lemma is divided into three cases. 
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CASE 1. (BD is perpendicular to AD) 
 
Draw AG perpendicular to tangent AD, and draw BG perpendicular to AB, and bg 
perpendicular to Ab. Now since we are assuming finite curvature, there is a circle of 
curvature that can be drawn there, whose diameter is the limit of AG as B goes to A. (Since 
∠ABG = 90°, therefore a circle can always be drawn through A, B, G, and AG is the 
diameter, and to assume finite curvature is to assume a final finite value of AG as B goes to 
A. Call the ultimate value of AG “AJ”.) 
 Now, Newton brings up the circles that might be drawn through points Abg and 
ABG, and says: 
 
 AG : AB = AB : BD   [since △ABG is similar to △ABD] 
so AB2 = AG · BD 
and Ab2 = Ag · bd    [by the same reasoning] 
so AB2 : Ab2 = AG·BD : Ag·bd 
 
But, since AJ is the limit of both AG and ag, therefore 
 
 AG : Ag = 1 : 1   [ultimately] 
 
so AB2 : Ab2 = BD : bd   [ultimately] 
 
Q.E.D. 
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CASE 2. (BD is given at some non-right angle to AD) 
 

Not a very interesting difference. But it is reminiscent of Lemma 7, in which we learn that 
the angle at which certain lines are drawn makes no difference to the ultimate proportion or 
equality under consideration. 
 Here we can reason like this. Suppose we do not draw BD and bd at right angles to 
AD, but at some other fixed angle, e.g. 60°. Then let BZ and bz be drawn at right angles to 
AD. Then, by Case 1, 
 
 AB2 : Ab2 = BZ : bz (ultimately) 
 
But BZD and bzd will always be similar triangles, so that 
 
 BZ : bz = BD : bd 
 
Hence it remains true that 
 
 AB2 : Ab2 = BD : bd (ultimately) 
 
 
 

QUESTION 
 
We might think that according to Lemma 7, Ab is ultimately equal to Ad, and AB is 
ultimately equal to AD. So why can’t we say that they are ultimately proportional? i.e. why 
not this: 
 
 AB : BD = Ab : bd (ultimately, by Lemma 7, each ratio is an equality) 
so AB : Ab = BD : bd (ultimately, by alternating) 
 
But that is not compatible with saying  
 
 AB2 : Ab2 = BD : bd (ultimately) 
 
which is the conclusion of Lemma 11! 
 So what is going on here? 
 Actually, Lemma 7 never says anything about BD and bd, the “subtenses.” He 
mentions the “secant” BD in Lemma 7, but never draws any conclusion about it, precisely 
because he cannot. So Lemma 11 is getting at those pesky lines BD, bd, which Lemma 7 did 
not allow us to say anything about. 
 
 
 



 147 

 
 
 
 
QUESTION: What if BD is always drawn at one given 
angle, e.g. 60°, and bd is always drawn at another given 
angle, e.g. 20°? 
 If we draw bz and BZ perpendicular to AD, we 
now have two dissimilar triangles bzd and BZD, each of 
which maintains its shape as B and b go to A. In this 
case, bd and BD are not ultimately parallel, so it seems 
unlikely that they are ultimately in the same ratio as bz 
and BZ, and hence it seems unlikely that they are 
ultimately in the same ratio as ab2 and AB2. 
 This fits with what Newton says in Case 3, 
namely that we must at least be given that ∠Adb and 
∠ADB are ultimately equal, i.e. that BD and bd are 
ultimately parallel. 
 
 
 
 
 

CASE 3. 
 
Here the angle of BD to AD is not given, but fluctuates according to some rule as D goes to 
A, but it is given that bd and BD are ultimately parallel, i.e. tend toward it as near as you 
like, as B and b go to A. This does not change the ultimate ratio of BD : bd. 
 
 
Example: Let the curve be a circle, and let BD be taken by being the extension of radius CB, 
and let bd be always taken at right angles to AD. Then BD and bd will never be parallel, but 
they are ultimately parallel as B and b go to A. 
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QUESTION 
 
What if the curve in Lemma 11 [Case 1] were a circle? 
Then, since the angle inscribed in a semicircle is right, G, g, J would all coincide, so AJ = AG, the 
diameter. And also it would follow that AB2 : ab2 = BD : bd actually and always, not just ultimately 
(provided we are thinking of Case 1 or 2, not 3): 
 For AB2 = BD · AG  [as before] 
 and ab2 = bd · AG  [since Ag and AG are the same now] 
 so AB2 : ab2 = BD · AG : bd · AG 
 so AB2 : ab2 = BD : bd 
 
Q.E.D. 
 
 
This is reminiscent of Galileo’s circle theorems, in which the 
“ramps” are AB, Ab, and they are in the duplicate ratios of the 
heights, BD, bd, and therefore the times down them are equal. 
 
 
 
 
 
 

QUESTION 
 
What if the curve in Lemma 11 were a parabola? What would the value of AJ be then? (Let 
R be the upright side, AG the axis.) 
 
 
Since BC2 = AC · R 
and BC2 = AC · CG 
thus CG = R (actually and always). 
Again cg = R (for the same reasons). 
And since AC (as well as BC2) is shrinking to nothing, 
therefore AJ is nothing else than the final CG, which 
must therefore be R. 
So AJ = R. 
 
In the case of a parabola, then, the circle of curvature at 
its principal vertex, A, has a diameter equal to the 
upright side. That is the first circle small enough not to 
fall between the parabola and the common tangent AD. 
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QUESTION 
 
What if the curve in Lemma 11 were an ellipse? What would the value of AJ be then? (Let R 
be the upright side, AG part of the major axis, the whole of which we’ll call M.) 
 
In an ellipse,  BC2 = R·AC – R/M (AC2) [Conclusion from nature of ellipse] 
so   BC2 = AC [R – R/M (AC)] 
but   BC2 = AC · CG  [from the property of the circle] 
so   CG = R – R/M (AC) 
But R and M are constants, and AC vanishes into nothing, so that 
   CG = R   (ultimately) 
Hence   AJ = R 
 
So once again, AJ, the diameter of the circle of curvature for point A, is the upright side. 
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 27 
 
 

LEMMA 11 COROLLARIES AND SCHOLIUM 
 
 
 
 
Newton next develops some corollaries to Lemma 11: 
 
 

COROLLARY 1 
 

Whence, since the tangents AD, Ad, the arcs AB, Ab, and their sines BC, bc 
become ultimately equal to the chords AB, Ab, likewise, the squares of all 
these ultimately will be as the subtenses BD, bd. 

 
 
This follows from Lemma 7. 
 Lemma 7 says that 
 
 AD : Ad = AB : Ab  [ultimately] 
so AD2 : Ad2 = AB2 : Ab2 [ultimately] 
but BD : bd = AB2 : Ab2  [ultimately, by Lemma 11] 
so BD : bd = AD2 : Ad2  [ultimately] 
 
Thus for the “tangents” AD, Ad. 
Likewise for the arcs AB, ab 
 
 BD : bd = arc AB2 : arc ab2 
 
and again for the sines BC, bc 
 
 BD : bd = BC2 : bc2  
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COROLLARY 2 
 

All their squares are likewise ultimately as are the sagittae (of the arcs) 
which bisect the chords and converge to a given point. For, those sagittae 
are as the subtenses BD, bd. 

 
 
SAGITTA is often translated as “versed sine,” which is wrong. A “versed sine” is a 
particular kind of sagitta, specific to the unit circle of trigonometry—given an arc in the unit 
circle, θ, the “versed sine” is the leftover portion of the radius which bisects the chord of θ. 
In other words, the “versed sine” = 1 – cos θ. 
 But the idea of a sagitta is much more general than that. It is not found only in unit 
circles, but in all curves. And it is not defined by a center, but by any fixed point. And it need 
not bisect the arc, but only the chord.  A “sagitta” is a straight line bisecting the chord of an 
arc (which does NOT necessarily bisect the arc itself).  
 Now, what are the “sagittae” (“arrows”) that Newton is talking about? 
 Easy instances would be AC, Ac (the “bow” is aimed 
straight up, ready to fire those “arrows”), if bc and BC happened to 
be chords of the curve and bisected at c and C. If that were true, 
then Newton is here saying: 
 
 AC : Ac = BD : bd  [actually and always] 
but BD : bd = AB2 : Ab2  [ultimately, by Lemma 11] 
so AC : Ac = AB2 : Ab2  [ultimately] 
 
and so the sagittae AC, Ac are also ultimately as the squares of the 
tangents, arcs, and sines, according to Cor. 1. 
 
 Easy indeed, but that cannot be quite what Newton means, since bc and BC are 
always dropped at right angles to AG, and that is a very specific situation. Also, in Cor. 1 he 
calls BC the “sine,” and so the angle he is talking about is AGB, and so the “sagitta” of that 
must bisect chord AB. 
 So he means the undrawn sagittae which bisect 
the chords Ab and AB, and drawn from whatever fixed 
point we please. If we pick a point S on the concave 
side of the curve, and then join S to the midpoints of 
AB, Ab, (call these T, t), and draw SBD through to the 
tangent, and STbd also, and join St through to v on the 
arc, then Newton is saying that 
 
 Tb : tv = AB2 : Ab2 (ultimately) 
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Proof: 
 
I say first that 
 
 Tb = ¼ BD  (ultimately) 
 
For, as B goes to A, BD and Tbd become ultimately parallel, 
so that rAdT and rADB become ultimately similar, 
 
thus  Td : BD = AT : AB  [ultimately] 
i.e.  Td = ½ BD   [ultimately] 
 
But  bd : BD = Ab2 : AB2  [ultimately, Lemma 11, Case 3] 
so  bd : BD = Ad2 : AD2  [ultimately, Lemma 11, Cor. 1] 
so  bd : BD = AT2 : AB2  [ultimately, since Ad : AD = AT : AB ultimately] 
so  bd : BD = 1 : 4   [ultimately] 
i.e.  bd = ¼ BD   [ultimately] 
 
So  Td – bd = ½ BD – ¼ BD [ultimately] 
i.e.  Tb = ¼ BD   [ultimately] 
 
Likewise, if we bisect chord Ab at t always, and form sagitta tv, 
 
then  tv = ¼ bd   [ultimately] 
 
Thus  Tb : tv = ¼ BD : ¼ bd  [ultimately] 
so  Tb : tv = BD : bd  [ultimately] 
so  Tb : tv = AB2 : Ab2   [ultimately, by Lemma 11 case 3] 
 
Q.E.D.  
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COROLLARY 3 
 

And so the sagitta is in the duplicate ratio of 
the times in which a body describes the arc 
with a given velocity. 

 
 
Since the velocity is given, we are talking about a 
uniform motion, here, at constant (linear) speed V. So 
the body describes portions of the arc in times 
proportional to their lengths. 
 
 

Hence  arc Ab : arc AB = time thru arc Ab : time thru arc AB (at speed V) 
But  arc Ab : arc AB = Ab : AB    (ultimately, Lem.7) 
so  Ab : AB = time thru arc Ab : time thru arc AB  (at speed V; ultimately) 
so  Ab2 : AB2 = (time thru arc Ab)2 : (time thru arc AB)2  (squaring all) 
but  Ab2 : AB2 = tv : Tb     (ultimately, by Cor. 2) 
so  tv : Tb = (time thru arc Ab)2 : (time thru arc AB)2  (ultimately, for speed V) 

 
Note: Newton does not say “ultimately” in this Corollary, but I think he has to, since all the ratios we 
are considering are fluid. 
 
 
 

COROLLARY 4 
 

The rectilinear triangles ADB, Adb are ultimately in the triplicate ratio of the 
sides AD, Ad, and in the sesquiplicate ratio of the sides DB, db, inasmuch as 
being in a ratio compounded of the sides AD and DB, Ad and db. So also 
triangles ABC, Abc are ultimately in the triplicate ratio of the sides BC, bc. 
Verily, the subduplicate ratio of the triplicate ratio I call the sesquiplicate 
ratio, which of course is compounded of the simple ratio and the 
subduplicate ratio. 

 
 
Here Newton makes two claims, and then offers a little definition. 
 
 (CLAIM 1) ADB : Adb = AD3 : Ad3   (ultimately) 
 (CLAIM 2) ADB : Adb = √DB3 : √db3  (ultimately) 
 (DEF.)  “sesquiplicate ratio” 
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(CLAIM 1) 
 
Plainly  ADB : Adb = AD·DB : Ad·db  (at least ultimately, since DB, db ult. parallel) 
so  ADB : Adb = (AD : Ad) c (DB : db) (ultimately) 
but  (AD : Ad) = AB : Ab   (ultimately, by Lemma 7) 
and  (DB : db) = AB2 : Ab2   (ultimately, by Lemma 11) 
so  ADB : Adb = (AB : Ab) c (AB2 : Ab2) (ultimately) 
i.e.  ADB : Adb = AB3 : Ab3   (ultimately) 
thus  ADB : Adb = AD3 : Ad3  
 
 

(CLAIM 2) 
 
We said  ADB : Adb = (AD : Ad) c (DB : db) (just above) 
but  (AD : Ad) = (AB : Ab)   (ultimately, by Lemma 7) 
and  (AB : Ab) = (√DB : √db)  (ultimately, by Lemma 11) 
so  ADB : Adb = (√DB : √db) c (DB : db) (ultimately) 
i.e.  ADB : Adb = √DB3 : √db3  (ultimately) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(DEFINITION) 
 

By “sesquiplicate ratio” Newton means the subduplicate ratio of the triplicate ratio, i.e. the ratio 
between the square roots of the cubes.  For example, if X : Y is the simple, original ratio, then the 
“sesquiplicate ratio” of X : Y is √X3 : √Y3. 
 And we have just seen that the sesquiplicate ratio is also the ratio compounded of the simple 
ratio and the subduplicate ratio (i.e. the ratio of the square roots): 
 (X : Y) c (√X : √Y) = X √X : Y √Y = √X3 : √Y3. 
A funny word using the same prefix is “sesquipedalian,” which describes a word which is more 
polysyllabic than it has to be (it’s “three half-feet,” rather than just a “foot”). The word itself seems to 
be sesquipedalian. 
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COROLLARY 5 

 
And since DB, db are ultimately parallel and [ultimately] in the duplicate 
ratio of AD, Ad, the ultimate curvilinear areas ADB, Adb, will be (from the 
nature of the parabola) two third-parts of the rectilinear triangles ADB, Adb; 
and the segments AB, Ab third-parts of the same triangles. And so these 
areas and these segments will be in the triplicate ratio of the tangents AD, 
Ad; as well as of the chords and arcs AB, Ab. 

 
 
Here we need a little preliminary, namely the Quadrature of the Parabola, which we will accomplish 
in true Newtonian fashion. 
 

Given: Parabola AB, diameter AC, CB ordinatewise, AD tangent, BD parallel to AC. 
Prove: The convex parabolic segment is double the concave triangle 

ABD. 
 
 
Pick as many points as you like S, E, H along the curve, and 
draw straight lines through each of these parallel to AC and AD, 
forming parallelograms inside the convex figure ABC (such as 
GS, LE, CH) and also inside the concave figure ABD (such as 
SP, EK, HD). Plainly we can exhaust the two figures this way, 
with such corresponding parallelograms, and therefore if the 
ratio of the sums of their parallelograms should approach a ratio, 
that ratio must be the ratio of ABC : ABD (by Lemma 4). 
 But each pair approaches the ratio 2 : 1 as the number of 
parallelograms increases. Consider, for example, the pair LE and 
EK, as H approaches E. 
 Draw HE, extend it to N on CA produced. Complete 
parallelogram HLNM, and extend EP to Q. 
 As H approaches E, HE approaches tangency at E, 
which means 
 
 
 GA = AN (ultimately, by the parabolic tangent property) 
i.e. GN = 2AG (ultimately) 
or EQ = 2PE (ultimately) 
so EM = 2EK (meaning the areas, here) (ultimately) 
but LE = EM (always; complements) 
so LE = 2EK (ultimately) 
 
And the same goes for every such pair of parallelograms; those inside ABC approach being double 
the corresponding ones inside ABD. 
 Therefore, componendo, the ratio of the “ABC parallelograms” (as a total) to the “ABD 
parallelograms” (as a total) approaches the ratio 2 : 1 as near as you like. But they also approach the 
ratio of the curved areas ABC and ABD as near as you like. 
 Hence  ABC : ABD = 2 : 1. 
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Q.E.D. 
 
 
 

Porism 1: Since convexABC : concaveABD = 2 : 1 
  but their sum is parallelogram ACBD 
  hence convex ABC is 2/3 parallelogram ACBD 
  and concave ABD is 1/3 of ACBD. 

 
Porism 2: Since concaveADB : ACBD = 1 : 3 

 thus concaveADB : ½ ACBD = 2 : 3 
 so concaveADB : rACB = 2 : 3 
 

Porism 3: Join AB, forming parabolic segment AB. 
 Since rADB : ACBD = 1 : 2 
 and concaveADB : ACBD = 1 : 3 
 thus concaveADB : rADB = 2 : 3 
 so rADB – concaveADB : rADB = 3 – 2 : 3 
 i.e. parabolic segment AB : rADB = 1 : 3 
 and so too parabolic segment AB = 1/3 of rACB. 
 
 
 
That’ll do for the preliminaries. Now back to Newton’s Corollary 5. 
 
Newton is saying: 
 
Since  BC2 : bc2 = BD : bd  (ultimately, by Cor. 1 above) 
and  AC : Ac = BD : bd  (always and truly, or at least ultimately) 
thus  BC2 : bc2 = AC : Ac  (ultimately) 
 
But that is the property of the parabola. In other words, the curve becomes as close to being a 
parabola as we please, the closer we get to A. (Consider the parabolic path of a projectile; maybe it is 
really just the tiniest portion of an ellipse!) 
 
But that means the curve will approach having the other properties of a parabola as nearly as we 
please, as we approach A. So, even in Newton’s figure, in keeping with Porism 2 about the parabola, 
just above: 
 
 concaveADB = 2/3 rACB = 2/3 rADB  (ultimately) 
 
And again, in keeping with Porism 3 about the parabola, just above: 
 
 segmentAB = 1/3 rACB = 1/3 rADB  (ultimately) 
 
so concaveADB : concaveAdb = rADB : rAdb (ultimately) 
so concaveADB : concaveAdb = AD3 : Ad3  (by Cor.4) 
also segmentAB : segment Ab = AD3 : Ad3   (same reasoning) 
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QUESTION: In Cor. 5, Newton says that the curve AbB, whatever conic it may be (e.g. a circle), is 

ultimately parabolic as we approach A, since 
 AD2 : Ad2 = BD : bd (ultimately; and that is the parabola’s property). 
But we also see that arc AbB becomes as straight as you please as we shrink it. So that means curved 
figures ABD and Abd become as nearly similar as we please, right? (cf. Lemma 9) Hence 
 AD : Ad = BD : bd (ultimately). 
But how can BD : bd approach two different ratios as their limits? Of course, if it happens that BD = 
bd (ultimately), then so too AD = Ad (ultimately) and AD2 = Ad2 (ultimately), and everything is fine. 
But there is no guarantee that is the case, and it is in fact only a special case. 
 

ANSWER: Only the first ultimate proportion, drawn from Lemma 11, is correct. The second one is false! 
Take the case of a circle (although any curve in which there is finite curvature at A will do), and also 
draw the subtenses at right angles to tangent AdD, or at least actually parallel, so that it is actually 
and always true that de : BD = Ad : AD. Now draw in a secant APQ, with P and Q lying along de and 
BD extended. To say that AbB is ultimately straight (and coincides with the tangent) is enough to 
guarantee that rAbP is ultimately similar to rAdP (as Newton says in Lem. 9), and rAJB is 
ultimately equal to the curvilinear triangle AJB. But it is not enough to say that rAbd is ultimately 
similar to rABD, nor is it enough to say that db = de (ultimately), because all that depends not just 
on AB shrinking, or on arc AbB straightening, but depends also on where b is along AB, and on the 
nature of the curve! In fact, we could specify that for every new location of B, the way we will 
choose the new location of b is such that db = be; or such that db : be = 3 : 5, or whatever ratio you 
like, since the segments of dbe can have any ratio at all as we shift dbe right or left. Just cut DB at K 
in the desired ratio, join KA, and this must cut the curve; call that point b, draw dbe parallel to DB, 
and––presto!––we have the ratio sought. Therefore it is false and illegitimate to conclude that db = be 
(ultimately). But then, since 
 
 de : BD = Ad : AD  [actually and always] 
 
thus we cannot say that 
 
 db : BD = Ad : AD  [ultimately] 
 
And accordingly we never catch Newton saying such a thing, 
not even back in Lemma 9, where he only said the areas of 
the triangles (curved and straight) are ultimately equal, and 
hence those areas are ultimately in the same ratio as the 
squares on the corresponding rectilinear sides. 
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SCHOLIUM 

 
 
Newton does three things in this Scholium: 
 (1) He explains his assumption, throughout the Lemmas, of “finite curvature.” 
 (2) He explains his motivation for developing these Lemmas. 
 (3) He defends himself from an objection. 
 
 
(1) THE ASSUMPTION OF FINITE CURVATURE. 
 A straight line has no curvature, zero curvature, the least possible curvature, and so less 
curvature than any curve, including any circle, no matter how large. And a circle has more curvature 
the smaller it is, and the limit of this is the point (infinite curvature). But we can even say that one 
curve has “infinitely more” curvature than another, if a curve of the one kind, no matter how small it 
is, must always fall between the other curve and a common tangent. To illustrate, notice in Lemma 
11, Newton assumes that we can draw circles with their diameters along AG, through A, so that AD 
is tangent to them, but also they cut the curve at points such as b and B. Hence these circles fall 
between the given curve and the tangents ad, AD until they cut the curve. But this is not possible with 
all curves. 
 Consider two functions, f = x3 and y = x2 (a parabola). Which of these, immediately after 
tangency to the x-axis at the origin, falls below the other, and closer to the x-axis? That will be the 
“straighter” of the two. At x = 1, it happens that f = 1 and y = 1, too, so the curves intersect there. 
What happens before x = 1, for values of x between 0 
and 1 ? Take ½ ; for that value of x, y = ¼ while f = 1/8. 
So the curve x3 is closer to the x-axis than the parabola 
x2, and falls between x3 and the x-axis. But what if we 
take a bigger and bigger parabola, thus diminishing its 
curvature? Can we eventually find one that falls between 
x3 and the x-axis? 
 Consider the curve y = 1/n(x2). That is simply a 
“magnified” parabola (it is still the case that the 
ordinate-squares are as the abscissas, i.e. that x2

1 : x2
2 = y1 

: y2, since the common factor 1/n does not affect the 
proportion), and it is bigger depending on how large the 
denominator n is. What n does is to pull the parabola 
down toward the x-axis, and “flatten” it out, which is the 
same as to magnify it. 
 Well, if n is big enough, shouldn’t we be able to 
get y = 1/n(x2) to fall between x3 and the x-axis? 
 We cannot, no matter how big n is! 
 To see it, notice that our parabola y = (1/n)x2 and 
our curve f = x3 will intersect where (1/n)x2 = x3, i.e. 
where (1/n) = x. But what will happen before that, for 
values of x that are between 0 and 1/n ? 
 Such values, where x is greater than 0, but less 
than 1/n, are values of the type 1/(n + z). What happens 
with those values? 
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 Well, if x = 1/(n + z), then: 
 
 
 
  
 
 
 
 
 
 
 
Plainly the value of f is less than that of y for such values of x. The denominator for f will be greater 
than that for y, since the first factor has a greater denominator (n + z), and the remaining two are the 
same for both functions. But the greater denominator makes a smaller final value. Hence x3 still falls 
between (1/n)x2 and the x-axis, regardless of how large x is. 
 Another way to see that there can be no circle of curvature at the origin for the curve y = x3 is 
simply to start with a random chord, draw the circle about it which is also tangent to the x-axis at the 
origin, and start shrinking the chord. Do we end up with a finite circle? No. Take chord OB, and drop 
BK at right angles to the x-axis, BC at right angles to the y-axis, and draw BD at right angles to chord 
OB and intersecting the y-axis at D. Then 
 
 
 
 
 
So  
 
 
 
so  
 
 
 
so  
 
 
Which means the smaller x becomes (and it gets as small as you like as B goes to O), the larger CD 
becomes, being the inverse. For example, if x = 1/1000000, then CD = 1000000. So CD does not 
approach a finite value. So although segment CB is going to nothing, segment CD is going to infinity, 
so that the “circle of curvature” has a diameter of infinite length, and so degenerates into the x-axis. 
 Note the similarity to Euc. 3.16, in which Euclid shows that it is not possible to fit a straight 
line between the circle and its tangent. 
 So in Lemma 11 Newton was assuming there is a circle of curvature at the given point, which 
is not something true of all curves, but only some (or only at some points on certain curves). Curves 
of second degree, however, will have x’s that cancel out, if we try to reproduce the above reasoning, 
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and so they will not have an infinite CD, and so will have a circle of curvature at every point. And all 
conics (which are of greatest interest in what is to come) are of second degree. 
 He then goes a bit wild, talking about the different ways of generating curves of 
incomparable curvature. 
 
 
 (2) HIS MOTIVATION BEHIND THE LEMMAS. Newton says he introduces these 
Lemmas to avoid the “tedious” methods of the ancients who reduced things ad absurdum. He is 
thinking of Euclid’s “Method of exhaustion”, e.g. in Elements 12. (One gets tired of looking for a 
new kind of proof for each kind of figure.) And he excuses himself for using shortcut talk, like 
speaking of continuous quantities as if they were composed of indivisibles, or of infinitely small 
curves and treating them as straight lines. He says the real force of demonstration is to be taken from 
the foregoing and (supposedly) more careful way of speaking. He is correcting Galileo to please the 
contradictious. 
 
 
 (3) AN OBJECTION. Now he considers an objection: “there is no ultimate proportion of 
evanescent quantities, because the proportion, before the quantities have vanished, is not the ultimate, 
and when they are vanished, is none.” 
 His answer is remarkably poor after all this work, or so it would seem. He says, for instance, 
that the ultimate velocity is not that before the motion is ended, nor that after it is ended, but that 
“with which it ends,” which seems plenty open to objection. What is the ratio “with which things 
vanish”? Does this mean the last ratio they ever get? Or the one they have in the very instant in 
which they go out of existence? This is all just as impossible as Galileo. Possibly he means the ratio 
they would have had in the moment of vanishing, i.e. the first they never got. But he is unclear. 
 He raises another objection: “if the ultimate ratios of evanescent quantities are given, their 
ultimate magnitudes will also be given, and so all quantities will consist of indivisibles, which is 
contrary to what Euclid has demonstrated concerning incommensurables.” 
 He means that if there are ultimate ratios, there would seem to be ultimate magnitudes, too, 
and hence indivisible magnitudes, and so magnitudes should all be commensurable, like numbers 
which are composed of indivisible units. 
 His response is better than before: “Those ultimate ratios with which quantities vanish are not 
truly the ratios of ultimate quantities, but limits towards which the ratios of quantities decreasing 
without limit do always converge, and to which they approach nearer than by any given difference, 
but never go beyond, nor in effect attain to”—perfect answer, until he adds “till the quantities are 
diminished in infinitum”! 
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 28 
 
 

CIRCLES OF CURVATURE IN CONIC SECTIONS 
 
 
 
Since Newton will from time to time mention circles of curvature at various points along a 
conic section, we will here develop the method for constructing such circles. This is not 
strictly necessary for the continued reading of Newton, however, since Newton generally 
uses circles of curvature as an alternative to some other way of reaching his main 
conclusions. For the interested reader, however ... 
 
 
 
Given a PARABOLA with any point V on it, VR 
the diameter, VU the upright side drawn tangent at 
V, how do we find the circle of curvature for point 
V? 
 
Draw VM at right angles to VU. 
Draw RX at right angles to VX. (Hence VR : VX 
is a fixed ratio.) 
Take any point B on the parabola on the side of 
VR making an acute angle with VU. 
Draw BD at right angles to VU. 
Draw BM at right angles to VB. 
Draw BNQ at right angles to VM. 
 
If we can find the ultimate value of VM as B goes 
to V, that will be the diameter of the circle of 
curvature at V. 
 
Here’s how to find it: 
 
 VM : VB = VB : BD  [similar triangles] 
 
 
So 
 
 
But BD = VQ  always,  and  VQ : VN  =  VX : VR  always, 
 
 
So 
 
 
So 
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Now 
 
 
And VN : QN  =  VR : RX 
 
so 
 
 
So 

 
 
 
 
 
 
 
So 
 
 
 
 
 
 
Now multiply the right side of the equation by     
 
 
 
 
that is, by 1, and we have 
 
 
Now  VN  occurs in the denominator in the second term on the right side of this equation, and we can 
replace it with  
 
 
 
thanks to the property of the parabola.  This gives us 
 
 
 
 
 
 
or more simply 
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So the value of  VM  is always exactly that, throughout the process of moving  B  to  V. 
 
But as B goes to V (or, what is the same thing, as N goes to V), VN  goes to nothing, and therefore 
the first term on the right side of the equation, which is the product of VN and a fixed ratio, goes to 
nothing. 
 
Also, as B goes to V (and hence as N goes to V), NB goes to nothing, and therefore the third term on 
the right side of the equation, which is the product of NB times a constant coefficient and a constant 
ratio, also goes to nothing. 
 
 
 
 
 
 
Hence the value of  VM,  as B goes to V, gets as near as you please to being just 
 
 
 
 
Since that is the limit of the value of VM as B goes to V, it is the value of the diameter of the circle of 
curvature at V. So it is just the upright side at V, adjusted by the fixed ratio of VR : VX. 
 
So      [ult. as B goes to V] 
 
 
But      [since VM : VS = VR : VX] 
 
 
 
Hence     [ult. as B goes to V] 
 
 
i.e.      [ult. as B goes to V] 
 
 
Hence the ultimate value of the chord  VS  inside our shrinking circle is just  VU,  the upright side. 
 
So an easy way to construct the circle of curvature at any point  V  on a parabola is to cut off  VS  
equal to the upright side at  V,  draw  SM  at right angles to diameter VR, cutting VM (the normal at 
V) at point X, and then draw the circle on VM as diameter. 
 
Q.E.I.   
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Given an ELLIPSE with any point V on it, VR the diameter, VU the upright 
side drawn tangent at V, how do we find the circle of curvature for point V? 
 
Draw VL at right angles to VU. 
Draw RX at right angles to VX.  (Hence VR : VX is a fixed ratio.) 
Take any point B on the ellipse on the side of VR making an acute angle 
with VU. 
Draw BD at right angles to VU. 
Draw BM at right angles to VB. 
Draw BNQ at right angles to VM. 
 
If we can find the ultimate value of VM as B goes to V, that will be the 
diameter of the circle of curvature at V. 
 
Here’s how to find it: 

 
 
 
 
 
 VM : VB  =  VB : BD  [similar triangles] 
 
 
So 
 
 
But BD = VQ  always,  and  VQ : VN  =  VX : VR  always, 
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So 
 
 
 
 
Now 
 
 
And VN : QN  =  VR : RX 
 
so 
 
 
So 

 
 
 
 
 
 
 
So 
 
 
 
 
 
Now multiply the right side of the equation by     
 
 
 
 

that is, by 1, and we have [ ]
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Now  NB2  occurs in the numerator in the second term on the right side of this equation, and we can 
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thanks to the property of the ellipse. This gives us 
 
 
 
 
 
 
 
 
or more simply 
 
 
 
 
 
So the value of  VM  is always exactly that, throughout the process of moving  B  to  V. 
 
But as B goes to V (or, what is the same thing, as N goes to V),  VN  goes to nothing, and therefore 
the first term on the right side of the equation, which is the product of VN and a fixed ratio, goes to 
nothing. 
 
For the same reason, as B (or N) goes to V, and so VN goes to nothing, the third term on the right 
side of the equation, which is the product of VN and a fixed ratio, goes to nothing. 
 
Also, as B goes to V (and hence as N goes to V), NB goes to nothing, and therefore the fourth term 
on the right side of the equation, which is the product of NB times a constant coefficient and a 
constant ratio, also goes to nothing. 
 
Hence the value of  VM, as B goes to V, gets as near as you please to being just 
 
 
 
 
Since that is the limit of the value of VM as B goes to V, it is the value of the diameter of the circle of 
curvature at V. So it is just the upright side at V, adjusted by the fixed ratio of VR : VX. 
 
So      [ult. as B goes to V] 
 
 
But      [since VM : VS = VR : VX] 
 
 
 
Hence     [ult. as B goes to V] 
 
 
i.e.      [ult. as B goes to V] 
 
 
Hence the ultimate value of the chord  VS  inside our shrinking circle is just  VU,  the upright side. 
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So an easy way to construct the circle of curvature at any point  V  on a parabola is to cut off  VS  
equal to the upright side at  V,  draw  SM  at right angles to diameter VR, cutting VL (the normal at 
V) at point M, and then draw the circle on VM as diameter. 
 
Q.E.I.   
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 29 
 
 

PROPOSITION 1 
 
 
 
PRELIMINARY NOTES: 
 
• Section 1 was the Lemmas, the calculus. We are now transitioning into the Principia 
proper, the part of the treatise analogous to the Theorems in Euclid’s Elements. 
 
• Section 2 is entitled “On the Finding of Centripetal Forces.” 
 
• So we are dealing specifically with forces to a center (and forces whose rule of variation is 
a function of distance from that center). Section 3 will be even more specific, and focus on 
conic sections. 
 
• We are given motions, and finding the force-rules producing them, e.g. in Prop. 10 (but 
also finding the properties of those motions, as in Prop. 1; later, in Section 3, we will also be 
given force-rules, and from them deduce the paths of motion, as in Prop. 17). 
 
• Prop. 1 is foundational to almost everything in the Principia. 
 
• Prop. 1 uses the Laws and the Lemmas, as one would expect, so we are beginning to see 
their utility. 
 
• Prop. 1 is a proof of a generalization of Kepler’s 2nd Law. It is more general because it is 
not about planets in particular, nor about ellipses or even conics in particular. It is one of 
Newton’s purposes in the Principia to derive Kepler’s Three Laws of Planetary Motion from 
his own Three Laws of Motion. 
 
• KEPLER’S THREE LAWS OF PLANETARY MOTION: 
(1) The planets, including Earth, move in elliptical orbits with the Sun at one focus of the ellipses. 
(2) The line drawn from the Sun to a planet sweeps out equal areas in equal times. 
(3) The ratio of the squares of the periods of any two planets is equal to the ratio of the cubes of their mean 
distances from the Sun. That is, if r1 is the mean distance for Planet 1, and p1 is the period for Planet 1, then 
(r1)3 : (r2)3 = (p1)2 : (p2)2  
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PROPOSITION 1 

 
 

The areas which bodies moving in orbits describe (by radii drawn to an 
immobile center of forces) remain in immobile planes and are proportional 
to the times. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The proof: 
 
 

(A) SETTING OUT. Let a body move from A to B by its own inertia in some unit of time, say one hour. 
Then, at point B, let it suddenly be impressed with a force (acceleration) toward fixed point S, so that 
instead of arriving at c after the 2nd hour, it is at C. Again, at C, let it be acted on by a force toward S, 
so that at the end of the 3rd hour, instead of being at d by its inertia, it is at D. Thus we have the body 
at A, B, C, D etc., with equal times between. 

 
(B) ALL IN ONE PLANE. Now, the triangles described by such motions are all in one plane. 

For, AB and Bc are in a straight line, and are equal, by Law 1 (inertia). Since the body is found at C 
(vs. c) at the end of the first hour, therefore cC represents the change of motion, and therefore by 
Corollary 1 to the Laws (the parallelogram of forces), we know that cC is parallel to the direction of 
the sudden force at B, i.e. cC is parallel to BS. Therefore cC (and hence BC) is in the same plane as 
rASB, since cC cuts ABc and it is parallel to BS. And so rBSC is in the same plane as rASB, and 
the same goes for all the subsequent triangles. 

 
(C) TRIANGLES EQUAL IN AREA. And all these triangles are equal in area. 

 For,  rSBc = rSAB  [since AB = Bc] 
 and rSBc = rSBC  [since Cc is parallel to SB] 
 so rSBC = rSAB 
and the same goes for all the subsequent triangles. 

 
(D) COMPONENDO ON THE TRIANGLES. Hence, if we take any number of these triangles which the 

body describes in equal times, the total area will be as the time. 
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(E) GETTING TO THE CURVE. Now, if we divide the time more 

finely into smaller and smaller equal time increments (having 
a sudden centripetal force occur at the end of each), and 
hence increase the number of triangles toward infinity, and 
diminish their bases (AB, BC, CD, etc.) toward points, the 
total area will be approaching some curved area, and the 
rectilinear perimeter will be approaching a curvilinear one 
(Cor. 4 to Lemma 3). And since any two triangle-sums are 
swept out in times proportional to their areas, and this law is 
always true as we get as near as we please to the curve, 
therefore the same law will hold for the ultimate curve itself, 
i.e. that as the body moves along the curve (by its inertial 
movement together with some continuously acting, but 
possibly growing and shrinking, force toward S), it will 
sweep out areas about S that are proportional to the times. 

 
Q.E.D. 
 
 
 
QUESTION 1: Is the force uniform? 
 No, except in special cases (e.g. uniform speed around a circle). So the acceleration 
BV might not be equal to the next acceleration (i.e. Cc and Dd and Ee etc. need not be 
equal). 
 
 
QUESTION 2: Are we approaching a definite curve? 
 Only if lines like BV and cC are given in length, i.e. we must be given the rule which 
says how strong the force is at given distances from S. But once the force-rule is given, or all 
the forces are definite, then we are approaching a definite curve—or so Newton expects us to 
believe. But we seem to be approaching it by “curling down” to it, not by drawing inscribed 
polygons of increasing numbers of sides in the fixed orbit, as the next question brings out. 
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QUESTION 3: Are A, B, C, D, etc. points on the final curve? 
 Not necessarily! Suppose our first impulse-path results from dividing the time into 
hours, and we get the path ABCD etc. Now divide the time into half-hours—this means the 
body does not get to B, but instead at the midpoint, b, the force toward S acts again and pulls 
the body off of AB. So now we get a new impulse-path, Abcd etc. So although we might be 
approaching a curve, it is not necessarily a curve on which the vertices of our impulse-paths 
lie! It is significant that Newton does not draw a curved path in his diagram. 
 
 
 
QUESTION 4: CAN the points A, B, C, D, E etc. be on the curve? 
 But we could divert the body at A along a different line from AB, and have it bend 
back to B, by allowing an impulse to happen in between. So maybe, doing things that way, 
we could get all our impulse-points to be on the final curve. 
 Suppose A, B, C, D, etc. are all on the final curve resulting from the force 
continuously acting, and it is also true that the body is at A, B, C, D etc. after equal 
increments of time. Suppose, further, that all the new points introduced by dividing the time 
more finely are also on the final curve. Then 
 
 rSAB = rSBC etc. 
 
as Newton shows. But it is also true (if Prop. 1 is correct) that 
 
 curvilinear SAB = curvilinear SBC etc. 
 
And so in our curve, equal pie-pieces contain equal rectilineal triangles—which is true only 
of a circle (with geometrical center S). So the assumption that all the points in the impulse-
paths are on the final curve over-specifies things, or will work only in that specific case. 
 If we start with a definite orbit, we can certainly divide the time as finely as we 
please, and draw chords between successive locations of the body, and then contrive uniform 
motions which would carry a body along the chords to those successive locations in the same 
times as the given body goes through those points in its curved orbit. But then the speeds 
along the chords are determined by the lengths and shapes of the arcs covered by the given 
body in the equal times, so it might not be the case that the uniform speeds along the chords 
are simply as the chords—as Newton’s way of doing things requires. In other words, it is not 
safe to assume that the straight lines in Newton’s figure are chords of the final orbit, and it is 
usually not possible for them to be so. 
 
 
QUESTION 5: Is it legitimate to assume that what happens with the impulse-paths must also 
happen with the curved path? 
 Newton argues geometrically for the impulse-path, but he simply assumes that what 
is true of the impulse-path must also be true for the curve which the impulse-path is 
approaching. But isn’t that assuming that what is true in the approach is also true in the 
limit? And that is not always true! For example, the areas cut off inside two equal and 
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adjacent squares by rotating the diagonal of their rectangle are always in the ratio 1:3, but it 
does not follow that the final lines are in that ratio. Isn’t this a Galilean error? 
 And isn’t it even doubtful that we are approaching a curve? We go from a finite 
number of impulses to a CONTINUOUSLY ACTING and changing acceleration—that 
seems quite a leap! 
 Newton seems to be thinking SYNTHETICALLY: If you have inertial motion and a 
centripetal force, you can’t get anything out of them except equal areas in equal times, try as 
you might. There simply is no cause present which is capable of doing that, even if you use 
them continuously or with infinite repetition. Hence the final result, even if they both act 
together continuously, must be equal areas in equal times. 
 Even modern mathematicians say that Newton is a bit lazy or fast-and-loose here—or 
at least they say he is leaving out some important considerations. But the result is accepted, 
and is demonstrated today ANALYTICALLY rather than synthetically, i.e. given the actual 
curved orbit and that it is the result of a continuously acting centripetal force and of the 
inertial tendency of the body, it is proven that the body sweeps out equal areas in equal times 
around S. Such an analytic proof will be supplied below. 
 
 
 
QUESTION 6: What if the centripetal force is zero? Does a body moving inertially sweep 
out equal areas in equal times? 
 Yes! A body moving uniformly in a straight line sweeps out equal areas in equal 
times around EVERY point in space! (This is what one might call a “degenerate” case.) To 
see it, just draw the straight path, chop it into equal segments (accomplished in equal times 
by the uniform speed), and pick any point S not on that straight line, and join S to the 
endpoints of the equal segments. The triangles are all equal. So the body is sweeping out 
equal areas in equal times “about S.” 
 
 
 
 
 
 
 

 
ANALYTIC VERSION OF PROPOSITION 1 

IN NEWTON’S PRINCIPIA 
 
 
Given a path of motion resulting from (1) a body’s innate force and (2) a continuously acting (and 
perhaps fluctuating) centripetal force toward a fixed point S, I say that the path is in one fixed plane 
and that the body sweeps out areas in that plane, about S, which are proportional to the times. 
 
(Let the symbol U mean “is ultimately equal to.”) 
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PART 1 
 
 
At any instant during the motion, there are two straight lines along which the body is endeavoring to 
move: (1) by its innate force it is endeavoring to move uniformly along the straight line tangent to its 
path, and (2) by the centripetal force it is endeavoring to move along the straight line between itself 
and S. These two straight lines define a plane. If we now let time go forward, it is clear that the body 
must remain in that same plane. Its innate force will never draw it out of that plane unless it is drawn 
out of that plane by another force; and the centripetal force will never draw it out of that plane unless 
the body is drawn out of that plane by another force. So the two forces are incapable of moving the 
body out of that plane unless some other force is introduced. Hence the body remains in that one 
plane, and hence the given curve (which is the path of the body’s motion) must be a plane curve. 
 That suffices to prove the first part of the enunciation. 
 
 
 
 
 
 

PART 2 
 
 
 
Now let the given body, G, by moving in its plane 
path, sweep out two consecutive areas about S, namely 
SAC and SCZ, and let these be swept out in 
commensurable times—and for the sake of 
concreteness, let us say 
 
 Time SAC : Time SCZ = 2 : 3. 
 
I say that 
 
 Area SAC : Area SCZ = 2 : 3. 
 
 
Let the total time of arc ACZ be divided into equal increments of time called Δt, as many as you 
please, and let the body be successively at A, B, C, D, E, etc., after each Δt. Let the instantaneous 
velocity of G at A be called VA, and so on for the other points. 
 
Join the chords. 
 
Let a motion be contrived by which a body Q travels chord AB in Δt at uniform velocity, and then, by 
a sudden impulse, travels chord BC in the next Δt at a new uniform velocity, etc. Since the times are 
equal, these velocities are as the chords: 
 
 VAB : VBC  = AB : BC 
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Now, I say that the motions of G over arcs AB and BC are ultimately the same as the motions of Q 
over chords AB and BC, as Δt goes to zero (or, what is the same thing, as B is taken closer to A, and 
C closer to B, ad infinitum). 
 
First, for the sake of simplicity, let G always accelerate from A to C (any non-uniform motion can be 
broken up into motions in which the body is always acclerating or always decelerating). So G is 
slowest at A, fastest at C, increasing speed monotonically in between.  
 
Plainly, as arc AB shrinks to nothing (with Δt), the instantaneous speeds of G at A and B (and 
throughout) differ by as little as you please, and hence are ultimately equal. And since G is speeding 
up throughout arc AB, this means that the uniform speed which would cover arc AB in Δt is greater 
than the speed of G at A, but less than the speed of G at B. Since this uniform speed is always 
between the speeds of G at A and B, and since the speeds of G at A and B are ultimately equal to 
each other, a fortiori they are ultimately equal to that uniform speed. But that uniform speed along 
arc AB is ultimately equal to the uniform speed of Q along chord AB, since these motions always 
take place in the same time (Δt), and since they begin and end at the same points (A and B), and since 
the two distances between those points (i.e. chord AB and arc AB) are ultimately equal (by Newton’s 
Lemmas). Hence it follows further that the speed of G over arc AB is ultimately equal to the speed of 
Q over chord AB. But the times of these motions are always the same, and their paths are ultimately 
the same. Hence the motion of G over arc AB in Δt is ultimately the same as a uniform motion over 
chord AB in Δt. 
 
Similarly, the motion of G over arc BC in Δt is ultimately the same as a uniform motion over chord 
BC in Δt. 
 
Hence the accelerated motions of G through arcs AB and BC are ultimately the same as uniform 
motions through chords AB and BC. 
 
This means that as Δt goes to zero, the motion of G through arcs AB and BC becomes as similar as 
we please to the motion through the rectilinear angle ABC with uniform speeds in AB and BC which 
are to each other as AB and BC. 
 
And that means that the action on G in the instant it is at B is as similar as we please to a sudden 
“knock” which alters Q from uniform speed AB in line AB to uniform speed BC in line BC. Or, 
putting it the other way: the instantaneous acceleration (or change of motion) from speed AB in AB 
to speed BC in BC is ultimately the same as the action on G when it is at B. But this is the centripetal 
force on G toward S. Hence the instantaneous acceleration from speed AB in AB to speed BC in BC 
is ultimately the same as the centripetal force on G at B toward S. 
 
  
 Complete the parallelogram ABCV. BV represents the 
change in velocity from AB to BC. This might not point along the 
line BS, but this is only because the motion through chord AB is 
not exactly the same as that through arc AB, and likewise the 
motion through chord BC is not exactly the same as that through 
arc BC. But, as we take Δt smaller and smaller, and the motions 
through the arcs differ less and less from the motions through the 
chords, BV must get as close as we please to pointing along the 
line BS. (Let BS and CV intersect at L.) So BV ultimately 
coincides with BS. 
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 Now, while Δt goes to zero, draw CP always parallel to BS, and let P be the point on this 
parallel where AB extended intersects it. Since BV ultimately coincides with BS (as we showed), 
therefore it is ultimately parallel to CP. Also, since BV ultimately coincides with BS, V is ultimately 
on BS; so if we call “L” the place where CV intersects BS, and V itself is ultimately on BS, this 
means that V and L are ultimately the same point. 
 
But then CV U CL 
so  AB U BP    [since CV = AB, CL = BP] 
so  rSAB U rSBP 
but  rSBC = rSBP   [since CP parallel to BS] 
so  rSAB U rSBC  as Δt goes to zero 
 
But  rSAB U area SAB 
and  rSBC U area SBC   [Newton’s Lemmas] 
so  area SAB U area SBC  [actually an understatement] 
 
And since this is true of any two consecutive areas swept out in Δt, it is true of any two whatsoever in 
arc AZ (since things ultimately equal to the same are ultimately equal to each other, and two areas 
with one in between are each ultimately equal to the one in between, and hence are ultimately equal 
to each other; but then two areas with two in between will also be ultimately equal, etc.). 
 
for example, area SAB U area SCD 
 
Now if we take Δt smaller and smaller, the number of sectors in SAC and SCZ increases as much as 
we please, but the number in SAC is to the number in SCZ always as 2 : 3, and all of these little pie-
slivers are ultimately equal to one another. Hence the ratio of SAC to SCZ is the limit of (x1 + x2 + ... 
+ xn) : (y1 + y2 + ... + ym), where each x or y is one of the little pie-slivers swept out in Δt, and n : m = 
2 : 3. But since each x is ultimately equal to each other x, and also to each y, therefore the limit of 
this ratio is the ratio nx : mx, where x is anything (finite) you like. But that is just the ratio 2 : 3.  
Therefore 
 
  area SAC : area SCZ = 2 : 3 
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Porism: So it is evident that area SAB = area SBC throughout the process, and these are not just 
“ultimately equal.” 
 
 
Corollary 1: If we take any two consecutive areas swept out in incommensurable times, we can 
approach these areas and their times as nearly as we please with areas swept out in commensurable 
times, which areas will always be exactly as the times in which they are swept out (by the above). 
Therefore the areas swept out in the incommensurable times must also be as the times in which they 
are swept out. Hence, generally, consecutive areas will be as the times in which they are swept out. 
 
 
Corollary 2: If we take any two areas swept out which are not consecutive, then each will be to the 
area in between as the time of each to the time of the area between (by Cor. 1). Hence the non-
consecutive areas will also be as the times in which they are swept out. 
 
 
Hence, generally, in such an orbit, any two areas whatever will be to one another as the times in 
which they are swept out. 
 
 
Q.E.D. 
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 30 
 
 

PROPOSITION 1  COROLLARIES 
 
 
 
Newton next develops six corollaries to Proposition 1. I here include the text of each corollary, with 
notes to accompany them. 
 
 
 
 
 

COROLLARY 1 
 
 

The velocity of a body attracted towards an immovable 
center (in non-resisting spaces) is reciprocally as the 
perpendicular let fall from that center onto the straight 
line tangent to the orbit. For, the velocity at those places 
A, B, C, D, E is as are the bases, AB, BC, CD, DE, EF, 
of the equal triangles, and these bases are reciprocally 
as the perpendiculars let fall on them. 

 
 

1.  In our impulse-path, the velocities at A, B, C, D, E are as AB, BC, 
CD, DE, EF, since the times are equal and those motions are uniform (inertial), and for uniform 
motions the speeds are as the distances accomplished in equal times. 
 

2.  And those bases AB, BC (etc.) are reciprocally as the perpendiculars dropped from S onto them. That 
is: 
  AB : BC = (perp. from S to BC) : (perp. from S to AB) 
And this is because of the equality of the triangles: 
  rSAB = rSBC 
thus  ½ AB x (height of rSAB) = ½ BC x (height of rSBC) 
hence  ½ AB : ½ BC = (height of rSBC) : (height of rSAB) 
so  AB : BC = ht. of rSBC : ht. of rSAB 
and those heights are the perpendiculars from S to BC and AB respectively. 
 

3.  It follows that the velocities, which are as the bases of the triangles, are reciprocally as the heights of 
the triangles. 
 

4.  Of course, the bases of the “impulse-orbit” are, ultimately, points in our final, curved orbit. That is 
one motivation for finding something else that is as the speeds, something else that is still there once 
we are at the final orbit—namely the perpendiculars to the tangents. So the bases of the triangles 
become more and more like points, and their directions more and more like tangents, but the heights 
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from S (which are always inversely as those bases) do not go away, but remain as the perpendiculars 
from S to the tangents. 
 
 
 

5.  So pick any two points on an orbit (formed by a body moving through non-resisting space by its own 
inertia and by centripetal force toward a fixed point S), e.g. Q and R; draw tangents TQ, NR; from S 
drop perpendiculars to these Sq, Sr;  and it will then be actually and exactly true that 
 
 VQ : VR  =  Sr : Sq 
 
NOTE:  Kepler, in Astronomia Nova, hypothesized that the 
velocities in a planetary orbit are to each other inversely as the 
solar distances at those points. The sun is the “S” point, since 
the planets sweep out equal areas in equal times around it. So he 
was nearly right, especially since the orbits are so circular. But 
the instantaneous speeds at two points are not to each other 
inversely as their distances from S, but inversely as the 
perpendiculars from S to the tangents at the points. 
 
 
Of course, the bases of the “impulse-orbit” are, ultimately, points in our final, curved orbit. That is 
one motivation for finding something else that is as the speeds, something else that is still there.  
 
QUESTION:  Is Cor. 1 true “actually” or just “ultimately”?  (Answer: Actually.) 
 
 
 

COROLLARY 2 
 

If the chords AB, BC of two arcs successively described, 
by the same body, in equal times, in non-resisting spaces, 
be completed into the parallelogram ABCV, and its 
diagonal, BV, in that position which it ultimately will have 
when those arcs are diminished in infinitum, is produced 
both ways, the same will pass through the center of forces. 

 
(1)  Notice he calls AB and BC “chords.” And he is not saying chords AB, BC are traversed in equal 
times, but arcs AB, BC are. That means (by Prop. 1 itself) that the curvilinear areas SAB, SBC are 
equal; but, except in special cases (like the circle, or if B is a point of symmetry in some other curve), 
the rectilinear triangles SAB, SBC will not be equal. They will only be ultimately equal, since they 
differ as little as you please from the curved figures as we shrink the arcs to B. 
 
(2)  WHY “ULTIMATELY”?  Doesn’t BV always point to S? In our impulse-paths, yes. But if we 
are talking about an actual curved orbit in which we draw chords to successive arcs traversed in equal 
times, we just have just seen (in (1) above) that the resulting rectilinear triangles are not (necessarily) 
equal, and hence if we draw ScB equal to SAB, ScB and SCB are not (necessarily) equal, and so Cc 
is not (necesarily) parallel to BS. So if we draw BV parallel to Cc, BV does not (necessarily) point to 
S. 
 But BV ultimately points to S, as we argued in our analytic version of Prop. 1. So we can see 
that BV ultimately points to S in two ways.  (a)  SYNTHETICALLY.  This way begins from the 
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construction of Prop. 1, i.e. from the impulse-path. In that case, BV always points to S throughout the 
approaching-process, i.e. as we divide the time more finely, but it also changes position. So it 
“ultimately” points to S, i.e. in the final, limit orbit, the curved one, since it always does throughout 
the approaching process.  (b)  ANALYTICALLY.  This way, which 
seems to be the one Newton has in mind now (since he begins from 
arcs done in equal times), is to begin with the actual curved orbit, 
and to shrink arcs AB and BC in our curve, and note that the arcs 
ultimately do not differ from rectilinear bases AB, BC—that is, the 
more we shrink those arcs, the less our curved orbit differs from our 
polygonal impulse-path, and the more true the things we said about 
the impulse-path become, e.g. the closer BV comes to pointing to S. 
 
 
If you are not convinced that BV can ever fail to point exactly at S, 
consider the following explanation. As long as we have an actual 
parallelogram ABCV (vs. an “infinitely-small” one), its sides 
merely approximate what the body actually does, and its diagonal 
therefore merely approximates the change in what it does, i.e. the 
acceleration it undergoes, and hence the force on it at B. So it will 
(or can) be a little off, in both magnitude and direction. 
 
EXAMPLE.  Let  AR  be a diameter of a circle, and  S  any point on 
the diameter other than the geometric center.  Let arcs  AB and BC  
be swept out in equal times around  S  as the center of forces.  
Therefore the pie-pieces  SAB  and  SBC  are equal, by Prop. 1. 
 
Now extend  AB  to  c  so that  AB  =  Bc,  and join  Cc. 
Complete the parallelogram  ABCV. 
Now, IF POSSIBLE, let  V  lie on  BS. 
 
Since CV and AB  are equal and parallel, and  Bc  =  AB, 
thus CV and Bc  are equal and parallel, 
so Cc and BV  are equal and parallel. 
Thus rSBC  =  rSBc 
but rSAB  =  rSBc 
so rSAB  =  rSBC 
but sect.SAB  =  sect.SBC  [Prop. 1] 
so seg.AB  =  seg.BC  [remainders] 
 
That is, the circular segments cut off by chords AB, BC are equal. 
Hence AB = BC. 
Hence  ABCV  is a rhombus. 
Hence  ∠ABV = ∠CBV. 
Hence  BV  is a diameter of the circle. 
But  AR  is a diameter of the circle. 
Hence where they intersect, S, is the geometric center of the circle. 
Which is against the given. 
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COROLLARY 3 

 
If the chords AB, BC and DE, EF, of arcs described in equal times, in non-resisting 
spaces, be completed into parallelograms ABCV, DEFZ, the forces at B and E are to 
each other in the ultimate ratio of the diagonals BV, EZ, when those arcs are 
diminished in infinitum. 

 
1.  Again, as in Cor. 2 above, he is talking now not about an approximating impulse-path, but about 
the actual curved path produced by the continuously acting centripetal force, and about the chords in 
it. 
 
2.  And now he is giving us a ratio of forces or accelerations as opposed to a ratio of velocities at any 
two points on the orbit. 
 
3.  BV and EZ do not necessarily point to S in fact, but (as Cor. 2 said) they ultimately do, as the 
chords are taken smaller and smaller.  Likewise BV and EZ do not necessarily have the ratio of the 
centripetal force at B to that at E, but they do ultimately, i.e. the ratio they approach, as we shrink the 
arcs accomplished in equal times, is the ratio of the centripetal forces at B and E. 
 Why? Well, SYNTHETICALLY, the velocity along AB is to that along BC as AB : BC 
(done in equal times). And therefore BV is the change of motion due to the sudden centripetal force 
at B (Cor. 1 to the Laws), i.e. BV is the acceleration or “accelerative centripetal force.” Likewise for 
EZ at E.  So 
 
 BV : EZ  =  Force at B : Force at E 
 
always, for the impulse-path, and therefore the ultimate ratio of these is the ratio of the instantaneous 
accelerations at B and E in the curved orbit. 
 We could come at this ANALYTICALLY too:  if arcs AB and BC in the actual curved orbit 
are done in equal times, then the ratio of the chords, AB : BC, is ultimately the same ratio as that of 
the average velocities in arcs  AB and BC, and therefore the diagonal  BV  is ultimately equal to the 
change in motion from arc AB to arc BC, and hence it is ultimately as the force at  B. 
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COROLLARY 4 
 

The forces by which any bodies whatever (in non-resisting spaces) are drawn 
back from rectilinear motion and turned aside into curved orbits are to each 
other as those sagittae of arcs described in equal times which converge 
towards the center of the forces and bisect the chords when those arcs are 
diminished in infinitum. For, these sagittae are the halves of the diagonals we 
needed in Cor. 3. 

 
 
 

 
 
 
 
Join AC and DF. These diagonals will bisect the other diagonals of our parallelograms, EZ 
and BV (which ultimately pass through S as we shrink the arcs FE and ED toward E, and CB 
and BA toward B, all four arcs always being done in equal times). Call the bisection points X 
and Y. Then EX and BY ultimately point to S, and are always half of EZ and BV, which are 
ultimately as the forces at E and B. Hence EX and BY (the sagittae) are also, ultimately, as 
the forces at E and B. 
 NOTE:    EX and BY  are  actually  sagittae,  and  ultimately  point to  S;  
conversely,  WE and UB  actually  point to  S,  and  ultimately  are the sagittae.  So it is also 
true that the forces at  B and E  are ultimately as  BU : EW. 
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COROLLARY 5 
 
 

And so, the same forces are to the force of heaviness {gravity}, as these 
sagittae are to the sagittae perpendicular to the horizon of the parabolic arcs 
which projectiles describe in the same time. 

 
 
1.  Woah! Heaviness now. 
 
2.  Newton is now comparing different forces not on the same path, but on different paths.  
He is considering our original curve ABCDEF, from the past few corollaries, in comparison 
to the parabolic path of a projectile, since that is a real-life (and, thanks to Galileo, well-
known) path produced by (1) a centripetal force (i.e. heaviness) and (2) innate force (or 
inertia). 
 
3.  Although Galileo considered the force of heaviness to be downward in parallel lines, 
since the center of the earth is so far away compared to the distances travelled by familiar 
projectiles, they in fact converge at the center of the earth. So heaviness is a centripetal force. 
 
4.  Newton is saying here that the “same forces,” i.e. the forces at B and E on our abstractly 
considered curve, are [ultimately] to the force of heaviness producing the (nearly) parabolic 
path of a projectile, as the sagittae EX and BY are to the sagittae of the parabolic arcs 
accomplished in the same time as arcs AC and DF in our curve. 
 
5.  In this way we can measure an unknown force by a known one (weight), or compare 
them.  Let  ABCDEF be our orbit formed by centripetal force toward  S,  and let  abcdef  be 
our near-parabolic path of some projectile on Earth, formed by centripetal force (called 
‘weight’) toward  T,  the center of the Earth, so far away that  bT and eT  are practically 
parallel and practically perpendicular to  fN,  the horizontal. 
 Let arcs  AB, BC, DE, EF  and  ab, bc, de, ef  each be accomplished in the same 
amount of time,  t,  and join chords  AC, DF,  ac, df  and join the orbital radii  BS, ES, bT, 
eT,  forming BU, EW, bu, ew,  which ultimately become sagittae, and are ultimately as the 
forces toward S and T at the locations B, E, b, e. 
 Newton is saying 
 
 
 
 
 
so since the forces (i.e. accelerations) due to weight are known (as is the geometry of the 
parabola), and therefore so too we know the value of   
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then if, by the geometry of the orbit about  S  [which might be ascertained by a telescope!], 
we can determine   
 
 
 

 
we will also know  
 
 
 
and so we will also know   
 
that is the relative strength of the forces in the S-orbit to those in the projectile path. And so 
we will have a way of comparing the strength of an unknown centripetal force to that of 
WEIGHT. Confer the argument to come at the end of the Principia, comparing the orbit of 
the Moon to the falling of a stone. 
 But this Corollary is more like a commercial than something we will actually use 
later. 
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COROLLARY 6 
 

All the same things hold, by Cor. 5 to the Laws, whenever planes in which the 
bodies move, together with the center of the forces which is located in the 
same plane, do not rest, but move uniformly in a directed line. 

 
 
Corollary 5 to the laws said that if a system of bodies is moving uniformly in a straight line, 
then the movements of the bodies relative to each other are the same as if they were all at 
rest. 
 So if the center of forces, S, and all the planes in which various bodies move around 
S, are all in motion uniformly in a straight line, the behavior of the bodies in the system 
relative to each other is no different from what it would be were they all at rest. 
 Think of our solar system. If the Sun (S) is at the focus of the orbits of the planets in 
their various planes, and it (and their orbital planes) are all drifting through space uniformly 
in a straight line, we can consider the whole business as though it were at rest in absolute 
space. 
 



 185 

THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 31 
 
 

PROPOSITION  2  AND  COROLLARIES 
 
 
Preliminary notes: 
 1.  This is the converse of Proposition 1. 
 2.  “Case 1” is if S is immobile. 
 3.  “Case 2” is if S is moving uniformly in a straight line. 
 4.  Euclid 1.40 says that “Equal triangles on equal (and in-line) bases are also in the same 
parallels, i.e. of the same height.” 
 5.  In the argument he mentions “least triangles” (cf. Galileo, Kepler), i.e. infinitesimals. He 
warned us (in the Scholium after the Lemmas) that he would occasionally lapse into such language. 
 6.  From Kepler’s 2nd Law about planetary motion (which was established by observations 
and calculations), it now follows that planets are continuously impressed by centripetal forces toward 
the Sun. Hence the center of forces is always labeled “S” in these propositions (for “Sol”, 
presumably). 
 
 
 

PROPOSITION 2 
 

Every body describing a plane curve, and which, by radii drawn to a point S 
(either fixed, or moving uniformly in a straight line) sweeps out areas 
proportional to the times, is urged by a centripetal force toward S. 

 
In equal times, let the body move through arcs AB, BC, CD, thus 
describing equal areas about S (given). And let such arcs be shrunk 
in infinitum. As this happens, the equal areas approach equality to 
the rectilinear triangles, and the arcs approach the chords. So now if 
we consider the “least triangles” (Galileo-style) swept out by the 
body, some force is driving it to describe these, since otherwise it 
would continue in a straight line (Law 1). 
 Extend AB to  c,  so that  AB = Bc. Join Cc. 
Now, since the times are equal, the body would have been at  c  were it not for a force acting 
on it when it was at  B  and turning it aside from its rectilinear path  (Law 1) so that instead 
it went to C. But in what direction was the force at B acting? 
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Since  rSAB  = rSBc  (these are ultimate triangles, now!) 
and  rSAB  = rSBC  (again, “least” triangles, which are ultimately equal to the 
curvilinear triangles, which are always equal because they are swept out in equal times 
around S). 
Hence  rSBC  =  rSBc 
 
But then, by Euc. 1.40,  it follows that  Cc  is parallel 
to BS. 
 But  Cc  is representative of the change of 
velocity in the body at B (Cor. 1 to the Laws; 
parallelogram of forces), since the difference in speed 
and direction between being at  c  and being at  C  is 
represented by the line  cC  (in the direction from  c  to  
C, by the way). Hence the force at  B,  effecting the 
change in speed and direction, must have been in that 
direction. But the line  BS  is parallel to  cC, and 
therefore the force acted in the direction of  B to S. 
 Similarly, if we go through the same steps, we 
can show that the force at C acts along the line CS, etc. Hence the force effecting the orbit is 
always acting toward point S, and hence it is a centripetal force toward S that produces such 
an orbit. 
 Q.E.D. 
 
 
Note:  We need more than one line of force to establish the Theorem clearly. Just looking at 
one point B, for instance, we might not see clearly that the force at B acts “toward S,” but 
only that it acts along the line parallel to cC, which happens to pass through S. We need to 
see that every such parallel, from other points, will also pass through S, which we see better 
just by taking one more case. 
 
 

CASE 2 
 
This just applies Cor. 5 to the Laws. If the plane of the orbit, together with its point S, is 
moving uniformly in a straight line, and the body sweeps out equal areas in equal times 
around S, it is still true that the forces urging the body out of a uniform rectilinear path all 
point toward S. That is because when things all move with the same uniform and rectilinear 
motion, they are at rest relative to each other, unless some other additional motion is given to 
one but not another. 
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COROLLARY 1 

 
 
By Propositions 1 and 2, which show that “centripetal orbits” and “orbits equably describing 
areas about a point” are convertible, it follows that if one of these conditions be absent, so is 
the other. That is, if areas are not proportional to times, then the forces do not tend to one 
point, but must deviate. 
 More specifically, if a body moves through arcs AB 
and BC in equal times, but area  ZBC  is greater than area  
ZBA, so that area-description is accelerating, then the force 
itself is also tending to point more in the progressive 
direction of the motion, i.e. left of Z. 
 And if  area  ZBC  is less than area  ZBA, so that 
area-description is retarded, then the force itself is tending 
backward, to the right of Z, in the regressive direction. 
 
 

COROLLARY 2 
 
If area-description is accelerating even in a resisting medium (like air), then all the more is 
the force itself shifting in the progressive direction of the motion. 
 Note:  Newton cannot say, similarly, that “if area-description is decelerating in a 
resisting medium, then the force moving the body deviates backwardly.” After all, the whole 
cause of the deceleration might be the resistance of the medium. 
 
 

SCHOLIUM 
 
 

It is possible to urge a body by a centripetal force composed from many 
forces. . . . Furthermore, if some force act continuously according to a line 
perpendicular to the described surface, this force will cause the body to be 
deflected from the plane of its motion; but it will neither augment nor 
diminish the quantity of the surface described, and for that reason is to be 
ignored in the composition of the forces. 

 
The first part is plain enough. The centripetal force toward S need not be the result of a 
single cause, but can be the composite of many forces, i.e. a net force, composed of two (or 
more) forces, neither of which is centripetal. 
 In the second part, Newton is considering a force acting always perpendicularly to the 
plane of the orbit. That will move the body into other planes, he says, but will not change the 
quantity of the area described about S in a given time. 
 (I suppose we should imagine a Planet orbiting the Sun, and a force acting on the 
planet, always perpendicular to the plane of its orbit. This will have the effect either of 
moving the whole orbit up, parallel to itself, which will obviously not alter the equable 
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description of areas, or, if the force is always on the Planet, perpendicular to the plane of the 
orbit it is trying to describe around the Sun, the orbit will rotate, and in that rotating plane 
itself, the equable description of areas around the Sun will not be affected. But the areas 
traced out in three-dimensional space by the Planet-Sun line will be affected.) 
 
 
 
QUESTION:  Is it possible for a body in some curved orbit to be sweeping out equal areas in 
equal times around two distinct points? 
 
Suppose a body in a curved orbit sweeps out equal areas in equal times around S. Can it also 
be doing so around N? Choose a random point P on the orbit, and take arcs on either side that 
are described in equal times, so that the curved triangles SAP and SBP are equal in area. 
 Complete parallelogram APBV. Therefore  PV  ultimately points to  S  as rt goes to 
zero (by Prop. 2). Therefore  PVS  is ultimately collinear. But if the body is also describing 
equal areas in equal times around N, it follows for the same reason that PVN is also 
ultimately collinear. But  P, S, N  are fixed points, and the ultimate direction of PV is one 
only—therefore  P, S, N  must actually be collinear. 
 And likewise it follows, if we pick R at random elsewhere on the orbit, that  R, S, N  
are actually collinear. And so  S and N  are collinear with any point picked on the orbit—
which can only be if  S and N  are the same point (or if the orbit is itself a straight line, which 
is contrary to the given, here). 
 Therefore it is not possible for a body in some curved orbit to be sweeping out equal 
areas in equal times around two distinct points. 
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 32 
 
 

PROPOSITION  3  AND COROLLARIES AND SCHOLIUM 
 
 
Preliminary notes: 

 
 1.  Newton has in mind a special case which he is not yet mentioning explicitly, i.e. Moon 
and Earth (hence  L  =  Luna, and  T  =  Terra). 
 2.  Both Moon and Earth (L & T) are under continuous influence of centripetal force toward 
the Sun. 
 3.  But the Earth-Moon distance is so little compared to the Earth-Sun distance that the lines 
drawn from the Sun to the Earth and to the Moon are all effectively parallel. 
 4.  So this is like a preliminary to Prop. 65 later, giving us some inroad into the three-body 
problem (or even the n-body problem). 
 5.  The claim is: If T is somehow accelerating and L describes areas as times around T, then 
L is urged by a force composed of the force accelerating T and a centripetal force toward T. 
 6.  We use Cor. 6 (to the Laws) in this Prop. 3. 
 7.  Prop. 3 is like an extension of Prop. 2:  Prop. 2 says we can infer a centripetal force to a 
center of uniform area-description if the center is at rest or moving inertially—Prop. 3 says we can 
infer this even if the center is moving with an accelerated motion. 
 
 

PROPOSITION 3 
 

Every body L, which by a radius drawn to the center of another body T, however T 
might be moving, describes around T areas proportional to the times, is urged by a 
force composed of the centripetal force tending toward T, and every accelerative 
force by which that other body is urged. 

 
We are given the behavior of L: it describes equal areas in equal times around the center of 
T. And we are given an acceleration of T, due to some force. 
 We argue by introducing a new force, equal and contrary to that urging T, which 
new force acts on both L and T according to parallel lines (these lines being drawn parallel to 
the line along which T was being acted on by whatever force). 
 By Cor. 6, the two bodies will be unaffected among themselves by this new force, 
although the force by which T was urged is now eliminated (or nullified), and hence T is 
either at rest or moving uniformly in a straight line (Law 1), while L (thanks to Cor. 6) must 
still be sweeping out equal areas in equal times around T, and therefore is urged by forces 
tending toward T (Prop. 2). And therefore, in the original, given situation, the net force 
urging L was composed of a centripetal force toward T plus the one that was urging T. 
 Q.E.D. 
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I will not reproduce the text of the four corollaries, but will merely paraphrase their content. 
 
 

COROLLARY 1 
 
This is not much more than a restatement of the Proposition itself: If from the whole force on 
L we subtract the force urging T, what remains is the force urging L toward T as center. 
 

COROLLARY 2 
 
And if the areas swept out by L around T are nearly as the times (note this is a new given), 
then the “remainder” force urging L (with the force urging T subtracted from the whole force 
on L) will tend nearly to point always to T. 
 
 

COROLLARY 3 
 
And conversely: If the remainder-force on L always points nearly to T, L will sweep out 
areas nearly as the times around the center of T. 
 
 

COROLLARY 4 
 
By contrast, if L sweeps out areas around T that are nowhere near as the times, even though 
T is either at rest or moving uniformly in a straight line, then either L is urged by no force 
tending to T, or that force is insignificant compared to other forces acting on L. 
 
 
NOTE:  Corollaries 2, 3, 4 again are relevant to the Earth and Moon. The Earth-Moon 
system is affected by other bodies, after all, so we don’t get the moon sweeping out exactly 
equal areas in exactly equal times around the Earth. But it is close. Other bodies are so far 
away as to have no significant influence, and even the Sun is far enough that it acts on both 
almost in parallel lines (and without significant “spaghettification”). And the Earth moves 
almost uniformly in a straight line around the Sun in a given day (since the radius of the orbit 
is so large relative to one day’s arc). Therefore the most significant force on the Moon is a 
centripetal one towards Earth. 
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SCHOLIUM 
 
 

Since an equable description of areas is an indication of a center which that 
force by which the body is most affected and by which it is drawn back from 
rectilinear motion and retained in its orbit has regard to, why may we not, in 
the following, employ an equable description of areas as an indication of a 
center around which all circular motion is accomplished in free spaces?  

 
 
This sums up Propositions 1-3:  Nearly equable description of areas indicates a center 
toward which the force most influencing the body tends. 
 
The phrase “in free spaces” makes us think of celestial bodies. So he is saying: why not take 
this new principle, or indicator of centripetal force, to the heavenly bodies? In so doing, we 
say that those bodies do NOT naturally move in circles (contra Copernicus, Ptolemy, 
Aristotle), but either rest or move in straight lines when not urged by any forces, and hence 
move in circles (or other curves) only by impressed forces. More specifically, since they 
sweep out equal areas in equal times around the Sun (Kepler’s 2nd Law, verified by 
observation and calculation), therefore they are all urged by centripetal forces toward the 
Sun. 
 Now, that is not really altogether new. At any rate, Law 1 said that the motion of the 
heavenly bodies was not simply natural, but due to some force impressed on them. What he 
adds now is (thanks to Propositions 1–3) a way of determining the center of the forces urging 
celestial bodies. 
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 33 
 
 

PROPOSITION  4  AND ITS  9  COROLLARIES 
 
 
 
NOTE:  This next Proposition and its Corollaries are FOUNDATIONAL to Newton’s 
argument for universal gravitation in Book Three. 
 
 
 

PROPOSITION 4 
 
 

The centripetal forces of bodies which describe diverse circles with equable 
motion tend to the centers of those circles, and are to each other as are the 
squares of simultaneously described arcs divided by the radii of the circles. 

 
 
Newton was not so good as to provide us with a diagram for his argument.  He will do the same in 
Prop. 6.  Rather than bother with a diagram and proportion, he prefers to say that “this is as that,” and 
simply argue from the prior propositions.  Since he is talking about two circles, however, and since 
he is saying the forces are “as something,” he is talking about a proportion.  So it is good to draw two 
circles, and to advise the students to draw two circles (with agreed-upon letters) when you assign this 
Proposition. 
 
 
So let there be two bodies describing two circles 
(his “diverse circles”) equably—i.e. moving 
uniformly along the circumferences about the 
centers (sweeping out equal angles, and hence 
also equal areas, in equal times around the 
geometric centers). 
 
 
 Let the centers of these circles be  A, a. 
 Let the arcs  CB, cb  be described at the same time (we need not suppose the angular 
velocities are equal, hence ∠BAC need not be equal to ∠bac). 
 Bisect the arcs at  R, r  and draw through the diameters  RAD, rad. 
 
Prop. 4 is saying that the centripetal forces at  R, r  tend to the centers  A, a,  and that they are to each 
other as the squares of the arcs described in equal times (CRB, crb) divided by the radii.  That is: 
 
 
That they tend to the centers  A, a  is obvious from Prop. 2, ar
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since the bodies are sweeping out equal areas in equal times around  A, a.  (He says it also follows 
from Prop. 1 Cor. 2, since that corollary says the line of force is the ultimate position of RV [or 
double RV, the diagonal of the parallelogram in ∠CRB], but in a uniform circular motion, RV is 
already in the ultimate position as arcs CR and RB shrink, i.e. as the time goes to zero.) 
 
 
 
 
 
 
 
 
 
 
 
The proof of the proportion is as follows.  Since  CV2 = DV·VR,  and  cv2 = dv·vr, therefore 
 
 
 
 
But since DV is ultimately equal to DR (as we shrink the arcs described in equal times by the two 
motions), and  dv  to  dr, hence  DV : dv  is ultimately as  DR : dr,  and hence ultimately as the halves 
of these diameters, i.e. as the radii  AR : ar. Therefore: 
 
 
      (ultimately) 
 
 
Again, the squares on  CV, cv  are actually as their quadruples, i.e. as the squares on  CB, cb, and 
these in turn are (by Lemma 7) ultimately as the squares on the arcs, i.e. (arcCB)2 and (arc cb)2.  
Therefore: 
 
 
    (ultimately) 
 
 
But the forces at  R  and at  r,  by Prop. 1 Cor. 4,  are ultimately as the sagittae (or, since we are 
dealing with circles, “versed sines”) of the arcs, as the arcs shrink, i.e. ultimately as  RV : rv.  
Therefore: 
 
        (ultimately) 
 
 
But the arcs described in equal times in our two circles will always be in a given, fixed ratio (because 
of the uniformity of the motions), and hence the squares of the arcs will also be in a fixed ratio.  
Moreover, the radii are in a fixed ratio. Hence the ratio on the right side is a fixed ratio, and must 
therefore be actually as the two forces. Therefore: 
 
 
 
Q.E.D. 
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Q1.  Is ∠CAB = ∠cab ? (No, there is no necessity in that.) 
Q2.  Is this Proposition true ultimately, or actually? (Actually, since in the final proportion, 
all ratios are fixed ratios, not fluid ones. The two forces are two fixed forces, and  AR : ar  is 
fixed, and so too is the ratio of the squares on the arcs accomplished in equal times.) 
Q3.  Is it intuitive that the forces are inversely as the radii? 
Q4.  In what units are we measuring the arcs? 
 (It is good to note here that the arcs must be measured in linear units, not in 
degrees! If equable motions in unequal circles complete the two circles in the same time, 
then the angular velocities are the same, but the linear velocity in the greater circle is 
greater.) 
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COROLLARY 1. 
 
Given the uniformity of the two motions, the arcs they accomplish in the same time must be as the 
speeds through them:  (arcBC) : (arc bc) = (speed thru arc BC) : (speed thru arc bc). Therefore we 
may put the squares of the speeds into the proportion: 
 
 
 
 
 
 

COROLLARY 2. 
 
But the speeds are both uniform, and hence in a given ratio (regardless of the amount of time). The 
speed in each circle, for instance, is the whole circumference of the circle divided by the period (or 
time to go one full circle). So the speed through arc BC is the same as (2πAR) over T, where T is the 
period for circle A. Likewise, the speed through arc bc is the same as (2πar) over t, where  t  is the 
period for circle a. So, plugging these into the proportion of Cor. 1 above, we get: 
 
 
 
 
 
 
or 
 
 
 
thus 
 
Q.E.D. 
 
 

COROLLARY 3. 
 
Therefore, in the special case where the periodic times are equal, i.e. when  T = t, then the forces are 
simply as the radii, and conversely, where the forces are as the radii, the periodic times must be 
equal. 
 NOTE:  Newton says “AND CONVERSELY.” All these Corollaries, 3–7, are convertible. 
 NOTE:  Newton adds “and for that reason the velocities as the radii,” not as a premise, but as 
another consequence, or another indicator. This consequence follows from the same given, like this: 
 
 v1 : v2  =  2πAR/T : 2πar/t  [by def.] 
 
so v1 : v2  =  AR : ar   [given that  T = t] 
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COROLLARY 4. 
 
And in the special case where the squares of the periods are as the radii, then the forces must be 
equal. For, by Cor. 2,  
 
 
 
 
and where the squares of the periods are as  AR : ar, the ratio on the right becomes the ratio of 
equality. And, conversely, if the forces are equal, and hence the ratio on the right is one of equality, 
then the squares of the periods must be as the radii AR : ar, or (if you like) the periods themselves 
must be as the square roots of the radii, i.e. T : t  =  √AR : √ar. 
 NOTE:  Newton adds “and for that reason the velocities” are “also in the subduplicate ratio 
of the radii . . .” This consequence follows from the same given. That is,  
 
since  v1 : v2  =  2πAR/T : 2πar/t  [by def.] 
 
thus  v1 : v2  =  2πAR/√AR : 2πar/√ar [given that T : t = √AR :√ar] 
 
so  v1 : v2  =  √AR : √ar   [simplifying] 
 
 
 
 

COROLLARY 5. 
 
And in the special case where the periods themselves are simply as the radii, then the forces are as the 
reciprocals of the radii.  For, by Cor.2, 
 
 
 
 
so if we suppose that  T : t  =  AR : ar,  we can substitute  AR2 : ar2  in the denominators, and simplify 
to 
 
 
 
 
 
Conversely, if the forces are in this ratio, it must be (by equating this with the ratio in Cor. 2) that the 
periods are as the radii. 
 NOTE:  “And for that reason the velocities equal . . .” If the periods are as the radii, then, 
since the radii are as the circumferences (Lemma 5), it follows that the periods are as the 
circumferences. But then the speeds must be equal, since it is a property of equal uniform speeds that 
the distances they accomplish are as the times for which they were allowed to go. 
 
 

COROLLARY 6. 
 
In the special case where the periods are in the sesquiplicate ratio of the radii, it will follow that the 
forces are as the reciprocals of the squares of the radii. For, by Cor. 2, 
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so if we suppose that  T : t  =  √AR3 : √ar3,  i.e. that  T2 : t2 = AR3 : ar3, then 
 
 
 
 
and conversely, if the forces are reciprocally as the squares of the radii, then, equating that ratio with 
the ratio of Cor. 2, it follows that the periods are in the sesquiplicate ratio of the radii. 
 NOTE 1:  This is reminiscent of Kepler’s Third Law, namely that “The ratio of the squares of 
the periods of any two planets is equal to the ratio of the cubes of their mean distances from the Sun.”  
That is, if r1 is the mean distance for Planet 1, and t1 is the period for Planet 1, then (r1)3 : (r2)3 = (t1)2 : 
(t2)2. Take the square root of both sides, and you see that the periods are in the sesquiplicate ratio of 
the radii. 
 NOTE 2:  Here for the first time Newton is showing the connection between Kepler’s 3rd 
Law and an inverse square law of force variation. If two circular orbits happen to be about the same 
center, and are due to the same cause, and the squares of their periods are as the cubes of their radii, 
then the force varies according to an inverse square rule. 
 NOTE 3:  Newton here adds that if the periods be in the sesquiplicate ratio of the radii, then 
also, “for that reason,” the velocities will be reciprocally in the subduplicate ratio of the radii.  
Calling the radii R and  r,  and the velocities in the two circles  V and  v,  and the periods in them  T 
and  t,  we can show what he means as follows. 
 
 
First: 
 
 
This follows basically from the definitions of the uniform velocities V, v. But we don’t need the  2π.  
And if, as we are here supposing, it happens to be the case that the periods are in the sesquiplicate 
ratio of the radii, then for  T : t, we can substitute  √R3 : √r3. Thus we have: 
 
 
 
 
 
or 
 
as Newton says. 
 
Q.E.D. 
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COROLLARY 7. 
 
Generally, if  T : t  =  Rn : rn  (where R, r are the radii), then, by Cor. 2, 
 
 
 

 
 

 
i.e. 
 
 
 
or 
 
 
 
or 
 
 
And, conversely, if the forces are in this ratio, the periods must be as  Rn : rn. 
 
 
 

COROLLARY 8. 
 
 
This is a fairly crucial and daring step. He says that all the things he has said are just as true about 
ANY two similar curves (i.e. similar parts of them, and with reference to similarly placed centers of 
force, I suppose), for example, ellipses. 
 Why? Because the circularity was not important, but only (1) The uniformity of the 
motions, and although in our ellipses (or whatever) the linear velocities will not be uniform, still the 
‘area velocities’ will be, so we can just substitute areas for arcs, etc., and also (2) The similarity of 
the figures, since the “radii,” if they are not equal, must at least be in a fixed ratio (for a similar 
argument to hold), which indeed they are when taken in similar places in similar figures. 
 The SCHOLIUM before Prop. 4 may have been hinting at this, i.e. “Why may we not . . . ?”  
That is, “Why may we not use circular motions as a path into discovering what else we might say, 
more generally, about centripetal orbits, regardless of shape?” 
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PROOF OF COROLLARY 8. 
 
Given: 
 
•  ab & AB are corresponding parts of similar 
curved orbits with finite curvature, around 
similarly-placed centers of uniform area-
description,  s, S. 
•  ac & AC are tangents to the corresponding points  
a, A. 
•  bc  is parallel to  as, BC  is parallel to  AS. 
•  Arcs  ab & AE  are described in equal times. 
•  ED  is parallel to  BC. 
 
Prove: 
 
The analog to Prop. 4, i.e. that 
 
ultimately, as the arcs of equal time are shrunk to  a, A. 
 
 
Well, CB : DE  =  AB2 : AE2     [ult; Lemma 11] 
 
so CB : DE  =  (AB2 : ab2)(ab2 : AE2)    [ult; just compounding] 
 
so (cb : CB)(CB : DE) = (cb : CB)(AB2 : ab2)(ab2 : AE2)  [ult; comp. with (cb : CB)] 
 
so cb : DE  =  (ab : AB)(AB2 : ab2)(ab2 : AE2)   [ult; ab : AB = cb : CB, sim figs] 
 
so cb : DE  =  (AB : ab)(ab2 : AE2)    [ult; simplifying] 
 
so cb : DE  =  (AS : as)(ab2 : AE2)    [ult; AS : as = AB : ab, sim figs] 
 
or cb : DE  =  AS·ab2 : as·AE2     [ult] 
 
 

    [ult] ⎥⎦

⎤
⎢⎣

⎡
⋅

×
ASas
1

 i.e.

 
But ab2 : AE2  =  (arc ab)2 : (arc AE)2    [ult, chords as arcs] 
 
and cb : DE,  being subtenses, are ultimately as the sagittae  gr, GR, [by Lemma 11 Cor. 2] and therefore 
ultimately as the forces at  r, R, [by Prop. 1 Cor. 4] which are ultimately as the forces at  a, A. 
 
 
So    [ult]  
 
 
And unlike in the case of Prop. 4 about the circles, we have to keep the “ultimately,” since the ratio of the arcs 
is not a fixed ratio, as it was in the case of the circles. 
 
Q.E.D.  
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QUESTION:  Will Corollaries 1-7 apply to such similar figures? Cor. 1 will apply only to instantaneous 
velocities at corresponding points, since the linear speeds are not uniform in our similar figures (only the area-
speeds are uniform). 
 
So  
 
 
 
Why? Well, we just proved that 
 
 
    [ult] 
 
 
but the times of arcs  ab and AE  are always equal, and therefore, as we shrink the arcs and the speeds in each 
become more uniform, the ratio of the average speeds in each is approaching the ratio of the arcs traversed, and 
so, ultimately, the speeds are as the arcs, and therefore the ratio of the instantaneous velocities at the points  a, 
A  is the same as the ultimate ratio of the arcs, and therefore 
 
 
 
 
 
And in this case we need not add an “ultimately,” since all the quantities are fixed. 
 
Q.E.D.  
 
 
 
 
But COROLLARY 2  requires more argument than 
that. We wish to say, if  p, P  are the periods (of 
motions  a, A  respectively), that 
 
 
 
 
 
The argument begins with what we showed above, 
 
 
i.e.         [ult.] 
 
 
 
thus    [ult; chords as arcs] 
 
 
 
so    [ult;  as : AS = ab : AB, sim. figs.] 
 
 
 
so Fa : FA  =  (ab2 : AE2)(AB : ab)      [ult.] 
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so Fa : FA  =  (ab2 : AB2)(AB2 : AE2)(AB : ab)  [ult; inserting AB2 by compounding] 
 
so Fa : FA  =  (AB2 : AE2)(ab : AB)   [ult; simplifying]  
 
 
or    [ult]  
 
 
 
Now, just hold on to that result, since we will use it in a minute. But 
first we need to develop another equation involving the periods, as 
follows: 
 
 p  =  Period of  a  =  n · (time to go  sab) 
 P  =  Period of  A  =  m · (time to go  SAE) 
 
where  n·sab = whole figure a  
and  m·SAE = whole figure A  
 
Thus whole figure a  : whole figure  A  =  n·sab  :  m·SAE  
 
so sab :  SAB  =  n·sab  :  m·SAE     [whole sim. figs. are as sab : SAB] 
 
so sab : SAB  =  (n : m)(sab : SAE) 
 
so n : m  =  (SAE : sab)(sab : SAB) 
 
so n : m  =  SAE : SAB 
 
but p : P  =  n(time to go sab) : m(time to go SAE) = (n : m) (time to go sab : time to go SAE) 
 
so p : P  =  (SAE : SAB) c (time to go  sab  :  time to go  SAE) 
 
but the times to go those two sectors are given as equal, 
 
so p : P  =  SAE : SAB 
 
so p : P  =  (time arc AE) : (time arc AB) 
 
so p : P  =  time AE : time AB    [ult; arcs as chords] 
 
But as we shrink down to  a and A,  the speeds through  AE, AB  become as uniform as we please, and 
therefore the ratio of the times through them ultimately becomes the ratio of the chords themselves, and so 
 
 p : P  =  AE : AB      [ult.] 
 
so p2 : P2  =  AE2 :  AB2      [ult.] 
 
Now, substituting this ratio in the ultimate proportion we found a minute ago, we have 
 
  
 
 
 
So   [ult; mult. both last terms by 1/p2P2] 
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so   [ult; mult. both last terms by ab·AB] 
 
 
 
so   [since  ab : AB = as : AS, sim. figs.] 
 
 
And we don’t have to say “ultimately,” since all the ratios are fixed. 
 
Q.E.D.   
 
And the rest of Corollaries 3–7 now follow from this. 
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COROLLARY 9. 
 
 

From the same demonstration it likewise follows that the arc which a body 
revolving uniformly in a given circle by a centripetal force describes in any 
time is a mean proportional between the diameter of the circle and the 
[height of the] descent of the body brought about by the same given force in 
the same falling time. 

 
 
NOTE:  This Corollary will be used in the argument for Universal Gravitation in Book. 3, 
Prop. 4, Theorem 4, about the MOON. Newton himself supplies no proof, so I will attempt 
to give one here. In doing so, I will invoke “The Mean Speed Theorem,” which Galileo was 
the first to prove (after a fashion). That theorem states that a mobile accelerating uniformly 
from rest up to final speed S in time  t  will cover the same distance which another mobile 
covers in the same time  t  while traveling at a constant speed ½ S. That is easily proved 
using Newton’s Lemmas and a speed-over-time diagram. The “velocity curve” in the case of 
uniform acceleration will be a straight line rising up at some angle from the time line. The 
area proportional to the distance covered by such a motion is that of the triangle, which is 
half the rectangle contained by the height representing the speed S and the horizontal line 
representing  t. That rectangle, however, is proportional to the distance covered by the 
mobile moving uniformly at speed  S  during time  t. 
 
And now for the proof of Corollary 9: 
 
 
 

GIVEN:  • Body in uniform motion, speed v, around a circle with center O, diameter AG. 
 • It travels arc AF in time  t. 
 • And it would fall through distance  AL  in  t  without an inertial component. 

• And we will consider the centripetal force (acceleration) to O as uniform (Galileo-style) on the grounds that the 
distances  AL, and arc AF, are very short compared to the whole diameter and the whole orbit. In other words, 
this corollary is really an ultimate truth, as  t  goes to zero. 

 
PROVE:    AG : arc AF = arc AF : AL 

  
Since the body falling from rest at A to O is accelerating uniformly, the mean-speed theorem applies, and the 
distance it goes is equal to half the distance that its final speed (at L, call it SL) would accomplish in the same 
time,  t, 
 
i.e. AL  =  ½ SL· t     [mean speed theorem] 
 
And since the acceleration is uniform, the final speed is just the product of that acceleration times the time,  t  
(since  a = speed / t), 
 
i.e. SL  =  a · t 
 
So AL  = ½ [a · t] t 
 
i.e. AL  = ½ a · t2 
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And since the velocity in the circle is uniform, it is as the arc accomplished over the time taken, i.e.  v = arc AF 
/ t, 
 
so t  =  (arc AF) / v 
 
 
so   
 
 
But Prop. 4 Cor. 1 says that for uniform motions in circles, forces (i.e. accelerations) are as the squares of the 
velocities over the radii, 
 
i.e. 
 

 
 
so 
 
 
so 
 
 
so 
 
 
so AG : arc AF  =  arc AF : AL 
 
 
Q.E.D.  
 
Is Corollary 9 an actual proportion, or an ultimate proportion?   
It is an ultimate proportion, as  t  goes to zero. 
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 34 
 
 

 
PROPOSITION  5 

 
 
Here we have the first “Problem” in Newton’s Principia.   
 
 
 

Given in any places whatever the velocity with which a body, by forces 
tending to some common center, describes a given figure, to find that center. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GIVEN:  Velocities at  P, Q, R  on a figure described by the movement of a body 
continuously urged by centripetal forces toward a fixed, common center S, 
 
FIND:  The location of that center (i.e. how to construct it from the givens). 
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Construction: 
 

At  P, Q, R  draw tangents intersecting at  T and V. 
Draw perpendiculars  PA, QB, RC  of such lengths that 
 
 VelocityP : VelocityQ  =  QB : PA 
 
and VelocityQ : VelocityR  =  RC : QB 
 
Draw perpendiculars through  C, B, A  intersecting at  E and D. 
Join VE and TD. 
 I say that  S  is the intersection of  VE and TD. 
 Join  SE, SD. 
 Drop perpendiculars:  SH to VR, SK to VT, SG to PT. 
 Drop perpendiculars:  EM to VR, DN to PT, DJ to VT. 

 
 
 
 
Proof: 
 
Since  S  is the center of forces, therefore the perpendiculars dropped from it to any tangents to the 
resulting orbit are reciprocally as the velocities at the points of tangency (Prop. 1 Cor. 1). 
 
So  SG : SK  =  VelQ : VelP 
but  AP : BQ  =  VelQ : VelP  [construction] 
so  SG : SK  =  AP : BQ 
 
But  AP  =  DN    [rectangle APND] 
and  BQ  =  DJ    [rectangle BDJQ] 
so  SG : SK  =  DN : DJ  
while  SK and DJ are parallel, as are SG and DN   
so  rSGK is similar to rDNJ 
so  GK is parallel to NJ 
so  rGKT is similar to rNJT 
so  fig. SGTK is similar to fig. DNTJ [composed of sim. triangles] 
so  TJ : JD = TK : KS 
while  JD and KS are parallel, 
 
And from this it follows that  S D T  is a straight line. 
Likewise  S E V  is a straight line. 
 
Therefore the center of forces lies at the intersection of the two 
constructed lines VE and TD. 
 
Q.E.I. 
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Q1.  What can we now do?  (Given an orbit produced by centripetal force, we can find the 
center; the odd presentation of Prop. 5 can obscure this fact.) 
 
Q2.  Does S have to be a special point geometrically?  (No.) 
 
Q3.  What exactly do we need in order to construct it? 
 (3 instantaneous velocities and a way to draw tangents.) 
 And given only 2 we can only find a line along which  S  must lie. 
 And given only 1 we can find nothing. 
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 35 
 
 

PROPOSITION  6 
 
 

If a body in non-resisting space revolves around an immovable center in any 
orbit whatever, and describes in the least time any arc just then nascent, and 
the sagitta of the arc is understood to be drawn which bisects the chord and, 
having been produced, passes through the center of the forces, the centripetal 
force in the middle of the arc will be as the sagitta directly and doubly as the 
times inversely.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Preliminary notes: 
 
1.  There is no diagram for this Proposition (the one Newton provides is really just for the 
corollaries). It is not really intelligible (for normal people) as he presents it—a diagram and 
some discussion are needed. 
 
2.  It is about “least times” and “arcs just nascent,” and therefore the proportion being 
established is ultimately true. 
 
3.  If in an orbit produced by centripetal force the times of two arcs are equal, then, as we 
shrink them to their midpoints (keeping the times always equal), 
 
 Force at midpoint 1 : Force at midpoint 2 = sagitta 1 : sagitta 2 (ultimately) 
 
by Prop. 1 Cor. 4. 
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4.  So then what happens if the times are unequal, but always in a given ratio? Or at least 
ultimately in some definite ratio? (This latter condition is guaranteed just by the fact that the 
arcs vanish together. Newton therefore makes no explicit assumption that the times are in a 
fixed ratio as they shrink, whether here or in subsequent applications of Prop. 6.) That is 
what Prop. 6 is about: showing that the ratio of the forces at two points is also expressible as 
the limit of (1) the ratio of the sagittae of the two arcs accomplished in the unequal times 
compounded with (2) the inverse ratio of the squares of the times, provided the ratio of the 
times is always the same as we shrink the arcs. 
 
5.  Note that in the figure we will use, QW is ultimately parallel to PR, and  qw  to  pr,  and 
also  QW to LV. 
 
 

GIVEN:    The path of motion around center of forces S; 
Points  P, p  at which to find the ratio of forces (accelerations); 
Arcs  HQ  and  hq, accomplished in unequal times in a fixed ratio (or at least a fluid ratio in which 
the time of arc QH is always greater than the time of arc qh, and the arcs vanish together as we 
diminish the times to nothing), and “temporally bisected” at points  P, p  (i.e. arcs HP, PQ take equal 
time, as do arcs hp, pq); 
Chord  QH  cuts  SP  at  W; 
Chord  qh  cuts  Sp  at  w. 
 
 

PROVE:    Fp : FP  =  (pw : PW) comp. (time thru arc PQ)2 : (time thru arc pq)2  [ult.] 
 
Since the time of arc QH has to that of  qh  a fixed ratio, one is always greater; let it be that the time 
of QH is the greater. 
Let arc EL, also temporally bisected at P, be accomplished in the same time as arc  qh, and let this 
always be so throughout the shrinking of arcs toward  p  and  P. 
 
Draw the chord  LE,  cutting the line  SP  at  V. 
Draw  LM  and  QR  always parallel to  SP. 
Draw  qr  always parallel to  sp. 
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Note that since the arcs  HQ and EL  are temporally bisected at  P,  they are not necessarily 
distance-bisected there, so the arcs are not necessarily equal.  Nor is there any necessity, of 
course, for the chords HQ and EL to be bisected at W and V (hence  pw,  PW,  PV  are not 
necessarily sagittae, but are at least ultimately so), or for them to be parallel to each other or 
to the tangent PR. But, as we shrink the times, the speeds through the arcs EP and PL 
become more uniform and more like the instantaneous speed at P, and hence the lengths of 
the arcs EP, PL, done always in equal times, become ultimately equal. So too EV, VL, 
ultimately equal to those arcs, are themselves ultimately equal, and so too HW, WQ are 
ultimately equal.  Moreover, chords EL and QH, approaching the tangent, are ultimately 
parallel to each other. 
 
 
 
Therefore PW is ultimately the sagitta bisecting the chord HQ, 
  pw  is ultimately the sagitta bisecting the chord  hq, 
  PV  is ultimately the sagitta bisecting the chord  EL 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
And since the times of arcs  EL  and  hq  are always equal, 
 
thus FP : Fp  =  PV  :  pw      [ultimately; Prop. 1, Cor. 4] 
 
and those sagittae are ultimately as the subtenses  ML : rq, 
 
so FP : Fp  =  ML  :  rq      [ultimately] 
 
so FP : Fp  =  (ML : RQ) c (RQ : rq)     [def. of compounding] 
 
And since arcs  HQ  and  EL  are both shrinking to the same point  P, their velocities are ultimately 
equal (i.e. the instantaneous velocity at P), and therefore we can apply Lemma 11, Cor. 3 (the one 
about “with a given velocity”): 
 
 ML : RQ  =  (time arc EL)2 : (time arc HQ)2   [ultimately] 
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but the times through the half-arcs are always as the times through the wholes, if we assume a fixed 
ratio between the times as they diminish—at the very least, they are approaching a fixed ratio as they 
shrink to nothing together, 
 
so ML : RQ  =  (time arc PL)2 : (time arc PQ)2   [ultimately] 
 
so FP : Fp  =   [(time arc PL)2 : (time arc PQ)2] c (RQ : rq) 
 
But time arc PL  =  time arc pq     [constructed] 
and rq  =  pw       [ultimately] 
and RQ  =  PW       [ultimately] 
 
so FP : Fp  =   [(time arc pq)2 : (time arc PQ)2] c (PW : pw)  [ultimately] 
 
Q.E.D. 
 
 
Q1.  Newton invokes Lemma 11, Cor. 3, which will apply only to curves of finite curvature.  
Does this mean our curve must be a conic section? 
 Not necessarily; it is enough if the curve has finite curvature at P. 
 
Q2.  Do we have to say “ultimately” in the conclusion? 
 Yes, since  PW : pw  is not a fixed ratio, but is approaching a fixed ratio. 
 
 
NOTE:  Lemma 11 Cor. 3 gives us insight into the subtenses and arcs shrinking to P, while 
Proposition 1 Cor. 4 gives us insight into the forces at  P and p  as  pq  and  PL  shrink.  
Proposition 6 puts this all together. 
 
 
NOTE:  Lemma 10 Cor. 4 says practically the same thing as Prop. 6 (as Newton notes), 
except that it is not about “sagittae.”  Lemma 10 Cor. 4 says that “in the beginning of the 
motion, the forces are directly as the spaces described and inversely as the squares of the 
times”: 
 
 FP : Fp  =  (tp

2 : tP
2) (dP : dp) 

 
But these “spaces” or distances in Lemma 10 Cor. 4 mean those which are accomplished just 
by the forces in question, not including any other inertial (and hence distance-producing) 
motion. And such distances, ultimately, are as the sagittae. 
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 36 
 
 

PROPOSITION  6  COROLLARIES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

COROLLARY 1. 
 
Note:  The body is “P” for Planet, and the center is “S” for Sun (or Sol). 
 

Given:  Body P orbiting a center of forces, S, describing curve APQ. 
ZPR tangent to curve APQ. 
Q a random point on the curve. 
QR parallel to SP. 
QT perpendicular to SP. 
 

Prove:  FP is (ultimately) inversely as 
 
 
 
 
i.e.   [ultimately]    
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For, if we draw  QG  parallel to  RP,  and  qg  parallel to  rp, 
then  GP  and  pg  are ultimately the sagittae of the arcs about P and p which take double the times of 
arcs  PQ and pq. 
 
And time in arc PQ  : time in arc pq  =  area SPQ : area spq   [Prop.1] 
so time PQ : time pq  =  rSPQ : rspq     [ultimately] 
so time PQ : time pq  U  2rSPQ : 2rspq     [doubling] 
so time PQ : time pq  U  SP·QT : sp·qt     [rectangles] 
so (time PQ)2 : (time pq)2  U  SP2·QT2 : sp2·qt2     [squaring] 
but FP : Fp  U  (GP : gp) c (time pq)2 : (time PQ)2     [Prop.6] 
so FP : Fp  U  (GP : gp) c ( sp2·qt2  :  SP2·QT2 ) 
 
but GP : gp  =  QR : qr       [parallelograms] 
 
 
so            [× same] 
 
 
i.e.       [simplifying]  
 
 
Therefore we may substitute the ratio of the inverses of  QR, qr  for the ratio of  (GP : gp)  in the 
ultimate proportion above, and then multiply these, or compound them, with the other ratio ( SP2·QT2  
:  sp2·qt2 ), and we have: 
 
 
     [ultimately] 
 
 
 
 
Q.E.D. 
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COROLLARY 2. 
 
Drop  SY  perpendicular to the tangent. Now consider rSQP. Its area is ½ SP·QT. 
But as arc QP shrinks, QP approaches the tangent and therefore approaches being the base of rSQP 
with height  SY. 
 
So rSQP = ½ SY·QP       [ultimately] 
so SP·QT  =  SY·QP       [ultimately] 
 
Therefore, substituting this expression into Corollary 1, we have: 
 
 
     [ultimately] 
 
 
NOTE:  rQPT is ultimately similar to rSYP. 
 
 

COROLLARY 3. 
 
Draw a circle tangent to ZPR at P, cutting the orbit at Q—as we shrink arc PQ, 
then, this circle will approach the circle of curvature at P. Draw PV as a chord in 
this circle which is always parallel to RQ (and so PV passes through S), and thus 
chord PV will be approaching a limit length, namely that cut off in the circle of 
curvature at P. (We are assuming finite curvature.) Note: when Newton says 
“concentric circle,” he means one having  S  as its center of forces, not necessarily 
as its geometric center. 
 
Newton says that, ultimately 
 
 
 
 
Why is that true? Extend RQ to L. 
 
So RP2  = QR·RL       [by Euclid 3.36] 
 
but RP2  U  QP2       [Lemma 7] 
 
and RL  U  PV 
 
so QP2  U  QR·PV 
 
so         [ultimately] 
 
 
And from this follows Cor. 3, since we can now substitute PV in for the expression  QP2/QR  in the 
equation from Cor. 2, giving us: 

QR
QPSY

qr
qpsyFF pP

2222

:: ⋅⋅
=

QR
QPPV

2

=
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2
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            [ultimately] 

 
Q.E.D.   [NOTE:  If pv and PV are chords in circles of curvature, this is no longer “ultimately,” but simply, 
true] 
 

COROLLARY 4. 
 
With the same givens,  
 
 FP : Fp    =    (velP)2 : (velp)2   c   (pv : PV) 
 
For (velP) : (velp)  =  sy  :  SY      [Prop. 1, Cor. 1] 
 
so sy2  :  SY2  =  (velP)2  :  (velp)2 
 
but FP : Fp  =  sy2·pv  :  SY2·PV      [Cor. 3 above] 
 
so FP : Fp  =  (velP)2·pv  :  (velp)2·PV 
 
Q.E.D. 
 
 
 
 
 

COROLLARY 5.  (General) 
 
Therefore we can now discover laws by which a centripetal force, producing a  
 
generically known figure, varies. For the force is reciprocally as   
 
by Cor. 1, or reciprocally as SY2·PV by Cor. 3. 
 
But all these terms (SP, QT, QR, SY, PV) are determined purely by the geometry of the 
figure. Examples are now to follow. 
 
So in Prop. 7, we have a CIRCLE, point S any point within it. 
In Prop. 8, we have a SEMICIRCLE, point S infinitely distant. 
In Prop. 9, we have a SPIRAL, point S the angular center. 
In Prop. 10, we have an ELLIPSE, point S the center of the ellipse. 
 
He assumes in all these that the body moves on the given figure, sweeping out equal areas in 
equal times around point S, so that he may apply the Prop. 6 Corollaries in order to 
determine the specific rule of force variation. He uses Corollaries 1 and 5 of Prop. 6 in all 
these upcoming Propositions. 
 

PVSYpvsyFF pP ⋅⋅= 22 ::

QR
QTSP 22 ⋅
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 37 
 
 

PROPOSITION  7  (CIRCLE)  AND COROLLARIES 
 
 
Preliminary notes: 
 1.  Here Newton begins to show the power of the preceding theorems in determining laws of 
force in given figures with centers of force in given locations. This first case is that of a circle, with 
the center of force at some place within, which need not be the geometric center. 
 2.  Prop. 4 already covered the case when the center of force is at the center of the circle 
(equable motion around the circle means sweeping out equal areas in equal times around the 
geometric center). 
 3.  Question:  In Ptolemy, if an epicycle sweeps out equal angles in equal times around an 
equant-point, is the center of the deferent the center of forces? Is the equant-point the center of 
forces? (No and no.) 
 Not the geometric center, since the epicycle sweeps out equal angles in equal times around 
the equant-point, therefore not around the geometric center, and therefore does not sweep out equal 
areas in equal times around the geometric center. 
 Not the equant-point, either, since the epicycle sweeps out equal angles around the equant-
point, and therefore, since that point is not the geometric center, the epicycle must be sweeping out 
unequal areas around the equant-point in equal times. 
 4.  The Proposition finds a “LAW OF FORCE,” which in this context means a rule for how a 
centripetal force fluctuates in relation to the distance from the center of force. 
 5. The Law of Force derived in this Proposition shows that if the center of forces, for circular 
motion, does not lie at the center of the circle, then the forces (and hence the speeds) of P (the 
“Planet”) will not be uniform around the center of forces, since the ratio derived is continually 
changing with the motion of P. In fact, I think it is right to say that the forces, and the speeds, will not 
be uniform around any point—so that the Ptolemaic, Copernican idea is IMPOSSIBLE! That is, if we 
insist on there being a center of forces other than the center of the circle, then we cannot also have the 
planet sweep out equal angles in equal times. Of course, their physics was all wet, so they did not 
think about a “center of forces,” but only about a “center of uniform motion” to which the spirit of 
the planet was looking. For them, circular motion was natural. There is nothing mathematically 
impossible about sweeping out equal angles in equal times around some point other than the 
geometric center of the circle; but then that point will not be the center of forces. 
 6.  Propositions 7, 8, 9 consider scenarios which do not actually occur in nature. 
 
 
 
 
 
 
 
 
 
 
 



 217 

PROPOSITION 7 
 

If a body rotate on the circumference of a circle, the law of centripetal force 
tending to any given point whatever is required. 

 
 
Note:  “Any given point” i.e. any given center of forces, around which 
we are given that the body is sweeping out equal areas in equal times. 
 
So let the center of forces be S, let the body be P, moving toward Q, on 
circle APQLV. Let PRZ be tangent at P, let PS be joined and drawn 
through to the circle at V. Let diameter VA be drawn, and AP joined.  
Draw QT perpendicular to SP, and let QT be extended to Z on the 
tangent. Draw QR parallel to SP, cutting the tangent at R, and the 
circle at L. 
 
 
 
 
Now  ∠ZPT = ∠PAV    [Euc. 3.32] 
So  rZQR and rZTP and rVPA  are all similar. 
so  RP : QT  =  ZP : ZT 
and  AV : PV  =  ZP : ZT 
so  RP : QT  =  AV : PV 
so  RP2 : QT2  =  AV2 : PV2   [squaring] 
 
But  RP2  =  QR·RL    [Euc. 3.36] 
 
So  QR·RL : QT2 = AV2 : PV2  
 
Thus  QR·RL·PV2  = AV2·QT2  
 

  [÷AV2] so 
 
 
 
so  
 
 
 
But as  Q  goes to  P,  RL  becomes ultimately equal to  PV, hence 
 
  [ultimately] 
 
 
 
 
 
 
 

2
2

2
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PVRLQR
=

⋅⋅
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And the  QRs  CANCEL OUT  on the left side, leaving us with 
  
 
  [ultimately] 
 
 
But (by Cors. 1 and 5 to Prop. 6), the centripetal force is reciprocally as the ultimate ratio   
 
 
 
 
Therefore, in this particular case, for our circle, the centripetal force is reciprocally as the ultimate 
ratio 
 
 
 
 
 
But all those terms are constants for any given point P, and hence the centripetal force at P is not just 
ultimately as the reciprocal of that ratio, but simply as the reciprocal of that ratio. And since AV is the 
same for all points, we can say that at any point P, the force is as 
 
 
 
 
Q1:  “Actually” or “ultimately”?  (Actually.) 
Q2:  Why can we replace RL with PV, but leave QR in there? Why don’t we have to put in a “zero” 
for QR? (Really we are replacing the ratio  RL/AV  with its ultimate form, i.e. ratio PV/AV ; but 
there is no ultimate value of QR/AV, since QR goes to zero and AV is fixed. So we cannot replace 
that ratio, but must find others to replace. The ultimate ratio is not the same, necessarily, as the ratio 
of the ultimate magnitudes, as we have seen many times.) 
Q3:  How does Prop. 7 differ from 6 and its corollaries? (It is circle-specific.) 
 

“IDEM ALITER” 
 
Newton proves “the same thing another way.”  Drop SY perpendicular to the tangent PZ. Now 
 
 ∠ZPT  =  ∠PAV   [Euc. 3.32] 
so ∠YPS  =  ∠PAV 
so rSYP and rVPA  are similar 
so AV : PV  =  SP : SY 
so SP·PV  =  AV·SY 
 
so 
 
 
so 
 
 
 

QR
SPQT
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2

2

23

AV
SPPV ⋅

32
1
PVSP ⋅

SY
AV
PVSP

=
⋅

2
2

22

SY
AV
PVSP

=
⋅

Y
Z

R

P

AV

L

Q

T

S

QR
SPQT

AV
SPPV 2

2
2

23

⋅=
⋅



 219 

 
so 
 
 
But (by Cors. 3 and 5 to Prop. 6), the centripetal force is reciprocally as (SY2 ·PV), and therefore (as 
before), in our present case, it is reciprocally as 
 
 
 
 
 
And since AV never changes, once again the force is as 
 

i.e.   3232

1:1:
pvSpPVSP

FF pP ⋅⋅
=  

 
Q.E.I. 
 
 
 
 
 
COROLLARY 1. 
 
 
 
So, if S happens to be on the circumference, for example at V, then since 
 
 
 
 
 
and since  SP  =  PV,  thus 
 
 
 
 
 
or 
 
 
Newton calls SP the “altitude,” i.e. the height above the center, S. 
NOTE:  What happens when the body approaches V (S)? Then SP gets as small as you please, hence 
the inverse of SP5 gets as large as you please, so the force at S, it seems, would be infinite.  So 
perhaps this motion cannot be completed, and putting S out on the circumference is a limit case. 
 
 
 
 
 

PVSY
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COROLLARY 2. 
 
Let a body revolve on circle APTV around center of forces S (that is, 
sweeping out equal areas in equal times around S), and then let it 
revolve on the same circle in the same periodic time around center of 
forces R. What is the ratio of the forces to these two centers for a given 
point P? 
 Newton says if we draw PG tangent, and SG parallel to RP, 
then 
 
  FPR : FPS  =  SG3 : SP·RP2 
 

For  32

1
PTRP

FPR ⋅
∝    [Prop. 7] 

 

and  32

1
PVSP

FPS ⋅
∝    [Prop. 7] 

 
 
So  FPR : FPS  =  SP2PV3 : RP2PT3  [watching reciprocals] 
 
So  FPR : FPS  =  SP3PV3 : SP·RP2PT3  [×SP] 
 
Thus  FPR : FPS  =  SP3PV3 : SP·RP2  [÷PT3] 
    PT3 
 
But since ∠SPG = ∠PTV    [Euc. 3.32] 
 
thus  rPSG and rTPV  are similar, therefore 
 
  SP : SG  = PT : PV 
so  SP3 : SG3  = PT3 : PV3  
 
so  SP3PV3  =  SG3  
      PT3  
 
Hence  FPR : FPS  =  SG3 : SP·RP2 
 
Q.E.D. 
 
Q1.  Is this just one motion? No, it is two, with equal periods (given). It is not possible for the same 
body to sweep out areas as times around both R and S, as we saw after Prop. 2 in these notes. 
Q2.  How do the equal periods come into play? Prop. 7 shows the force is proportional to the 
reciprocal of RP2PT3 (or SP2PV3 for the other motion)—but what if P moves about R as center, now 
with one period, now again with a very much shorter one?  Surely in the motion of shorter period, the 
force at P is greater. So, to compare the forces in any two motions around the same circle, we have to 
keep the period the same (or take it into account in some other way, introducing an adjusting ratio). 

P

A
V

S

T

G

R



 221 

COROLLARY 3. 
 
Newton generalizes Cor. 2 to ANY curve (of finite curvature, for 
example, any conic): 
 
  FPS : FPR  =  SP·RP2 : SG3  
 
For the forces in that orbit-shape at P are the same as in a circle 
of the same curvature, with the same centers of force—since the 
subtenses, hence sagittae, hence forces, are ultimately equal as 
we go to P in the circle and in the curve. 
 
NOTE:  This is used for the Idem Aliter in Prop. 11. 
 
 
 
 
 
 
Q1:  What defines the circle of curvature again?  
From P draw a perpendicular (PJ) to the orbit’s 
tangent (PZ), take any point Q (near P) on the 
orbit, join PQ, and draw QJ perpendicular to PQ.  
Thus the circle on PJ as diameter is tangent to PZ 
at P, and cuts the orbit at Q. Let Q go to P. The 
final PJ is the diameter of the circle of curvature. 
 
Q2:  Why will the force at P in our circle of 
curvature (with the same period as in our orbit), 
toward S, be the same as in our orbit at P?  
Because in either case, the forces are ultimately 
as the sagittae. Let the time through arc PQ be the 
same as that through arc PL, for the circle, and 
time through arc PQ be the same as that through 
arc PO for the orbit.  Let QO cut PS at D, and QL 
cut PS at E. Evidently, as Q goes to P, the “bend” 
QPL approaches the “bend” QPO, and hence the 
sagittae, too, which are a function of these 
“bends,” approach equality. But the sagittae are as the forces at P. Hence, in the limit, when Q is at P, 
and we have the circle of curvature, the instantaneous “bend” is the same, hence the sagittae, hence 
the forces. 
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 38 
 
 

PROPOSITION  9  (SPIRAL) 
 
 
 

Let a body rotate in a spiral PQS cutting all radii SP, SQ, etc. in a given 
angle; the law of centripetal force tending to the center of the spiral is 
required. 

 
 
An arithmetic spiral is one in which the radius grows arithmetically as it 
revolves, that is, if O is the center, and OA, OB, OC, OD are four radii in 
order, and ∠AOB = ∠COD, then  OD – OC = OB – OA. But Newton is 
talking about a geometric spiral, in which, S being the center and SP, SQ, 
sp, sq  are four radii in order, and ∠PSQ = ∠pSq, then  SP : SQ = Sp : Sq.  
We know that he is talking about this sort of spiral because it is a property 
of such a curve that the angle formed by radius and tangent is everywhere 
the same (and this is how he describes his curve). To see this property, draw  
pr and PR  tangent, and join  PQ, pq. 
 
If we move  q to p  and  Q to P,  always keeping  ∠PSQ = ∠pSq, 
then  ∠Spq  =  ∠SPQ  always,  since  rSpq  is similar to  rSPQ. 
And so the limiting angles which these approach, 
namely  ∠Spr  and  ∠SPR 
must also be equal. Hence the tangent always makes the same angle with the radius. (Note 
that a circle also has this property, being a degenerate case of arithmetic spiral.) 
 
Now, to derive the force-law for this spiral toward its own center  S  as center of forces: 
 
Since  rSQP  is similar to  rSqp  always, 
 
thus QT : qt  =  SP : Sp 
and QT : QR  =  qt : qr 
 

so 
qr
qt

QR
QT

=  

 

so SpSPqt
qr
qtQT
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QT :: =   

 [1st proportion, and equal coefficients] 
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so SpSP
qr
qt

QR
QT ::

22

=  

 

so 
SpSPqt

qr
QT
QR 1:1: 22 =    [inverting] 

 

so 332222

1:1:
SpSPSpqt

qr
SPQT
QR

=  [× antecedents & consequents by inversions of SP2, Sp2] 

 

so 33

1:1:
SpSP

FF pP =  

 
 
Q.E.D. 
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 39 
 
 

LEMMA 12 
 

 
 
Here Newton adds another Lemma to the preceding 11 Lemmas. It is again a purely 
mathematical truth, about conjugate diameters of an ellipse or of an hyperbola. Lemma 12 
states: 
 
 
 

Parallelograms described about any conjugate diameters of a single ellipse (or a 
single hyperbola) are all equal among themselves. 

 
 
 
It is easy to think this means that “All parallelograms circumscribed about a single ellipse are equal.”  
But that is false. The truth is that, for a given ellipse, we can circumscribe a parallelogram about it 
with an area as large as you like. To see this, just pick a point P extremely far away from your ellipse, 
and from P draw the two tangents to the ellipse, forming a very large tangential triangle. Draw the 
other pair of tangents parallel to these two you have drawn, and you will thus complete a 
parallelogram, and you have a whole lot of area, there. If you now draw P even further away, you 
contain that original triangle and add still more area. So it is important to point out that Lemma 12 is 
about the tangential parallelograms which are circumscribed about conjugate diameters. 
 
Perhaps a brief review of some basics about central conics is in order. 
 
WHAT are conjugate diameters? Recall that in any central conic (a conic section that has a center, 
namely either an ellipse or a hyperbola), any straight line through the center is a diameter, that is, it 
bisects ordinates drawn in the section parallel to the tangents at the ends of the diameter. (And those 
lines are said to be drawn ordinatewise to the diameter when it bisects them, and they are parallel to 
the tangent; also, a diameter bisects only those straight lines in the section which are ordinatewise to 
that specific diameter.) But each diameter has a special diameter as its partner, namely the one drawn 
ordinatewise to itself. 
 
The kind of parallelogram we are concerned with in Lemma 12 is one whose opposite sides are not 
only tangent to the ellipse (or hyperbola), but which are also drawn parallel to a pair of conjugate 
diameters. 
 
Can such parallelograms about conjugate diameters in an ellipse get as skinny as you like? (No, there 
is a limit, a most-skinny parallelogram.) In a hyperbola? (Yes, they can get as skinny as you like.) 
 
Are conjugate diameters ever equal in an ellipse? (Yes, but they are not at right angles, but are the 
portions of the diagonals of the axial rectangle which are cut off within the ellipse.) In an hyperbola? 
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(They are the asymptotes! Although in a right hyperbola all conjugate diameters are equal, that is, AB 
= ED, and HI = GF, in the hyperbola figure below.) 
 
The claim, now, is that the area of all such parallelograms about a given ellipse is the same. 
 
Since Newton offers no proof for this amazing theorem, I will present one here. I should credit 
Robert S. Bart, once a teacher at St. John’s College, for the proof, since I first learned it from his 
excellent notes on Newton’s Principia, and also since I will be using his lettering in my figure. The 
proof itself, however, goes back to Apollonius I believe, who proved the theorem in his Conics, Book 
7, Proposition 31. 
 
 
 
 
 
Given any ellipse (or hyperbola), 
center C, choose any two pairs of 
conjugate diameters, HI and GF, AB 
and DE, complete the parallelograms 
described about these,  LKZT and 
RYOX. 
 
I say that  LKZT  and  RYOX  are 
equal. 
 
 
Draw DN parallel to HC, through to Q 
on XO (on XO extended, for the 
hyperbola). 
Draw HM parallel to CD, through to S on ZT (on ZT extended, for the hyperbola). 
 
 
 

1. Now  CV : CA = CA : CM   [Ap. 1.37; HV tangent, HM ordinate, CA ½ diameter] 
2. So  CVUP : CATD = CATD : CMSD [Euc. 6.1, parallelograms as bases] 
3. or  CVUP : CATD = CATD : CNQH [CMSD = 2rCHD = CNQH] 
4. again  CP : CF = CF : CN   [Ap. 1.37; DP tangent, DN ordinate, CF ½ diameter] 
5. thus  CPUV : CFOH = CFOH : CNQH [Euc. 6.1, parallelograms as bases] 
6. therefore CATD = CFOH    [means between same extremes; Steps 3 & 5] 
7. thus  LKZT = RYOX    [i.e. 4CATD = 4CFOH] 

 
 
Q.E.D. 
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Here I repeat the very same argument for the hyperbola, just to accompany the diagram: 
 

1.  CV : CA = CA : CM    [Ap. 1.37; HV tangent, HM ordinate, CA ½ diameter] 
2.  CVUP : CATD = CATD : CMSD  [Euc. 6.1, parallelograms as bases] 
3.  CVUP : CATD = CATD : CNQH  [CMSD = 2rCHD = CNQH] 
4.  CP : CF = CF : CN    [Ap. 1.37; DP tangent, DN ordinate, CF ½ diameter] 
5.  CPUV : CFOH = CFOH : CNQH  [Euc. 6.1, parallelograms as bases] 
6.  CATD = CFOH    [means between same extremes; Steps 3 & 5] 
7.  LKZT = RYOX    [i.e. 4CATD = 4CFOH] 

 
 
Q.E.D.   
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Here I will add an alternative method of proof for the case of the ellipse which I developed when 
someone complained to me that the proof above is too complex. I’m not sure this one is any simpler, 
but it is quite different, and is in some ways rather interesting. 
 
 
 

The conjugate parallelograms inscribed in an ellipse all have the same area. 
 
 
Let the ellipse be in a right cylinder, and let any random 
point C be taken on it. Let AC be the diameter through C, 
and BD the conjugate diameter. I say that the area of 
parallelogram ABCD is a constant for all points C chosen 
along the ellipse. 
 
On the cylindrical surface, let the straight lines AE, BF, 
CG, DH be drawn down to the base circle, forming 
quadrilateral EFGH. And let WXYZ be the straight line in 
which the plane of the ellipse intersects the base plane; 
and let AB and EF meet at W, DC and GH at X, BC and 
FG at Y, AD and EH at Z. 
 
Draw GP at right angles to XY; join CP. Since CG is at 
right angles to the base plane, therefore CP is also at right 
angles to XY. 
 
Also, since AC is a diameter, and passes through the cylinder’s axis, therefore EG does as well, and 
so EG is a diameter of the circle. Likewise FH is a diameter of the circle. And since BD is parallel to 
the ordinates to AC, so too FH is parallel to the ordinates to EG; which means that EG and FH are at 
right angles to each other, and hence EFGH is the square inscribed in the base circle. 
 
Now,  rABC : rWBC  =  AB : BW   [Euc. 6.1] 
and  rEFG : rWFG  =  EF : FW   [Euc. 6.1] 
but   AB : BW  =  EF : FW 
so  rABC : rWBC  =  rEFG : rWFG 
or  rABC : rEFG  =  rWBC : rWFG  [alt.] 
so  ABCD : EFGH  =  rWBY : rWFY  [doubles; BC : BY = FG : FY] 
so  ABCD : EFGH  =  rXCY : rXGY 
so  ABCD : EFGH  =  PC : PG   [triangles on same base as heights] 
 
But the ratio  PC : PG  is fixed regardless of where  C  is taken on the ellipse, since it is based on the 
inclination of the cutting plane to the base plane. 
 
Hence the ratio  ABCD : EFGH  is fixed for all  C. 
 
But the area of  EFGH  is also fixed for all  C. 
 
Therefore the area of  ABCD  is fixed for all  C. 
 
Q.E.D.   
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One more point about Lemma 12 before we move on. If we call the parallelograms we have been 
describing the “parallelograms described about conjugate diameters,” we can add another geometrical 
theorem: The area of parallelograms described about conjugate diameters of an ellipse is the least of 
all parallelograms drawn tangentially about it. The proof is easy. 
 
 
Given: Ellipse, center C, conjugate diameters  AB, DE 
 and parallelogram GHKL circumscribed tangent to it at A, E, B, D 
 and  NCO  any other diameter of the ellipse 
 and parallelogram PQRS circumscribed tangent at  O, D, N, E 
 
Prove: Parallelogram PQRS is greater than parallelogram GHKL 
 
 
Well,  GB = BH 
so  GZ > ZH 
so  rGZS > rZPH 
Similarly rQVK > rVRL 
So  rGZS + rQVK + VRGZPK  >  rZPH + rVRL + VRGZPK 
i.e.  prlgm. PQRS  >  prlgrm. GHKL 
 
Q.E.D.  
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 40 
 
 
 

PROPOSITION 10 
 

Let a body rotate on an ellipse. The law of centripetal force tending to the 
center of the ellipse is required. 

 
 
Preliminary questions: 
 (1)  What does “law of centripetal force” mean? (A formula for computing the 
strength of the force at any point on the ellipse, in terms of quantities determined by the 
geometry of the ellipse and the geometry of the location of the center of forces. That is, a 
way of determining the strength of the force in terms of distance from the center. NOTE:  
This gives us only relative quantity of force so far.) 
 (2)  Does this Proposition apply to all motion on an ellipse? That is, is it true to say, 
“If a body rotate on an ellipse, the body is drawn to the center by a centripetal force, and that 
force is directly as the distance from the center”?  (NO. Only if C is the center of forces, i.e. 
only if the body sweeps out equal areas in equal times around C.) 
 (3)  Does any such motion happen in nature? (Well, there is Hooke’s Law about 
springs, and the laws about transverse waves; and there is also Props. 70-73 at the end of 
Book 1 of the Principia, where Newton shows that if the matter of a sphere attracts 
according to an inverse-square law, then the matter inside is attracted to the center according 
to a DIRECT-FORCE law! But that is derivative, i.e. a net-effect of another, more basic 
force, and not itself a basic, natural force rule. So probably there is no natural and elementary 
direct-force law. But some non-elementary forces increase with distance generally, e.g. a 
rubber-band being stretched from a fixed point [and the forces bonding quarks, too, 
apparently]. So maybe this motion can be produced by a fellow with a bungee cord and roller 
skates. But we have a kind of COROLLARY to Prop. 10 thus: Any force which decreases 
with distance from its source cannot produce this kind of motion, i.e. elliptical with the 
center of forces at the geometrical center. For instance, if a magnet were at C, that could not 
do it.) 
 (4)  Then what is the point? (To show the power of his method and principles—but 
more specifically, this case is interesting, since it is the simplest law of centripetal force, i.e. 
where the Force is directly as the Distance from the center. This becomes clear in Cor. 1, i.e. 
that we have, in a way, been looking to answer the question What sort of orbit do we get by 
the simplest conceivable law for centripetal force? Answer: an ellipse, whose center is the 
center of forces. Also, it is used in Prop. 11, the Idem Aliter. Also, it has a simple n-body 
solution, as we find in Prop. 64. And we do need it for Props. 70–73, where we will forestall 
objections about moving from points to spheres.) 
 (5)  Does the proposition make intuitive sense? Where is the velocity greatest?  
Least? (Greatest at B, least at A, by taking the perpendiculars from C to the tangents at B and 
A inversely, which gives the ratio of the velocities.) Since the velocity is greatest at B, 
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shouldn’t the force be greatest there? (Forces are not as velocities; they are as changes in 
velocity. Forces are not causes of velocities—confer Law 1; you can move very fast, without 
any force—but forces are causes of changes in velocity. And the sharper curvature at A 
shows that the change in velocity is more dramatic there. If we draw equal areas from C 
around points B and A, and shrink these, we have a COROLLARY: The sagittae will be 
ultimately in the same ratio as BC and CA, since these are as the forces, and the sagittae are 
ultimately as the forces. This is really a purely geometrical fact, it seems: the equal areas, and 
the sagittae being more and more in the ratio of BC and CA themselves, is all geometry.) 
 (6)  Do you get a specific ellipse by this law of force? (No.) How do you get different 
ellipses if the law of force is the same for all ellipses?  (From different initial velocities in the 
body, and different initial distances from the center C.) 
 (7)  How would you get a circle? (See Prop. 4.) 
 (8)  How would you get similar ellipses? 
 (9)  Would mass affect the shape of the ellipse? 
 (10)  Is everyone aware of the “ordinate-squares are as diameter-rectangles” property 
in central conics? Are the ord-squares ever equal to the diam-rectangles in an ellipse? (Yes, 
in the special case where the conjugate diameters are equal, and hence are not at right 
angles.) 
 (11)  What do you think the law of force would be for a hyperbola, if the center of 
force were at its geometric center? (According to Prop. 12, Idem Aliter, the centripetal force 
away from the center would again be directly as the distance, so the rule by which the force 
magnitude varies is the same, but the force has been changed from a centripetal one to a 
centrifugal one.) 
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PROOF OF PROP. 10. 
 
P is the point on the orbit we will examine. 
CA, CB are the semi-axes. 
GP is a diameter, DK its conjugate. 
PF is perpendicular to DK. 
QT is perpendicular to GP. 
Qv is ordinatewise to GP. 
Parallelogram QvPR is completed (so PR is 
tangent). 
 
Now, the ordinate-squares are as the diameter-
rectangles, 
 
thus  Pv·vG : Qv2  =  PC2 : CD2   [PC2 is the diam-rect PCxCG] 
but  Qv2 : QT2  =  PC2 : PF2   [△QvT is similar to △PCF] 
so  Pv·vG : QT2  = (PC2 : CD2) c (PC2 : PF2)    
 
which we get just by multiplying the ratios on the left, and also those on the right. 
 
So  Pv·vG : QT2  = PC2·PC2 : CD2·PF2  
 
that is, dividing the left ratio by  Pv,  and dividing the right ratio by  PC2,  
 
 
 
 
But  QR = Pv 
 
and  BC·CA = CD·PF   [Lemma 12] 
 
hence  CD2·PF2 = BC2·CA2  
 
and  vG U 2PC    [as Q goes to P] 
 
 
so         [ultimately]  
 
 
 
 
 
Therefore, cross-multiplying, 
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    [ultimately] 
 
 
 
But (by Prop. 6, Cor. 5), centripetal force is as the ultimate form of the reciprocal of 
 
 
And therefore, in the present case, the centripetal force is ultimately as  
 
 
But  2BC2·CA2  is fixed, so that the centripetal force is ultimately as   
 
 
i.e. the centripetal force is ultimately as  PC. 
 
And since PC is itself fixed, it follows that the centripetal force at P is actually as PC. 
 
Q.E.I. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Newton now gives us an “idem aliter,” that is, “the same thing another way.”  This “idem 
aliter” or alternative proof is rather tedious, and not strictly necessary, but it is nice to see that 
the same result is reached by other means. That adds to our certainty. 
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IDEM ALITER 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Make  Tu = Tv, on the other side of T, and take  uV  so that 
 
  uV : vG  =  DC2 : PC2     [construction] 
but  Qv2 : Pv·vG  =  DC2 : PC2     [alt. of ord-squares and diam-rects] 
so  Qv2 : Pv·vG  =  uV : vG 
Cross-multiplying, and then dividing both sides by  vG, we have 
  Qv2  =  Pv·uV 
Now we add the rectangle  uP·Pv  to both sides, and we have 
  Qv2 + uP·Pv  =  Pv [uV + uP] 
But since uT = Tv 
thus  uP·PV  =  PT2 – vT2     [Euc. 2.6] 
thus  Qv2 +  (PT2 – vT2)  =  Pv [uV + uP] 
or  Qv2 – vT2 + PT2  =  VP·Pv  
i.e.  QT2 + PT2  =  VP·Pv    [right triangle QvT] 
i.e.  QP2  =  VP·Pv     [right triangle QPT] 
 
Now construct the circle through P and Q tangent at P to the ellipse and its tangent ZPR; let 
its intersection with PC be Y. 
 
Now  ∠vQP = ∠QPR    [parallels] 
and  ∠QPR = ∠QYP    [Euc. 3.32] 
so  ∠vQP = ∠QYP 
and  ∠QPY is common to △vQP and △QPY 
hence these triangles are similar, 
thus  Pv : PQ = PQ : PY 
so  QP2 = PY·Pv 
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but  QP2  =  VP·Pv     [just proved] 
so  PY = PV 
i.e. our circle, drawn tangent to ZPR and the ellipse at P, and passing through Q, also passes 
always through point V. 
 
But as  Q  goes to  P, 
  Pv  =  QR     [always] 
and  PQ  =  arcPQ      [ultimately] 
and  QP2  =  VP·Pv     [proved] 
thus  (arcPQ)2 = VP·QR    [ultimately] 
i.e.  PV  =  (arcPQ)2/QR    [ultimately] 
i.e. the ultimate length of PV is the chord of the circle of curvature at P through C, and hence 
we may now apply Prop. 6 Cor. 3. (Think back to Lemma 11, where we kept drawing the 
cutting circle until the two points coincided at the point of tangency, and AG became AJ, the 
diameter of the circle of curvature; the only difference is that there we were using the 
property of the circle at its diameter, whereas here we are using similar triangles which are 
not right triangles.) 
 
 
 
 
Now, as Q goes to P, u also goes to P, hence 
uV becomes PV ultimately. 
And as Q goes to P, v also goes to P, hence vG 
becomes PG ultimately. 
 
 
 
 
 
 
So  uV : vG  =  PV : PG  
  [ultimately] 
i.e.  uV : vG  =  PV : 2PC    [ultimately] 
But  uV : vG  =  DC2 : PC2    [construction] 
thus  DC2 : PC2  =  PV : 2PC   [ultimately] 
 
So  PV·PC2  =  2DC2·PC    [ultimately] 
 
so               [ult]  
 
 
so         [ult] 
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But, since PV is a chord in the circle of curvature for point P, and that chord is drawn through 
the center of forces, therefore, by Prop. 6 Cor. 3, 
   
 
 
 
(Note:  PF is the distance from C to the tangent RP) 
 
 
Hence   
 
 
 
But since  2DC2·PF2  is a constant for all points  P (by Lemma 12, 2DC·PF is the same for all 
points, i.e. the conjugate parallelogram is always the same area, hence 2DC·PF2 is also a 
constant), 
 
thus  
 
 
 
 
So that the force at  P  is directly as  PC. 
 
Q.E.I. 
 
 
NOTE:  Why bother with an idem aliter if it is so much more tedious?  Recall that calculus is 
new, and it looks fishy to many people at first—as though we can get any result we like. So 
he wants to drive home that, no matter what fluid quantities we consider the ratio of forces to 
be a limit of, we get the same results. 
 
NOTE:  Newton ends this proposition Q.E.I., since it is a type of problem, namely to find 
something given certain conditions. The initials stand for Quod Erat Inveniendum, or “What 
was to be found.” 
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 41 
 
 
 

PROPOSITION 10 COROLLARIES AND SCHOLIUM 
 
 
 
COROLLARY 1. 
 
Prop. 10 proved that the force in our ellipse, if its geometric center is the center of forces, is 
directly as the distance from the center of the ellipse. Corollary 1 states that conversely if the 
orbit is produced by a centripetal force toward C which varies in the same ratio as the 
distance from C, the orbit is an ellipse and C is its geometric center. Prop. 10 proceeded by 
convertible properties of ellipses. The specific ellipse you get will depend upon the 
magnitude of the centripetal force and also the initial position and velocity of the body. 
 
 
 
COROLLARY 2. 
 
This corollary states (I’m paraphrasing, 
here) that If the same point is both the 
geometric center and the center of forces for 
TWO ellipses, then the two elliptical orbits 
will have the same periodic times. 
 
QUESTION:  Newton states it thus, i.e. 
absolutely, as though there were no other 
condition than that we have two ellipses 
sharing the same point C as geometric 
center and force center. Does it really follow 
that their periods must be equal under those 
givens alone? If so, there is only ONE TIME, one period, for all bodies that move on 
concentric ellipses (sweeping out areas equably around the geometric center), entirely 
determined by the geometry. But watch the motion once—now use a slow-motion camera to 
stretch out the time to double. In the slow-motion film, the body is still moving on the same 
ellipse, and sweeping out equal areas in equal times around C, only slower, with double the 
period. So can’t we have bodies moving on ellipses around C, and sweeping out equal areas 
in equal times around it, but at unequal paces, i.e. with unequal periods? So isn’t Newton 
wrong? 
 
Of course not––he is just speaking tersely. We are also given (as his use of Prop. 4 Cor. 3 
makes clear) that the forces in our two ellipses, at any two points, are as their distances from 
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the common center. Not only is there an as-the-distance force law at work in each ellipse, but 
it works between ellipses, too. Put otherwise, we are given that the two elliptical orbits are 
produced by the same cause (or equal causes) of centripetal force toward their common 
geometric center. 
 
 
The main argument can be outlined like this: 
 

(STEP 1) 
If the concentric ellipses be SIMILAR, then they will have the same periodic times. 
 

(STEP 2) 
If the concentric ellipses SHARE A MAJOR AXIS, then they will have the same periodic times. 
 

(STEP 3) 
But then, given ANY two (physically and geometrically) concentric ellipses, their periodic times will 
be equal. Let the minor axes be  GH, KL, let the center be C. Let  AB  be the major axis of KL. On 
AB as major axis, describe the ellipse DE which is similar to ellipse GH. Now 
 
 Period (GH)  =  Period  (DE)  [by Step 1, since they’re similar] 
 Period (KL)  =  Period  (DE)  [by Step 2, due to the common major] 
so Period (KL)  =  Period  (GH) 
 
And therefore any two elliptical orbits which are both geometrically and physically concentric have 
equal periods. 
 
To see the force of the argument, then, it only remains to prove Step 1 and Step 2. 
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STEP 1 
 
 
Given two similar ellipses which are both physically and geometrically concentric, their 
periods must be equal. 
 
For, by Prop. 10 itself, the forces in one ellipse are as the distances from the center of force. But by 
their similarity, the distances in one are as the corresponding distances in the other. Therefore the 
force in one ellipse is to the force in the other (at a similar point) as the distance to the distance. But 
by Prop. 4 Cor. 8, all things said about circles apply to similar figures with similarly placed centers of 
force, so long as we realize the bodies are sweeping out AREAS uniformly, not arcs (and so long as 
we take corresponding distances in place of circular radii). Hence the “Prop. 4 Cor. 8 version of Prop. 
4 Cor. 3” applies here, and that Cor. said that when the forces in our two figures are as the radii (i.e., 
in this case, as the similar distances), the periodic times are equal. But the forces are as the similar 
distances. Therefore the periodic times are equal. 
 
Q.E.D. 
 
NOTE:  Nothing in this argument requires the similar ellipses to have coincident axes. They 
could be oriented quite differently about C. 
 
 
 
STEP 2 
 
 
Given two ellipses sharing a common major axis 
and which are both physically and geometrically 
concentric, their periods must be equal. 
 
For, let AB be the common major, C the common 
center, let EG, DH be the minor axes, KLSMR 
another ordinate parallel to the minors. 
 
Now CG2 : SM2  =  AC·CB : AS·SB  
but CH2 : SR2  =  AC·CB : AS·SB  
so CG  :  SM  =  CH  :  SR 
or CG  :  CH  =  SM  :  SR 
or 2CG : 2CH  =  2SM : 2SR 
i.e. EG : DH  =  LM : KR 
 
So all such ordinates cutting through the ellipses at a common point on the major axis are as 
the minors. 
 
Drawing in skinny little rectangles on such ordinates, it is manifest that the areas of the two 
ellipses must be in the same ratio as the minors (cf. Lemma 4): 
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  EG : DH  = area of ellipse EG : area of ellipse DH 
 
Now, the “period” of each ellipse is the time it takes to sweep out its entire area. And just as 
a uniform velocity is defined by distance per time, and thus the time is equal to the distance 
divided by the velocity, so here the periods (times) will be as the areas covered, divided by 
the area-velocities (i.e. areas-per-time): 
 
 
 
 
 
And just as for uniform length-velocities the velocities are as the distances covered in an 
equal time, so here our uniform area-velocities are as the areas covered in an equal time T.  
Thus 
 
 
 
 
 
But we have seen that the areas are as  EG : DH.  Therefore: 
 
 
 
 
 
But the parts of their areas swept out in time T are as the instantaneous arc-velocities of the 
bodies at the principal vertices. To see this, let sector ACO be described in ellipse EG during 
time T, and in that same time, from the same principal vertex A, let sector ACP be described 
in ellipse DH. Join PO, and extend it to N on major axis AB. Draw AZ tangent, and drop 
subtenses OT and PQ perpendicular to it. Now, these subtenses are ultimately as the forces at 
A, since these are as the sagittae of the arcs (Prop. 1, Cor. 4). But since the distance CA is the 
same in each orbit, and the rule of centripetal force is the same, therefore the forces are equal 
at that point. Therefore the subtenses PQ, OT are ultimately equal—from which it follows 
that PON is ultimately parallel to the tangent, and is therefore ultimately an ordinate.  
Therefore, 
 
 
 
 
 
 
 
 
 
 ON : PN  U  EC : DC 
or ON : PN  U  EG : DH 

DHvelocityarea
DHarea

EGvelocityarea
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But sector ACO : sector ACP  U  rACO : rACP 
and rACO : rACP  U  AO : AP 
 
since those two triangles approach having a common height AC. 
 
So sector ACO : sector ACP  U  AO : AP 
but AO : AP  U  ON : PN 
 
since the chords are ultimately equal to the sines or tangents (Lemma 7). 
 
So sector ACO : sector ACP  U  ON : PN 
But ON : PN  U  EG : DH 
so sector ACO : sector ACP  U  EG : DH 
 
But the sectors have a constant ratio, since the times are equal (and the area-description is 
uniform in each figure), and EG : DH is a fixed ratio. Therefore the sectors are actually in 
that ratio. That is, the areas swept out in each figure in the same time T are as the minors  EG 
: DH. 
 
But we said 
 
 
 
 
 
Therefore 
 
 
 
 
i.e. the periods are equal. 
 
Q.E.D. 
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SCHOLIUM 
 
 
PART 1. 
 
An ellipse, if we stretch its center away toward infinity (picture it tilting in a cone), is 
becoming a parabola. And therefore if a body sweeps out equal areas in equal times around 
C, and C becomes infinitely distant, in the limit, the force, which is always as the distance, 
becomes constant.  So the limit is a parabola on which the body is always being acted on by 
the same force in the same direction—the case of Galileo (who treated gravity as a constant 
force). But if we keep tilting and get a hyperbola, the body continues to sweep out equal 
areas in equal times, and have the forces as the distances, but the force is obviously 
centrifugal. (Not a natural motion, perhaps, but a natural question.) 
 NOTE:  Newton therefore considers Prop. 10 not only because it is the simplest rule 
of force in itself (although we know of no such case in nature), but also because, by this 
Scholium, we can see how to understand Galileo as a limit-case of Newton. 
 
 
 
 
PART 2. 
 
By Corollaries 1 and 2 (or perhaps by their converses) we saw that all elliptical orbits (and 
circular ones, of course) with a common geometric center as their center of forces and having 
equal periods must also have forces as the distances from the center. 
 And the basis for this is that they differ from each other by having ordinates, on the 
same abscissas, which are in a given ratio (or even the same ordinates, but at a different 
angle to the same diameter). Therefore Newton generalizes, now: In any figures with these 
specifications, i.e. where they differ solely by having ordinates augmented or diminished in a 
given ratio (or the angle of the ordinates changed, but kept in a given ratio, as we can take 
the ordinates of a circle, and put them not at 90°, but at 60° to the diameter, and get an 
ellipse), and have equal periods, the forces in them toward a common center of forces will be 
as the distances from the center. 
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 42 
 
 

SECTION 3 
On the Motion of Bodies in Eccentric Conic Sections. 

 
PROPOSITION 11 

 
 
 
TITLE.  “Section Three: The Motions of Bodies in ECCENTRIC Conic Sections.” We already did 
the ellipse and circle in Props 4, 7, 10, right? So what is new? We are putting the center of force off 
the geometric center and at the focus. Although he has no justification for saying so yet, it might even 
say “On the natural motions of bodies in conic sections,” because that is what is special about these, 
i.e. they occur in nature. 
 
FOCI.  These have other physical properties that are very interesting, e.g. in optics and acoustics, and 
wave theory in general.  Note:  Newton’s Latin word for “focus” is UMBILICUS, which means 
“navel.” Very cute. 
 
APOLLONIUS.  In his book On Conic Sections, Book 1, Apollonius derives the principal properties 
of the conics, and names them, in the following order: 
 Prop 11  =  PARABOLA 
 Prop 12  =  HYPERBOLA 
 Prop 13  =  ELLIPSE 
NEWTON.  In this book Principia Mathematica Philosophiae Naturalis, Newton here derives the 
Laws of Force for bodies moving on conics and sweeping out equal areas in equal times around the 
focus, in the following order: 
 Prop 11  =  ELLIPSE 
 Prop 12  =  HYPERBOLA 
 Prop 13  =  PARABOLA 
Surely we are meant to see the same numbering. Why the reverse order? Because in mathematics, the 
parabola is the simplest, having the simplest rule—and there is only one kind, as with the circle. The 
others are like “excess” (hyperbola) and “defect” (the ellipse), vs. “equal,” and so they vary infinitely 
in kind—and so we define “parabola” first, then “hyperbola,” then “ellipse,” just as we define “right 
angle” first (which is defined by equality), then “obtuse” (excess), then “acute” (defect). 
 But in natural philosophy, the ellipse is the most natural and complete of the conics—the 
open curves are motions never finished, and therefore, before long, they encounter other bodies and 
get deflected from such figures. So we start with the ellipse. Also, the ellipse was the first non-
circular celestial motion discovered, namely by Kepler. Also the parabola is a “lucky” case, like the 
special case of the circle, which is rare, or non-existent. So the parabola is almost like a special case 
of the hyperbola, and in natural philosophy we follow the order of the general to the particular. (A 
parabola is also like a special case of ellipse; one whose center is infinitely distant.) 
 
 
 
 



   244 

 
 

PROPOSITION 11 
 

Let a body revolve on an ellipse.  The law of centripetal force tending to a focus of the ellipse 
is required. 
 
NOTE:  We are given, then, that the body sweeps out equal areas in equal times around one 
focus, S, (the Sun). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let  H  be the other focus. 
Let  C  be the center. 
AC  is the semi-major, CB the semi-minor, L the principal parameter (i.e. for the major axis). 
P is the place of the body (the Planet) on the orbit which we will consider. 
Let SP, PH be joined. 
Let PR be tangent. 
Draw  HI  parallel to  PR. 
Draw  RQ  parallel to  SP. 
Draw  QV  parallel to  PR, and so ordinatewise to CP, and cutting SP at  x. 
Draw  DCK  parallel to  PR, and thus conjugate to PCG, and cutting SP at  E. 
Draw  QT  perpendicular to  SP. 
Draw  PF  perpendicular to  DCK. 
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Newton assumes four LEMMAS in the course of his proof. Let’s prove them first. 
 
 
[LEMMA A]  EP  =  AC 
 
1)  PI = PH, since rIPH is isosceles, since ∠RPS = ∠ZPH, since  S, H  are foci, and RPZ is tangent  
(Apoll. 3.48). 
2)  SE = EI,  since  HI  is parallel to  CE  and  SC = CH  (foci are equidistant from the center) 
3)  SP = SE + EI + IP  (whole is equal to sum of its parts) 
4)  SP + PH  =  SE + EI + IP + PH  (+PH to both sides of Step 3) 
5)  SP + PH  =  EI + EI + IP + IP  (since SE = EI, PI = PH, Steps 1 & 2) 
6)  SP + PH  =  2EI + 2IP 
7)  SP + PH  =  2EP 
8)  SP + PH  =  2CA  (focal property) 
9)  EP = AC  (Steps 7 & 8) 
 
 
[LEMMA B]  Qx : QT  =  PE : PF 
 
1)  ∠FEP  =  ∠QxT    (Qx  parallel to  PR,  FE  parallel to  PR,  so Qx parallel to FE) 
2)  ∠EFP  =  ∠xTQ   (both 90°) 
3)  so  rxQT  is similar to  rEPF   (equiangular) 
4)  so  Qx : QT  =  PE : PF   (corresponding sides) 
 
 
[LEMMA C]  AC : PF  =  CD : CB 
 
1)  2AC·2CB  =  2CD·2PF   (Lemma 12) 
2)  so  AC·CB  =  CD·PF 
3)  so  AC : PF  =  CD : CB 
 
 
[LEMMA D]  AC·L  =  2CB2   
 
1)  2AC : 2CB  = 2CB : L    (because the minor axis is a mean proportional between the major axis 
and its upright side, by Apoll. 1.15) 
2)  2AC·L  =  4CB2  
3)  AC·L  =  2CB2  
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THE PROOF ITSELF. 
 
 
 
1)    [obviously] 
 
 
2)    [QR = Px, since RPxQ is a parallelogram] 
 
 
3)    [Px : Pv = PE : PC, since rPvx similar to rPCE] 
 
 
 
4)    [since EP = AC, Lemma A above] 
 
 
5) now  [obviously] 
 
 
6) but                         [ord-squares are as diam-rects]  
 
 
 
7)  or    [GC·CP = CP2 since GC = CP] 
 
 
8)  now  [since Qx : QT = PE : PF, Lemma B] 
 
 
9)  so    [since EP = AC, Lemma A] 
 
 
10)  so   [since AC : PF = CD : CB, Lemma C] 
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11)  Now, putting together Steps 4, 7, 10, by multiplying the left sides and the right sides, we 
get: 
 
 
 
 
 
 
12)  So, rearranging terms a little, 
 
 
 
 
 
13)  Now, multiplying both sides by  (L·Pv) / (Gv·vp),  we have: 
 
 
 
 
 
 
 
14)  And now cancelling the superfluous Pv/Pv and 
CD2/CD2, we have 
 
 
 
 
 
 
15)  Cancelling out  PC/PC, and rearranging a bit: 
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16)  But  AC·L = 2BC2 (by Lemma D), hence: 
 
 
 
 
 
 
17)  or   
 
 
18)  inverting everything, 
 
 
 
 
 
19)  multiplying both sides by  [Qx2 / Qv2 ]·L,   
 
 
 
 
 
20)  so   
 
 
 
 
21)  Now,  as  Q goes to P, ultimately 
 
    
 
 
since Gv goes to  2PC.  Also, ultimately 
 
 
 
 
by Lemma 7, Cor. 3.  And therefore, ultimately 
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22)  But, by Prop.4 Cor.1, the force is inversely as the ultimate form of the left side of this 
equation.  And therefore: 
 
 FP : Fp  =  L·Sp2 : L·SP2   (where no “ultimate” is necessary anymore) 
 
i.e. FP : Fp  =  Sp2 : SP2 
 
and so the force is inversely as the square of the distance from the focus, S. 
 
Q.E.I. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NOTE:  S = Sun, P = Planet. 
 
QUESTIONS: 
 
Q1.  Does this work with either focus?––that is, does the force also vary inversely as PH2 ?  
(No, only the one around which the body sweeps out equal areas in equal times.) 
Q2.  Can force decrease with the square of the distance from the focus (Prop.11) but at the 
same time increase with distance from the center (Prop. 10)?  (Not without introducing two 
separate forces, which would interfere with each other so that the body would no longer be 
sweeping out areas as times around either focus or center.) 
Q3.  Does an inverse square law make intuitive, physical sense?  (If a natural force resides in 
a body that acts through space, it is like a showerhead or a dandelion; the closer you are, you 
get wetter squared, or more tickled squared.) 
Q4.  What do you get if the force is simply as the inverse of the distance (vs. as the inverse of 
its square)? 
Q5.  Does the argument degenerate into Prop. 7 if the foci coincide? 
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THE NEWTONIAN ART OF CLASSICAL PHYSICS 
 

CLASS 43 
 
 
 

PROPOSITION 11 
Idem Aliter 

 
 
QUESTION:  Again, why so many “idem aliters”? Not to show off, surely. But the method 
of ultimates (the calculus) is new with Newton, since he discovered it. So he is assuring his 
readers, to whom the method will be new, that it does in fact produce the same result when 
one finds the limit of different processes approaching a given ratio (e.g., a fixed ratio of 
forces). If we got different answers by approaching now this way, now that way, we could 
not trust the method. 
 
 
 
The Idem Aliter here uses Prop. 7 Cor. 3, so here is a quick refresher on Cors. 2–3: 
 
 
PROPOSITION 7 COROLLARY 2 
 
If a body moves around a circle, sweeping out equal areas 
in equal times around R, and then moves about the same 
circle, but sweeping out equal areas in equal times around 
S, then, if the periods of these different motions be the 
same, 
 
FPR : FPS  =  SG3 : SP·RP2   
 
 
 
 
 
PROPOSITION 7 COROLLARY 3 
 
With the same givens, but in any conic you please (any curve of 
finite curvature), the same rule applies, since the rule of the 
forces will be the same as for that of the circle of curvature at P. 
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PROPOSITION 11 
Idem Aliter 

 
 
 
 
Draw  SW  parallel to  CP. 
 
Hence  [Prop. 7 Cor. 3] 
 
 
 
so 
 
 
 
 
But  rSWP  is similar to rPCE 
 
 
so  
 
 
and 
 
 
so 
 
 
 
so 
 
 
 
But  [Prop. 10] 
 
 
So  
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i.e.   
 
 
so  [since PE = AC, the semi-major, Lemma A] 
 
 
 
i.e.  [since AC3 is constant] 
 
 
Q.E.I. 
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